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Disjunctive Programming Models for the Optimal Design of
Distillation Columns and Separation Sequences†

Hector Yeomans and Ignacio E. Grossmann*

Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

A disjunctive programming model is presented for the design of ideal and nonideal distillation
columns in which the feed tray location, number of trays, and operating and design parameters
are determined. The proposed model is based on the identification and application of MESH
equations for conditional trays in order to reduce the size of the nonlinear subproblems and to
increase robustness. A logic-based outer approximation algorithm is proposed to solve the
problem, where the mixed-integer linear programming (MILP) master problem based on the
convex hull formulation of disjunctions is replaced with a big-M formulation. The algorithm is
also modified with the introduction of two initialization schemes and the inclusion of convex
envelopes to improve lower bounding in the MILP master problem. It is shown that the
combination of a disjunctive model and the appropriate logic-based solution algorithm can greatly
improve the robustness of the design procedure. The proposed disjunctive column model is
extended to the synthesis of distillation column sequences, based on the state-equipment network
representation. The robustness and computational efficiency of the model is tested with four
examples involving single-column and distillation sequence configurations.

1. Introduction

Distillation is one of the most important unit opera-
tions in the chemical process industry. The importance
of distillation is due to the widespread use across all
sectors of the chemical industry, as well as the large
impact it has on the investment and energy cost of a
chemical plant. The economic importance of distillation
separations has been a driving force for the research in
synthesis procedures for more than 30 years (Nishida
et al.1 and Westerberg2). Among the various synthesis
approaches, mathematical programming has been re-
ceiving much attention, particularly for the synthesis
of distillation sequences. Sargent and Gaminibandara3

proposed the optimization of a superstructure that
modeled Petlyuk columns using a nonlinear program-
ming (NLP) model. Andrecovich and Westerberg4 pro-
posed a mixed-integer linear programming (MILP)
model for synthesizing sharp separation sequences.
Paules and Floudas5 and Aggarwal and Floudas6 de-
veloped mixed-integer nonlinear programming (MINLP)
models for heat-integrated and nonsharp distillation
sequences using linear mass balances. Novak et al.7 and
Yeomans and Grossmann8 proposed superstructure
MINLP optimization approaches using short-cut models
for heat-integrated distillation. Recently, Smith and
Pantelides9 and Bauer and Stichlmair10 developed
MINLP models using rigorous tray-by-tray models for
zeotropic and azeotropic mixtures. Also, Dunnebier and
Pantelides11 have recently used rigorous tray-by-tray
MINLP models to solve complex column configuration
distillation sequences.

Except for the few research efforts mentioned above,
most of the mathematical programming models devel-

oped so far have relied on simplified performance models
of the distillation columns, including linear mass bal-
ance equations, short-cut models (Underwood12), and
aggregated models (Papalexandri and Pistikopoulos13

and Caballero and Grossmann14). While some of these
methods can provide useful results in terms of prelimi-
nary designs or bounds, it is clear that it would be
desirable to directly incorporate rigorous models in the
synthesis procedures in order to increase their indus-
trial relevance and scope of application, particularly for
nonideal mixtures. Regarding the rigorous MINLP
synthesis models by Bauer and Stichlmair, Smith and
Pantelides, and Dunnebier and Pantelides, all of them
use modifications of the single-column MINLP model
proposed by Viswanathan and Grossmann15 for optimiz-
ing feed tray location and number of trays. These
rigorous MINLP synthesis models exhibit significant
computational difficulties, such as the introduction of
equations that can become singular, the solution of
many redundant equations, and the requirement of a
good initialization point. The high levels of nonlineari-
ties and nonconvexities in the MESH equations and
thermodynamic equilibrium equations, as well as the
convergence difficulties when deleting nonexisting col-
umns or column sections, are problems common to the
tray-by-tray models based on the model by Viswanathan
and Grossmann. These difficulties translate into high
computational times and the requirement of good initial
guesses and bounds on the variables to achieve conver-
gence.

The objective of this paper is to present new models
for rigorous column design and superstructure optimi-
zation for distillation sequences that can reduce or elimi-
nate the computational difficulties mentioned above. A
nonlinear tray-by-tray model based on generalized dis-
junctive programming, GDP (Raman and Grossmann16),
as well as a description of the solution algorithm, will
be presented first for a single column. The single-column
model will then be incorporated in a state-equipment
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network (SEN) superstructure for the synthesis of
distillation sequences. Finally, several examples for
single- and multiple-column problems are presented to
illustrate the effectiveness of the GDP model.

2. Problem Statement

The first objective of this paper is to develop a GDP
model for the optimal design of distillation columns,
using rigorous tray-by-tray calculations. This problem
can be stated as follows. Given is a set of feeds with
known composition and a set of distillate and bottoms
products with required purity and recovery. Given is
also a specified maximum for the number of trays in
the column. The problem then consists of determining
the optimal number of trays and feed tray locations of
a column, as well as the design and operating param-
eters, such as reflux ratio, column diameter, condenser
and reboiler areas, and their heat duties. The objective
is to minimize the total annualized cost of equipment
and utilities. The proposed distillation column model
will be based on simple-column configurations with one
reboiler and one condenser.

The second objective of the paper, which will be
addressed later, is to include the proposed model,
suitable for ideal as well as nonideal separations, in a
SEN superstructure for synthesizing distillation se-
quences (see Yeomans and Grossmann8,17).

3. Single Distillation Column Design

The basic modeling element for a rigorous distillation
column is the equilibrium stage, represented by a tray
in the column. If simple-column configurations are
assumed, the minimum number of stages a distillation
column can have is three: one feed stage, a condenser
stage, and a reboiler stage. Because these trays are ever
present in the column, they are considered as perma-
nent elements in the model. For clarity purposes, it will
be initially assumed that only one feed stream is given.
This assumption will be removed later to accommodate
the case of multiple feeds.

To achieve a specified separation, a certain number
of trays have to be included in the distillation column.
The number and distribution of the trays in the recti-
fication (between the condenser and feed tray) and
stripping (between the feed tray and reboiler) sections
of the column is a function of the relative volatilities
and compositions of the components present in the feed.
The number of trays and their distribution can be
estimated with short-cut models (Yeomans and Gross-
mann8). When a maximum number of potential trays
above and below the feed is specified, an upper bound
for the number of trays in the column is given. In this
way, the selection of those trays above and below the
feed that are not required (a discrete decision) will
define the actual number of trays needed in the optimal
column, as well as the optimal feed location.

Allowing intermediate trays to disappear in a column
is achievable in a MINLP model by relaxing the
constraints and equations that take place in the given
tray by means of big-M constraints. Viswanathan and
Grossmann18 initially used this approach, but it had
poor numerical performance. An improved approach was
later introduced by Viswanathan and Grossmann,15 who
considered multiple feed positions for the reflux and
boilup (see Figure 1) and assigned 0-1 variables to each

of those potential streams. With this approach there is
no need to relax equations for the nonexisting trays in
the column. However, the resulting MINLP model that
has to be solved is very large, because equations must
be converged whether the corresponding tray exists or
not. This means redundant equations (e.g., phase equi-
librium) with zero liquid or vapor flow must hold in the
nonexisting or inactive trays (see Figure 2). Also, the
corresponding liquid and vapor flows that take a value
of zero can give rise to singularities, causing conver-
gence difficulties.

3.1. Single-Column Superstructure. The approach
proposed in this paper eliminates the difficulties men-
tioned above by the identification and explicit specifica-
tion of the tasks that take place in the permanent and
conditional trays. Figure 3 shows the column represen-
tation for this approach. Consider the conditional trays.
For each existing tray the mass-transfer task is ac-
counted for and modeled with the MESH equations: the
component mass balances, the tray energy balance, the
equilibrium equations, and the summation of liquid and
vapor mole fractions to 1. For a nonexisting or inactive
tray the task considered is simply an input-output
operation with no mass transfer, which gives rise to
trivial mass and energy balance equations (inlet and
outlet flows and enthalpies are the same for the liquid

Figure 1. Viswanathan and Grossmann superstructure for a
single feed column.

Figure 2. Inactive trays in the Viswanathan and Grossmann
model.
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flows and the vapor flows). Because the MESH equa-
tions include the solution for trivial mass and energy
balances, the only difference between existing and
nonexisting trays is the application of the equilibrium
equations. As for the permanent trays, all of the
equations for an existing tray apply.

The advantage of the proposed modeling approach is
that the MESH equations of the nonexisting trays do
not have to be converged, and no flows in the column
are required to take values of zero, making the conver-
gence of the optimization procedure more reliable. Also,
by using GDP as the modeling tool, the computational
expense of solving the problem can be reduced, as will
be shown in the next sections.

3.2. GDP Model. In this section we present the
detailed GDP model for the representation of the column
in Figure 3.

Consider the following set definitions for the model:
C is the set of components i present in the feed. TC
represents the set of trays t in the column. NFT is the
feed tray t ∈ TC. NCT is the tray t ∈ TC corresponding
to the condenser of the column. NRT represents the tray
t ∈ TC of the reboiler. TM is the subset of trays t ∈ TC
that are conditional in the rectification and stripping
sections of the column. According to the above set
definitions, TC ) NFT ∪ NCT ∪ NRT ∪ TM.

Let êi represent the minimum recovery fraction of
species i and τi the minimum purity of species i in the
distillate and/or bottoms. For simplicity in the presenta-
tion of the model, we assume only specifications in the
distillate. Consider that the trays of the column (n ) 1,
2, ..., N) are numbered from bottom to top, so that the
reboiler is tray 1 and the condenser tray is number N.

The objective of the problem is to minimize the total
annualized cost (TAC) of equipment and utilities. f(NT,
DC, AR, AC) represents the annualized cost function of
the column, which depends on the number of trays (NT),
column diameter (DC), reboiler area (AR), and con-
denser area (AC). QR and QC are the corresponding
heat loads of reboiler and condenser, and CS and CW
are the steam and cooling utility costs. The objective
function of the problem can be stated as

The set of constraints for the model can be classified
in two groups. The first group includes constraints with
only continuous variables that are valid for any column
configuration. The second group includes constraints
related to discrete decisions that contain continuous and
Boolean variables. The constraints in the second group
are valid for specific column configurations, depending
on whether vapor-liquid equilibrium (VLE) equations
are applied to the tray or not.

We define the following continuous variables for the
constraints in the model:

Nomenclature

Fn
i ) molar feed flow of component i in tray n

FT ) total molar flow of feed (single-column feed)
Ln

i ) molar liquid flow of component i out of tray n
LIQn ) total molar flow of liquid out of tray n
Vn

i ) molar vapor flow of component i out of tray n
VAPn ) total molar flow of vapor out of tray n
Di ) molar flow of component i in the distillate
DIS ) total molar flow of distillate
Bi ) molar flow of component i in the bottoms
BOT ) total molar flow of bottoms
R ) reflux ratio (LN/DIS)
Tn

L ) temperature of liquid out of tray n
Tn

V ) temperature of vapor out of tray n
Pn ) pressure in tray n
xn

i ) liquid mole fraction of component i out of tray n
xF

i ) liquid mole fraction of component i in feed
yn

i ) vapor mole fraction of component i out of tray n
STGn ) counter for the existence of a tray
QR ) reboiler heat load
QC ) condenser heat load
fi
L ) fugacity of component i in the liquid phase

fi
V ) fugacity of component i in the vapor phase

hDi ) liquid molar enthalpy of component i in the distillate

Figure 3. Single distillation column representation.

min TAC ) f(NT,DC,AR,AC) + CS ×
QR + CW × QC (1)
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hBi ) liquid molar enthalpy of component i in the bottoms

hLn
i ) liquid molar enthalpy of component i out of tray n

hVn
i ) vapor molar enthalpy of component i out of tray n

hFi ) liquid molar enthalpy of component i in the feed

U ) overall heat-transfer coefficient for reboiler (R) and
condenser (C)

The overall constraints include the general column
mass balance, the purity and recovery requirements, the
calculation of the number of stages, column diameter,
reboiler, and condenser areas. These constraints are as
follows:

The feed tray is considered a fixed part of the column.
There is no discrete choice associated with it, so the feed
tray constraints are valid for any column configuration.
The component mass balances, the energy balance, the
summation of mole fractions, and the equilibrium equa-
tions are given by the following equations:

The condenser and reboiler trays are also fixed in the
column. Equation 4 includes the MESH equations for
the condenser tray, and eq 5 includes the corresponding
constraints for the reboiler tray:

As mentioned before, the MESH equations for the
intermediate trays in the rectification and stripping
sections (for the case of a single feed) are valid for any
column configuration, excluding the equations related
to the VLE. Equation 6 includes the mass balances and

{Fi ) Di + Bi
Di g êiFi

yN
i g τi

} i ∈ C

NT ) ∑
n∈TC

STGn (2)

DC g g(Tn
V,Pn,VAPn) n∈TC

AR ) QR/UR(TS - T1
L)

AC ) QC/UC(TN
V - Tcw)
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energy balance for the intermediate trays, as well as
the summation of mole fractions.

The constraints in eqs 1-6 involve only continuous
variables and are valid for any column configuration.
The constraints in eq 7 are the ones associated with the
discrete choice of enforcing VLE in a tray or not. The
Boolean variable Zn takes a value of true when the tray
is selected, and hence the equilibrium equations are
applied in that tray. In this case the fugacities of the
liquid and vapor streams are calculated, and the tem-
peratures of liquid and vapor streams are set equal. If
Zn takes a value of false, the composition of the inlet
liquid stream is set equal to the composition of the outlet
liquid stream. The vapor streams are treated similarly,
and the temperatures of liquid and vapor streams are
set to those of the tray above and below, respectively.
Because the equilibrium equations are not used, the
values of the fugacity of liquid and vapor are set to zero.
The disjunction is then as follows:

Because there is the possibility of deleting or deacti-
vating different intermediate trays for the same total
number of trays, it is possible to obtain multiple
solutions with the same objective function value. To
avoid this situation, the following logic constraints
enforce the selected trays to be activated above and
below the feed tray:

The logic relationships in eq 8 are valid only for
columns with one feed. Finally, all continuous variables
are positive, except for the enthalpies:

4. Solution Algorithm

The proposed GDP model will be solved with a
modification of the logic-based outer approximation (OA)
algorithm of Turkay and Grossmann.19 This decomposi-
tion algorithm solves the problem by iterating between
reduced NLP subproblems and a MILP master problem.
The NLP subproblem contains only the equations for
the terms in the disjunctions that are true and provides
an upper bound in the objective. The master problem
predicts a combination of discrete variables, which is

optimal for a global linear approximation of the problem.
The MILP master problem proposed by Turkay and
Grossmann19 is constructed by applying the convex hull
formulation (Balas20) to the linearized version of the
nonlinear disjunctive problem. The combination of
discrete variables produced by the master problem is
used to remove the constraints from the disjunctions
that do not apply to the particular tray, yielding the
reduced size NLP subproblem.

One of the modifications proposed for this algorithm
is the replacement of the master problem that is based
on the convex hull of disjunctions by one that makes
use of big-M constraints. There are two reasons for this
replacement. The first is that the convex hull formula-
tion does not yield a tight bound because of the looseness
of the linearized constraints in each subregion. The
second reason is that the big-M formulation does not
require disaggregation of variables, and hence it in-
volves fewer variables and constraints. A disjunction of
the form

is transformed into the following constraints by means
of the convex hull formulation of disjunctions (Turkay
and Grossmann21):

where A1 and A2 are coefficient matrixes for two
different linear sets of constraints, b1 and b2 are the
right-hand sides of the constraint sets, xI and xII are
variable vectors, and yI and yII are binary variables. It
can be seen that every variable inside the disjunction
term results in three variables in the MILP problem
(original plus two disaggregated), as well as the inclu-
sion of bounding constraints. For a number of synthesis
problems this increase in the number of variables in the
master problem is justified because the MILP relaxation
becomes tighter (Turkay and Grossmann21). For the case
of a distillation column, however, the total number of
variables in the problem is very large because the
constraints of each tray are linked to the trays above
and below it. This linkage requires every variable in the
disjunctions of every tray to be disaggregated into four
variables. Furthermore, even if all of the disaggregated
variables are included, there is virtually no improve-
ment in the lower bound of the MILP relaxation.

Using the big-M transformations shown in eq 11,

where U is a large parameter, the linearized equilibrium
constraints in the left-hand term of the disjunction and

[Zk
A1x e b1 ] ∨ [¬Zk

A2x e b2 ] (9)

x ) xI + xII

A1x
I e b1z

I

A2x
II e b2z

II

LzI e xI e UzI

LzII e xII e UzII

zI + zII ) 1 (10)

A1x e b1 + U(1 - zI)

A2x e b2 + U(1 - zII)

zI + zII ) 1 (11)

Zn w Zn-1, n > NFT

Zn-1 w Zn, n < NFT (8)

F, FT, D, DIS, B, BOT, L, LIQ, V, VAP ∈ R+

R, T, P, NT, QR, QC, x, y, f, STG, RA, CA ∈ R+

hD, hB, hF, hL, hV ∈ R

Y ) {True, False}
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all of the constraint in the right-hand side term in eq 7
are replaced by the following in the master problem:

where Th , Ph , xj, and yj represent the solution of a previous
NLP subproblem in the iteration sequence of the solu-
tion algorithm.

A second modification to the algorithm was made to
avoid difficulties with linearizations of bilinear terms
in the MILP master problem. The linearizations of
bilinear terms in the disjunctive models were replaced
with convex envelopes (McCormick22 and Quesada and
Grossmann23) in the master MILP problem. As an
example of this substitution, the equation Di ) DISxi
was replaced with the following convex envelopes in the
master problem:

where UP and LO represent upper and lower bounds
on the variables, respectively. This substitution is
appropriate, considering that good bounds on flows can
be derived easily. Another advantage of using envelopes

as linearizations is that they do not have to be ac-
cumulated in each iteration, as a regular Taylor series
expansion would have in the original OA algorithm.
These envelopes contribute to keep a low solution time
of the MILP master problem.

To start the first MILP master problem, it is neces-
sary to provide linearizations for all of the nonlinear
equations in the original model. Solving the column
model with the VLE equations in all trays can provide
these initial linearizations, but because it represents
solving the largest possible problem, it can be compu-
tationally very intensive. These linearizations can be
provided with two different approaches. The first one
requires a single initialization subproblem with all
existing trays in the column (see Figure 4a), where the
purity and recovery constraints will be relaxed. Because
the objective of the initial NLP subproblem is to provide
linearization values, it is not important if the solution
is feasible for the original problem or not. The second
approach involves solving two initialization subprob-
lems: one for all of the existing trays in the rectification
section and another one for all of the existing trays in
the stripping section (see parts b and c of Figure 4). As
in the first approach, purity and recovery constraints
are relaxed. When problems are solved with a single
column, there are no clear relative advantages of one
initialization scheme over the other. However, the
second approach is more appropriate when sequences
are synthesized, as will be discussed later in the
paper.

Overall, the proposed modifications to the logic-based
OA algorithm improve its performance by reducing the
size of the MILP master problem for distillation se-
quences, as well as the reduction of the size of the
master problem as iterations progress, because fewer
linearizations have to be accumulated. The smaller
MILP problems, together with smaller, nonredundant
NLP subproblems, make the modified logic-based OA a
faster and more robust solution algorithm.

Figure 4. Initialization options for a single column.
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5. Multiple Feeds and Side Draws

The model for distillation column design presented
in the previous section considers that condenser, re-
boiler, and feed trays are permanent in the column. If
multiple feeds are desired, it is only necessary to fix
additional feed trays throughout the column and to
consider potential assignments of the column feeds into
these. Figure 5 shows the representation of a column
where three feeds are possible. Note that for cases when
the compositions of the feed are very different it might
be possible to fix a priori the assignments (e.g., feed rich
in the most volatile component at the top feed tray,
equimolar in the middle feed tray, and feed rich in the
heavy component in the bottom feed tray). It is in
principle possible to consider as another alternative
representation that every tray in the column can be a
potential feed tray, as in the Viswanathan and Gross-
mann model. This modification was not implemented
because allowing a feed to go into every tray requires
multiple binary variables that indicate a given feed is
supplied at a given tray. Although the number of
continuous variables in this alternative model will be
increased significantly, it offers one advantage over the
proposed method. In particular, the upper bound on the
number of trays for the proposed model with multiple
feeds will be larger than that used by the Viswanathan
and Grossmann model, because the upper bound needs
to guarantee the required number of trays is available
between each potential feed location (for an example see
Figure 6).

The case of side draws is different from the one of
multiple feeds. The definition of a special side draw tray
is not needed, because one can simply consider a
potential extraction in each tray and the needed mixer
if one single product is required (see Figure 7). There-
fore, only a simple modification of the mass and energy
balances on each of the intermediate trays is needed
for liquid (or vapor) streams to be drawn from the
column.

6. Synthesis of Distillation Sequences

The column sequence superstructure can be con-
structed using the state-task network (STN) or SEN
representations. The reader should refer to Yeomans
and Grossmann17 for a detailed description of each one.
The most suitable for the case of rigorous distillation
sequences is the SEN, because the SEN representation
requires the least number of equipment units in the
superstructure and hence leads to a smaller model
compared to the STN model (Smith and Pantelides9).

To construct the SEN superstructure, it is necessary
to determine how many distillation columns can be
used, regardless of the separation tasks that take place
on each of them. The number of columns is defined in
terms of the number of components available, the purity

Figure 5. Column configuration for multiple feed locations.

Figure 6. Comparison between (a) the Viswanathan-Grossmann
model and (b) the proposed representation for multiple feeds.

Figure 7. Potential side draws for a standard column with the
proposed representation.

Ind. Eng. Chem. Res., Vol. 39, No. 6, 2000 1643



of the products, and the potential VLE limitations. For
the case of zeotropic separations where high-purity
components are required, the superstructure is com-
posed of nC -1 columns, where nC represents the
number of components to separate. The interconnection
among the columns is given by potential tasks that each
column can perform. Novak et al.7 and Yeomans and
Grossmann8 have used the assignment of tasks to each
column based on the location of the separation cut (see
Figure 8). This task assignment is not the simplest in
terms of column connectivity, and Yeomans and Gross-
mann17 proposed a different task assignment that
reduces the column connectivity to the minimum. This
last task assignment is the one used in this paper
(Figure 9). Figures 8 and 9 show the SEN superstruc-
ture for the separation of multicomponent mixtures.
Task allocation based on separation cuts assumes that
the relative volatilities of the components do not change
with pressure. Note that the assumption of sharp splits
is not needed because a rigorous performance model is
used.

6.1. GDP Model for the SEN Superstructure.
Once the superstructure for the sequence of columns has
been postulated, it is necessary to transform the rep-
resentation into a GDP. The GDP model for distillation
sequences can incorporate the proposed model for the
design of a single distillation column, without any
modification. This is possible because the selection of a
task for a particular column in the superstructure is a
decision that affects the single-column model just by
changing the purity specifications and recovery, and
these parameters had been considered as user-defined.
Furthermore, the task selection becomes a discrete
decision of higher hierarchical level, because it does not
affect the model for a single column.

The complete GDP model for the synthesis of distil-
lation sequences will include the following elements
(equations are not included in detail because of space
limitations):

(a) Objective function equivalent to the summation
of the annualized costs of columns, as represented in
eq 1.

(b) Material and energy balances for the interconnec-
tion of columns.

(c) GDP model for each column in the superstructure
(eqs 2-8).

(d) The following disjunction for the selection of tasks
for a particular column:

where the recovery (êij) and purity (τij) specifications for
the distillate are in reference to component i in column
j. ytj

i and rtj
i are the top composition and recovery of

component i in column j. COL is the set of columns in
the superstructure, and Tj is the set of tasks that a
certain column j can perform. The Boolean variable Wtj
is true when task t takes place in column j.

(e) Logic relationships that enforce the consistency of
tasks in columns. For the separation of a zeotropic

Figure 8. SEN superstructure for the separation of a four-component mixture.

Figure 9. Alternative SEN superstructure for the separation of
three components.
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mixture of four components, the logic relationships are
the following:

where column location of each task has been omitted
for clarity purposes but can be easily derived from
Figure 8.

6.2. Remarks. For the distillation of azeotropic
mixtures, it is not always possible to determine before-
hand if a certain separation task can be achieved, if it
can actually be followed by other separations, or how
many columns might be required. This information can
be obtained from the analysis of the equilibrium space,
which in turn can be considered in the construction of
the SEN superstructure. The construction of a super-
structure for separation of azeotropic mixtures is out
of the scope of this paper. The reader should refer to
the work of Sargent24 and Bauer and Stichlmair10 for
this topic.

7. Numerical Examples

The single-column model derived in section 3.2 was
tested with two distillation problems. The first problem
(example 1) involves the separation of benzene and
toluene into pure components and uses ideal equilibri-
um. The second problem (example 2) requires the
separation of ethanol and water and uses ideal vapor
phase behavior and the Wilson model (Orye and Praus-
nitz25) to calculate the liquid activity coefficients. The
model for distillation sequences was tested with two
problems involving the separation of three-component
mixtures. Example 3 involves the separation of toluene
and benzene when two feed streams of different com-
position are available. Example 4 is the separation of
n-butane, n-pentane, and n-hexane, and example 5
requires the separation of a mixture of benzene, toluene,
and o-xylene. Examples 3-5 are modeled with ideal
equilibrium equations.

The first three examples were solved on a 300 MHz
Pentium II PC, with 128 MB of RAM. The fourth and
fifth examples were solved on a 120 MHz HP9000-C110
workstation, with 256 MB of RAM. All of the examples
and the solution algorithm were coded in the GAMS
modeling environment (Brooke et al.26). The solver
CONOPT 2.0 was used for the NLP subproblems, and
the solver OSL was used for the mixed-integer master
problems for the first three examples. The fourth and
fifth example master problems were solved with CPLEX.

7.1. Example 1: Separation of Benzene and
Toluene. The feed for example 1 is a mixture of benzene
and toluene in ideal equilibrium. The feeds to the
column are 100 kmol/h of benzene and 50 kmol/h of
toluene. The required purity for the product is 99%
benzene in the overhead for a minimum recovery of 50%.
The upper bound for the number of discrete choice trays
was 30 per column section (30 trays above and 30 trays

below the feed), giving an upper bound of 63 for the total
number of trays in the column. The separation is carried
out at 1.01 bar.

The computational results and optimal design char-
acteristics for example 1 are shown in Table 1. The
objective function used for this problem is the minimi-
zation of the total annualized cost (TAC). The cost data
for column and trays, were obtained from Peters and
Timmerhaus.27 The column cost function is in the form
c1DC

c2NT where c1 and c2 are regression parameters. The
cost function for heat exchangers is in the form c1Ac2,
where A is the area of reboiler or condenser. The
stopping criterion for the logic-based OA algorithm was
no improvement of the NLP solution because the
problem is nonconvex (see Viswanathan and Gross-
mann18).

It is worth noting that the number of continuous
variables and the number of constraints reported in
Table 1 correspond to the NLP subproblem of
the optimal solution. If an MINLP problem using
Viswanathan and Grossmann’s would be solved instead,
the number of continuous variables and constraints
would be more than 2000 and the number of binary
variables would be 60. The small subproblem size, along
with the more robust model allows the small CPU time
required for solving the problem. Notice also that the
initialization scheme proposed in previous sections only
requires 16% of the total solution time.

7.2. Example 2: Separation of Ethanol and
Water. Example 2 consists of a mixture of ethanol and
water to be separated into pure water and a mixture of
ethanol and water at the azeotropic conditions. The
problem was modeled assuming ideal vapor phase and
using the Wilson model for the calculation of liquid-
phase activity coefficients. The feed consists of 1000
kmol/h of methanol and 1000 kmol/h of water. A 99%
purity of water in the bottom of the column with a
minimum 60% recovery is the desired specification. The
separation takes place at atmospheric pressure.

The computational and design results are summa-
rized in Table 2. The effect of the complex equilibrium
calculations can be seen in the total CPU time. Despite
the smaller upper bound in the number of trays (20
discrete trays per section), the computational time is
longer. Notice also that the time distribution shifts
significantly toward the NLP subproblems and that
three OA iterations were required. Furthermore, if more
iterations are run for example 2, it exhibits infeasible
subproblem solutions.

WA|BCD w WB|CD ∨ WBC|D, WAB|CD w WA|B ∧ WC|D,
WABC|D w WAB|C ∨ WA|BC

WB|CD w WC|D, WBC|D w WB|C, WA|BC w WB|C

WAB|C w WA|B, WB|CD w WA|BCD, WBC|D w WA|BCD,

WA|BC w WABC|D, WAB|C w WABC|D,
WA|B w WAB|CD ∨ WAB|C

WB|C w WBC|D ∨ WA|BC, WC|D w WAB|CD ∨ WB|CD (15)

Table 1. Computational Results for Example 1

Model Description
discrete variables 60
continuous variables 1670
constraints 1613
OA iterations 4
initialization NLP (s) 63
NLP subproblems (s) 214
MILP master problems (s) 105
total CPU time (s) 383

Optimal Solution
objective (K$/year) 157.36
no. of trays 55
feed location (bottom to top) 29
column diameter (ft) 1.84
condenser area (m3) 25.6
reboiler area (m3) 6.95
condenser duty (MkJ/h) 4.25
reboiler duty (MkJ/h) 4.27
reflux ratio (L/D) 1.77
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7.3. Example 3: Separation of Benzene and
Toluene from Two Different Feeds. This example
will show the performance of the single-column model
when several feed streams are available. The lightest
feed stream consists of 500 kmol/h of benzene and 100
kmol/h of toluene; the heaviest feed is a 600 kmol/h
equimolar feed. The column configuration is similar to
the one in Figure 6b. The maximum number of stages
in each of the three sections of the proposed column is
30, for a total number of 90 potential trays. The pressure
for the column was fixed to 1.01 bar. The computational
results and design parameters for this example are
found in Table 3.

Note that the possibility of feeding the heavy feed-
stock in a tray above the light feedstock was not
considered. This was done in order to take advantage
of the existing difference in volatilities of the feeds,
which mainly impacts the loads of reboiler and con-
denser. The results show that the assumption is correct,
because there are a number of trays between each light
and heavy feed location. If the assumption had been
incorrect, the optimal solution would have eliminated
all of the trays between both feeds.

7.4. Example 4: Separation of n-Butane, n-
Pentane, and n-Hexane. The distillation sequence
synthesis model proposed in section 6.2 was tested with
the following problem. Given is a mixture of n-butane
(50% mol), n-pentane (25%), and n-hexane (25%) in a
single feed. The superstructure representation in Figure

9 is needed to determine the optimal sequence and
operating conditions for the separation of the feed into
pure components (95% purity of n-butane and n-pen-
tane, 90% purity of n-hexane; all three 90% recovery).
The objective function is to minimize the net present
cost (NPC) of equipment and utility costs, and the
operating pressure was assumed constant throughout
the column, with a value of 3.03 bar.

Table 4 shows the computational results of the
problem, and the optimal design can be found in Figure
10. Because the selection of the number of trays for a
column is dominated by the selection of a task for the
column, the order of the branch and bound search in
the master problem was set so that the discrete vari-
ables for task selection were branched on first.

If a heuristic approach is used to select the separation
sequence, the following rules would be typically used
(Seader and Westerberg28). As a first rule, perform the
cut on adjacent components that have the highest
relative volatility. The relative volatilities of the cuts
nC4-nC5 and nC5-nC6 are not much different, so the
task selection cannot be resolved by this heuristic. The
second rule requires the separation of the most abun-
dant component first (nC4). This heuristic rule leads us
to the direct separation sequence, which is the separa-
tion sequence obtained by the GDP optimization (M$2.25
NPC).

Notice that the optimal separation sequence located
the feed of the second column closer to the bottoms. This
is because the purity specifications are tighter for the
products recovered in the distillate streams. Another
alternative to solve this problem is to consider a complex
column configuration (i.e., single column with side
draw). Because the model requires the solutions to be
standard columns, this possibility was not studied.
However, the model can be modified to accommodate
complex column configurations, following a superstruc-
ture representation approach similar to the one pro-
posed by Dunnebier and Pantelides.11

7.5. Example 5: Separation of Benzene, Toluene,
and o-Xylene. A second example to illustrate the
performance of the separation sequence model involves
the separation of a 1000 kmol/h mixture of benzene (15%
mol), toluene (25%), and o-xylene (60%) with ideal
equilibrium. The products are required with at least
95% purity and a recovery of 90%. The objective function
is to minimize the NPC of the equipment and utilities.

Table 5 presents the computational results of example
5. Figure 11 shows the optimal operating conditions and
sequence, which is indirect in this case. The difference
in the composition distribution of the feed and the close
relative volatilities of the components make the problem
more difficult to solve. Because of these difficulties and
the higher number of maximum allowable trays per
column, the computational expenses are higher.

Table 2. Computational Results for Example 2

Model Description
discrete variables 40
continuous variables 1360
constraints 1365
OA iterations 3
initialization NLP (s) 76
NLP subproblems (s) 469
MILP master problems (s) 37
total CPU time (s) 582

Optimal Solution
objective (K$/year) 3132.4
no. of trays 39
feed location (bottom to top) 19
column diameter (ft) 5.9
condenser area (m3) 599
reboiler area (m3) 149
condenser duty (MkJ/h) 97.3
reboiler duty (MkJ/h) 95.6
reflux ratio (L/D) 2.214

Table 3. Computational Results for Example 3

Model Description
discrete variables 90
continuous variables 2294
constraints 2519
OA iterations 4
initialization NLP (s) 108.4
NLP subproblems (s) 182.3
MILP master problems (s) 200.0
total CPU time (s) 490.7

Optimal Solution
objective (K$/year) 1335.87
no. of trays 38
light feed location (from bottom) 8
heavy feed location 3
column diameter (ft) 5.623
condenser area (m3) 237.8
reboiler area (m3) 77.7
condenser duty (MkJ/h) 39.54
reboiler duty (MkJ/h) 39.99
reflux ratio (L/D) 1.415

Table 4. Computational Results for Example 4

parameter value

discrete variables 56
continuous variables 1952
constraints 2107
OA iterations 6
initialization NLP (s) 47.4
NLP subproblems (s) 388.8
MILP master problems (s) 2192.0
CPU time 43 min 46 s
max trays per column 30
objective value (M$) 2.2573
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7.6. Remarks. A major difficulty encountered when
solving optimal distillation column design problems is
the specification of the initial guess to the problem
(Viswanathan and Grossmann15 and Bauer and Stichl-
mair10). Because of the structure of the MINLP models,
the initial guess usually has to be very close to a real
simulation result, and it affects strongly the outcome
of the solution that is obtained. One of the major
benefits of the proposed model, aside from its compu-
tational performance, is its robustness. The initializa-
tion scheme of the proposed model requires only a
starting point involving variable values different from
zero. The problems in this paper were initialized by
setting the variables of all trays to the values provided
by a flash calculation of the feed.

8. Conclusions

This paper has presented a disjunctive programming
model for the synthesis of distillation columns. The

proposed model simultaneously optimizes the design
and operating parameters of the distillation column,
along with the discrete design decisions of the feed
location and optimal number of trays. The representa-
tion of existing and nonexistent trays was defined in
terms of the application of VLE in each tray. The
proposed model was extended to the solution of multiple
feed columns and distillation column sequences. If the
SEN representation is used, the single-column model
becomes a module in the larger distillation sequence
model. It was shown that the assignment of a task to
each distillation column is a higher hierarchical level
discrete decision that interacts with the single-column
models by means of the purity and recovery specifica-
tions.

A modified logic-based OA algorithm was proposed
to solve the column model. The modifications to the
solution algorithm involve two different initialization
approaches and the replacement of the convex hull
formulation of the master problem with a big-M formu-
lation master problem. Also, linearizations based on
convex envelopes for bilinear constraints were used to
avoid singularities.

Five example problems were solved to evaluate the
robustness and performance of the proposed model. The
first two examples showed that it is possible to solve
single-column problems with ideal or nonideal equilib-
rium with a moderate computational expense. The third
example illustrated the case of multiple feeds. The
fourth and fifth examples illustrated the application of
the single-column model in the context of distillation

Figure 10. Optimal sequence and operating conditions for example 3 (A ) n-butane, B ) n-pentane, and C ) n-hexane).

Figure 11. Optimal sequence and operating conditions for example 4 (A ) benzene, B ) toluene, and C ) o-xylene).

Table 5. Computational Results for Example 5

parameter value

discrete variables 96
continuous variables 3225
constraints 3396
OA iterations 5
initialization NLP (s) 98
NLP subproblems (s) 1445.3
MILP master problems (s) 4519.1
CPU time 101 min 2 s
max trays per column 50
objective value (M$) 1.362
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sequences. It is important to note that the model
presented in this paper not only solves in moderate
computational time, but also is more robust than
standard MINLP models. This robustness is a product
of the tray representation and disjunctive modeling
approach, as well as of the size of the NLP subproblems
that are solved when using a logic-based OA algorithm.
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