Optimal feed locations and number of trays for distillation columns with multiple feeds
 Jagadisan Viswanathan, and Ignacio E. Grossmann
 Ind. Eng. Chem. Res., 1993, 32 (11), 2942-2949 • DOI: 10.1021/ie00023a069

Downloaded from http://pubs.acs.org on February 2, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/ie00023a069 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Optimal Feed Locations and Number of Trays for Distillation Columns with Multiple Feeds

Jagadisan Viswanathan* and Ignacio E. Grossmann ${ }^{\dagger}$
Engineering Design Research Center, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

Abstract

MINLP models for finding the optimal locations for the feeds and the number of trays required for a specified separation for a distillation column with multiple feeds are presented. Systems with ideal, Soave-Redlich-Kwong equation of state and UNIQUAC thermodynamic models are considered. This rigorous procedure requires no assumptions concerning the order of the feeds-i.e., the disposition of any feed with respect to other feeds. The optimization step automatically determines the order and the locations.

Introduction

Distillation columns with multiple feeds with different compositions occur frequently in practice. Clearly, there are economic benefits in letting the feeds enter at different locations depending on their characteristics (molar flow rates, compositions, thermal conditions, etc). Yet, so far as is known, no rigorous procedures exist for the design of such columns.
Approximate methods (e.g., Nikolaides and Malone (1987) and Van Winkle (1967)), however, have been proposed. These are very useful for preliminary designs and rapid screening of alternatives. However, the approximate methods make simplifying assumptions such as constant relative volatility and constant molal overflow, which generally do not hold in nonideal systems.

In this Research Note, an algorithmic approach for solving these design problems is presented. First, we consider the problem where the number of trays in the column are known and it is required to find the optimal locations for the feeds. Next, we consider the problem of finding simultaneously the optimal locations and the number of trays for a specified separation. No assumption concerning the disposition of any feed with respect to other feeds needs to be made-the order and the locations for the feeds are determined automatically.
In the framework adopted here, the equations and inequalities describing the thermodynamics of the system (the defining equations for fugacities, enthalpies, etc.) are included explicitly in the optimization problem-in more familiar terminology, the approach is completely equationbased (although, strictly speaking, one should say equationand inequality-based). This means that, for example, for a system with c components governed by Soave-RedlichKwong equation of state thermodynamics, there are ($6 c$ +13) equations and 3 inequalities and ($5 c+13$) additional or intermediate variables to describe the phase equilibium relations on a tray-rather than c equations as one would normally expect when invoking (external) procedures for computation of thermodynamic properties. The resulting system is large and sparse, and so, the full power of sparse matrix techniques can be utilized for the efficient solution of both the nonlinear program (NLP) and the mixed integer program (MIP). It should be noted, however, that this is by no means a restriction: the proposed model and the solution procedure will work equally well in the usual framework for solving distillation problems where external thermodynamic subroutines are invoked.

[^0]This Research Note is essentially self-contained; however, the reader may find some useful additional information in Viswanathan and Grossmann (1993), where the MINLP approach for finding the number of trays for a column with a single feed is described.

MINLP Model for Optimal Locations for a Column with Known Number of Trays

Consider a distillation column (Figure 1) with N trays, including the condenser and the reboiler. The stages are numbered bottom upward so that the reboiler is the first tray and the condenser is the last (N th) tray. Only the total condenser and kettle-type reboiler case is con-sidered-the other cases can be dealt with similarly. For definiteness, only two feeds are considered. The straightforward extension to three or more feeds is indicated in Remarks at the end of this section.
Let $I=\{1,2, \ldots, N\}$ denote the set of trays and let $R=$ $\{1\}, C=\{N\}$, and $S=\{2,3, \ldots, N-1\}$ denote subsets corresponding to the trays in the reboiler, in the condenser, and within the column, respectively.
Let \mathcal{F}^{1} and \mathscr{F}^{2} denote the feeds. Let c denote the number of components in the feeds, and let $J=\{1,2, \ldots, c\}$ denote the corresponding index set. Let $F^{k}, T_{f}^{k}, p_{\mathrm{f}}^{k}, v_{\mathrm{f}}^{k}, z_{\mathrm{f}}^{k}$, and $h_{\mathrm{f}}^{k}, k=1,2$ denote, respectively, the molar flow rate, the temperature, the pressure, the vapor fraction, the vector of mole fractions (with components, $z_{\mathrm{f},}^{k}, z_{\mathrm{f} 2}^{k}, \ldots, z_{\mathrm{fc}}^{k}$), and the molar specific enthalpy of the corresponding feeds.
Let p_{i} denote the pressure prevailing on tray i. It is assumed that $p_{\text {reb }}=p_{1}, p_{\text {bot }}=p_{2}, p_{\text {top }}=p_{N-1}$, and $p_{\text {con }}=$ p_{N} are given, although one may treat them as variables to be determined, if desired. (In many cases, it is quite adequate to regard all of them as equal to the same value.) Then $p_{1} \geq p_{2} \geq \ldots p_{N-1} \geq p_{N}$, and for simplicity, let $p_{\mathrm{f}}^{k} \geq$ $p_{\text {bot }} k=1,2$.
Let L_{i}, x_{i}, h_{i}^{L}, and $f_{i j}^{L}$ denote the molar flow rate, the vector of mole fractions, the molar specific enthalpy, and the fugacity of component j, respectively, of the liquid leaving tray i. Similarly, let $V_{i}, y_{i}, h_{i}^{\mathrm{V}}$, and $f_{i j}^{V}$ denote the corresponding quantities for the vapor. Let T_{i} denote the temperature prevailing on tray i. Then

$$
\begin{align*}
& f_{i j}^{\mathrm{L}}=f_{i j}^{\mathrm{L}}\left(T_{i}, p_{i}, x_{i 1}, x_{i 2}, \ldots, x_{i c}\right) \\
& f_{i j}^{\mathrm{V}}=f_{i j}^{\mathrm{V}}\left(T_{i}, p_{i}, y_{i 1}, y_{i 2}, \ldots, y_{i c}\right) \\
& h_{i}^{\mathrm{L}}=h_{i}^{\mathrm{L}}\left(T_{i}, p_{i}, x_{i 1}, x_{i 2}, \ldots, x_{i c}\right) \\
& h_{i}^{\mathrm{V}}=h_{i}^{\mathrm{V}}\left(T_{i}, p_{i}, y_{i 1}, y_{i 2}, \ldots, y_{i c}\right) \tag{1}
\end{align*}
$$

Figure 1. Optimal locations for feeds.
where the functions and/or procedures on the right-hand sides depend on the thermodynamic model used.

Let P_{1} and P_{2} denote the top and bottom product rates, respectively and let r denote the reflux ratio. Let $v_{\mathrm{lk}}^{\mathrm{c}}$ and $l_{\text {hk }}^{r}$ denote the recoveries of the light key in the top product (liquid or vapor, depending) and the heavy key in the bottom liquid product, respectively. Let $q_{\text {reb }}$ and $q_{\text {con }}$ denote the reboiler and condenser duties, respectively.

Let $f_{i}^{1}, i \in S$, denote the amount of \mathcal{F}^{1} entering tray i, i.e., $\sum_{i \in S} f_{i}^{1}=F^{1}$. Similarly, for $f_{i}^{2}, i \in S$. Let $z_{i}^{1}, i \in S$ be the binary variable associated with the selection of tray i for the location of the feed \mathfrak{F}^{1} i.e.; $z_{i}^{1}=1$ iff all of the feed \mathcal{F}^{1} enters on tray i. Similarly, for $z_{i}^{2}, i \in S$.

The modeling equations are as follows:
Phase equilibrium relations:

$$
\begin{equation*}
f_{i j}^{\mathrm{L}}=f_{i j}^{\mathrm{V}} \quad j \in J, \quad i \in I \tag{2}
\end{equation*}
$$

Phase equilibrium normalizations:

$$
\begin{array}{ll}
\sum_{j \in J} x_{i j}=1 & i \in I \\
\sum_{j \in j} y_{i j}=1 & i \in I \tag{4}
\end{array}
$$

Component material balances: $\forall j \in J$:

$$
\begin{array}{rl}
V_{i-1} y_{i-1, j}-\left(L_{i}+P_{1}\right) x_{i j}=0 \quad i \in C \\
L_{i} x_{i j}+V_{i} y_{i j}-L_{i+1} x_{i+1, j}-V_{i-1} y_{i-1, j}-f_{i}^{1} z_{f j}^{1}-f_{i}^{2} z_{f j}^{2}=0 & \\
P_{2} x_{i j}+V_{i} y_{i j}-L_{i+1} x_{i+1, j}=0 & i \in S
\end{array}
$$

Definition of reflux ratio:

$$
L_{N}=r P_{1}
$$

Enthalpy balances:

$$
\begin{gather*}
\left(L_{i}+P_{1}\right) h_{i}^{\mathrm{L}}-V_{i-1} h_{i-1}^{\mathrm{V}}=q_{\text {con }} \quad i \in C \\
L_{i} h_{i}^{\mathrm{L}}+V_{i} h_{i}^{\mathrm{V}}-L_{i+1} h_{i+1}^{\mathrm{L}}-V_{i-1} h_{i-1}^{\mathrm{V}}--f_{i}^{\mathrm{L}} h_{\mathrm{f}}^{1}-f_{i}^{2} h_{\mathrm{f}}^{2}=0 \\
P_{2} h_{i}^{\mathrm{L}}+V_{i} h_{i}^{\mathrm{V}}-L_{i+1} h_{i+1}^{\mathrm{L}}=q_{\text {reb }} \quad i \in R \tag{6}
\end{gather*}
$$

Constraints on feeds and their locations: For $k=1,2$

$$
\begin{gather*}
f_{i}^{k} \leq F^{k} z_{i}^{k} \quad i \in S \\
\sum_{i \in S} f_{i}^{k}=F^{k} \\
\sum_{i \in S} z_{i}^{k}=1 \tag{7}
\end{gather*}
$$

Pressure profile:

$$
\begin{gather*}
p_{N}=p_{\text {con }} \\
p_{N-1}=p_{\text {top }} \\
p_{2}=p_{\text {bot }} \\
p_{1}=p_{\text {reb }} \\
p_{i-1}-2 p_{i}+p_{i+1}=0 \quad 3 \leq i \leq N-2 \tag{8}
\end{gather*}
$$

Remarks:

1. The system of equations (8) ensure that the pressure profile is linear between top and bottom of the column.
2. In the above, the candidate locations for both the feeds are assumed to be $2 \leq i \leq N-1$. In some cases, the set of (contiguous) candidate locations may be smaller, e.g., $2 \leq i_{1} \leq i \leq i_{2} \leq N-1$. The required modifications are straightforward.
3. If there are more than two feeds, then the additional terms in (5) and (6) and the additional set of constraints similar to (7) are obvious.
4. Sometimes it may be possible to order the feeds according to the relative proportions of light and heavy components. If, for example, feed $\mathcal{F 1}^{1}$ contains a significantly higher proportion of the heavier components than \mathcal{F}^{2}, then one can impose the logical condition that \mathcal{F}^{2} enters on or above the tray on which \mathcal{F}^{1} enters by

$$
z_{i}^{1}-\sum_{i \leq i^{\prime} \leq N-1} z_{i^{\prime}}^{2} \leq 0 \quad i \in S
$$

These inequalities ensure that if $z_{i}^{1}=1$ for some $i \in S$, i.e., \mathcal{F}^{1} enters on tray i, then, that implies $\sum_{i \leq i^{\prime} \leq N-1} z_{i^{\prime}}^{2}=$ 1, i.e., \mathscr{F}^{2} enters on some tray on or above tray i.
5. It is quite easy to model the situation where one wants to consider the splitting of one or more of the feeds for introduction at more than one location. Suppose, for instance, we want to consider the possibility of splitting the second feed for introduction at m different locations: Then, the last equation in (7) is to be changed to

$$
\sum_{i \in S} z_{i}^{2}=m
$$

where $m>1$. In case one does not know a priori the value

Figure 2. Simultaneous determination of number of trays and optimal locations for feeds.
of m, but has only an estimate, say $m_{\text {max }}$, then the above equation is to be replaced by the inequalities

$$
1 \leq \sum_{i \in S} z_{i}^{2} \leq m_{\max }
$$

i.e., the second feed can be split and introduced in at most $m_{\max }$ different locations. The optimization step will automatically determine the (optimal) values for the split fractions.

The MINLP problem is to minimize or maximize an objective function subject to all the above equations and inequalities (1)-(8), bounds on the variables, and specifications such as top/bottom product rates, purity, and recovery.

MINLP Model for Finding the Number of Trays

The notation is as in the previous section. It is assumed that a reasonable estimate of the upper bound on the number of trays N is available-for example, from Gilliland's correlation.

In the previous section, the location of the entering tray for reflux, i.e., $N-1$, is fixed. But now the problem is to find the optimal location for the reflux as well (Figure 2). However, the entering location of the boilup is fixed. It is worth noting that this idea could have been used even for the single-feed case considered in Viswanathan and Grossmann (1993).

Let $r_{i}, i \in S$, denote the amount of reflux entering tray i and $z_{i}^{\mathrm{F}}, i \in S$, be the binary variable associated with location for the reflux; i.e., $z_{i}^{\mathrm{r}}=1$ iff all the reflux enters on tray i. Let ($x_{1}^{\mathrm{r}}, x_{2}^{\mathrm{r}}, \ldots, x_{\mathrm{c}}^{\mathrm{r}}$) denote the vector of mole fractions of the reflux and h^{r} denote its molar specific enthalpy. Let $f_{\text {max }}$ denote any reasonable estimate on the
upper bound of liquid and vapor flow rates within the system. Then, the modeling equations are as follows:

Phase equilibrium relations:

$$
\begin{equation*}
f_{i j}^{\mathrm{L}}=f_{i j}^{V} \quad j \in J, \quad i \in I \tag{9}
\end{equation*}
$$

Phase equilibrium normalizations:

$$
\begin{array}{ll}
\sum_{j \in J} x_{i j}=1 & i \in I \\
\sum_{j \in J} y_{i j}=1 & i \in I \tag{11}
\end{array}
$$

Component material balances: $\forall j \in J$,

$$
\begin{gather*}
x_{j}^{\mathrm{r}}=x_{i j} \quad i \in C \\
V_{i-1} y_{i-1, j}-(r+1) P_{1} x_{i j}=0 \quad i \in C \\
L_{i} x_{i j}+V_{i} y_{i j}-L_{i+1} x_{i+1, j}-V_{i-1} y_{i-1, j}- \\
f_{i}^{1} z_{\mathrm{fj}}^{1}-f_{i}^{2} z_{\mathrm{fj}}^{2}-r_{i} x_{j}^{\mathrm{r}}=0 \quad i \in S \\
P_{2} x_{i j}+V_{i} y_{i j}-L_{i+1} x_{I+1, j}=0 \quad i \in R \tag{12}
\end{gather*}
$$

Simplification:

$$
L_{N}=0
$$

Enthalpy balances:

$$
\begin{gather*}
h^{\mathrm{r}}=h_{i}^{\mathrm{L}} \quad i \in C \\
(r+1) P_{1} h_{i}^{\mathrm{L}}-V_{i-1} h_{i-1}^{\mathrm{V}}=q_{\mathrm{con}} \quad i \in C \\
L_{i} h_{i}^{\mathrm{L}}+V_{i} h_{i}^{\mathrm{V}}-L_{i+1} h_{i+1}^{\mathrm{L}}-V_{i-1} h_{i-1}^{\mathrm{V}}- \\
-f_{i}^{1} h_{t}^{1}-f_{i}^{2} h_{\mathrm{f}}^{2}-r_{i} h^{\mathrm{r}}=0 \quad i \in S \\
P_{2} h_{i}^{\mathrm{L}}+V_{i} h_{i}^{\mathrm{V}}-L_{i+1} h_{i+1}^{\mathrm{L}}=q_{\text {reb }} \quad i \in R \quad \tag{13}
\end{gather*}
$$

Constraints on feeds and their locations: for $k=1,2$,

$$
\begin{gather*}
f_{i}^{k} \leq F^{k} z_{i}^{k} \quad i \in S \\
\sum_{i \in S} f_{i}^{k}=F^{k} \\
\sum_{i \in S} z_{i}^{k}=1 \tag{14}
\end{gather*}
$$

Constraints on the amounts of reflux and their locations:

$$
\begin{gather*}
r_{i} \leq f_{\max } z_{i}^{\mathrm{r}} \quad i \in S \\
\sum_{i \in S} r_{i}=r P_{1} \\
\sum_{i \in S} z_{i}^{\mathrm{r}}=1 \tag{15}
\end{gather*}
$$

Logical relations between the locations of the feeds and the reflux:

$$
\begin{array}{ll}
z_{i}^{1}-\sum_{i<i<N-1} z_{i^{\prime}}^{\mathrm{r}} \leq 0 & i \in S \\
z_{i}^{2}-\sum_{j<i^{i} \leq N-1} z_{i^{\prime}}^{\mathrm{r}} \leq 0 & i \in S \tag{16}
\end{array}
$$

Pressure profile:

$$
\begin{gather*}
p_{N}=p_{\mathrm{con}} \\
p_{N-1}=p_{\mathrm{top}} \\
p_{2}=p_{\mathrm{bot}} \\
p_{1}=p_{\mathrm{reb}} \\
p_{i-1}-p_{i} \geq 0 \quad 3 \leq i \leq N-1 \\
p_{i-1}-2 p_{i}+p_{i+1} \leq 2\left(p_{\mathrm{bot}}-p_{\mathrm{top}}\right)\left(1-\sum_{i \leq i^{\prime} \leq N-1} z_{i^{\prime}}^{\mathrm{r}}\right) \\
3 \leq i \leq N-2 \\
p_{i-1}-2 p_{i}+p_{i+1} \geq 2\left(p_{\mathrm{top}}-p_{\mathrm{bot}}\right)\left(1-\sum_{i \leq i^{\prime} \leq N-1} z_{i^{\mathrm{r}}}^{\mathrm{r}}\right) \\
3 \leq i \leq N-2 \\
p_{i}-p_{\mathrm{top}} \leq\left(p_{\mathrm{bot}}-p_{\mathrm{top}}\right)\left(1-z_{i}^{\mathrm{r}}\right) \quad i \in S \tag{17}
\end{gather*}
$$

As before, the MINLP problem is to minimize or maximize an objective function subject to (9)-(17). Re-

Table I. Data for MF1

system	benzene-toluene-o-xylene
thermodynamic model	
vapor phase	ideal
liquid phase	ideal
source for thermodynamic data	Reid et al. (1987)
condenser type	total
reboiler type	kettle type
number of trays (N)	45
feed 1	$\begin{gathered} F^{1}=50, z_{f}^{1}=(0.15,0.25,0.60) \\ p_{f}^{1}=1.2 \text { bar, } t_{f}^{1}=411.459 \mathrm{~K}, \\ v_{\mathrm{f}}^{1}=0.1 \end{gathered}$
feed 2	$F^{2}=50, z_{f}^{2}=(0.55,0.25,0.20)$
	$\begin{gathered} p_{f}^{2}=1.2 \mathrm{bar}, t_{f}^{2}=390.387 \mathrm{~K}, \\ v_{f}^{2}=0.0 \end{gathered}$
	$\begin{aligned} p_{\text {reb }} & =1.25, p_{\text {bot }}=1.20, \\ p_{\text {top }} & =1.10, p_{\text {con }}=1.05 \mathrm{bar} \end{aligned}$
purity constraint on top product	$x_{46,1} \geq 0.999$
purity constraint on bottom product	$x_{1,2}+x_{1,3} \geq 0.999$
upper bound on reflux ratio	10
objective function	$2.4217 \times 10^{-5} q_{r e b}$

Table II. Data for MF2
$\left.\begin{array}{ll}\hline \begin{array}{l}\text { system } \\ \text { thermodynamic model }\end{array} & \begin{array}{c}n \text {-hexane- } n \text {-heptane- } n \text {-nonane } \\ \text { both liquid and vapor phaes } \\ \text { are modeled by }\end{array} \\ \text { Soave-Redlich-Kwong } \\ \text { equation of state }\end{array}\right]$
marks similar to those at the end of the last section apply. Note also that there is no flow of liquid on the trays above

Table III. Data for MF3

system	acetone-acetonitrile-water
thermodynamic model	
vapor phase	virial
liquid phase	UNIQUAC
source for thermodynamic data	Prausnitz et al. (1980)
condenser type	partial
boiler type	kettle type
number of trays (N)	30
feed 1	$\begin{aligned} & F^{1}=50, z_{\mathrm{f}}^{1}=(0.05,0.85,0.10) \\ & p_{\mathrm{f}}^{1}=1.045 \text { bar, } t_{\mathrm{f}}^{1}=350.321 \mathrm{~K}, \\ & u_{f}^{1}=0.0 \end{aligned}$
feed 2	$\begin{aligned} & F^{2}=50, z_{f}^{2}=(0.55,0.25,0.20) \\ & p_{f}^{2}=1.045 \text { bar, } t_{f}^{2}=347.465 \mathrm{~K}, \\ & v_{f}^{2}=1.0 \end{aligned}$
	$\begin{aligned} & p_{\text {reb }}=1.1, p_{\text {bot }}=1.055, \\ & p_{\text {top }}=1.035, p_{\text {con }}=1.015 \mathrm{bar} \end{aligned}$
upper bound on reflux ratio objective function direction of optimization	$\begin{aligned} & \left(v_{\mathrm{l}}^{\mathrm{c}}+l_{\mathrm{hkl}}^{\mathrm{e}}\right)-3.33 \times 10^{-7}\left(q_{r e b}-q_{\text {con }}\right) \\ & \text { maximize } \end{aligned}$

Table IV. Data for MF4
system
thermodynamic model
\quad vapor phase
liquid phase
source for thermodynamic dat
condenser type
reboiler type
number of trays (N)
feed 1

feed 2

azeotropy condition
"purity" condition
recovery condition
upper bound on reflux ratio
objective function
direction of optimization

ethanol-water
virial
UNIQUAC
Prausnitz et al. (1980) total
kettle type
30
$F^{1}=80, z_{f}^{1}=(0.05,0.95)$
$\begin{aligned} & p_{f}^{1}=1.055 \mathrm{bar}, t_{\mathrm{f}}^{1}=364.588 \mathrm{~K}, \\ & v_{\mathrm{f}}^{1}=0.0 \end{aligned}$
$F^{2}=20, z_{f}^{2}=(0.60,0.40)$
$\begin{aligned} p_{f}^{2} & =1.055 \text { bar, } t_{f}^{2}=353.529 \mathrm{~K}, \\ v_{f}^{2} & =0.5 \end{aligned}$
$\begin{aligned} & p_{\text {reb }}=1.1, p_{\text {bot }}=1.055, \\ & p_{\text {top }}=1.035, p_{\text {con }}=1.015 \mathrm{bo} \end{aligned}$
$x_{i 1} \leq y_{i 1}, \forall i \in I$
$x_{N 1} \geq y_{N 1}-0.005$
$v_{\text {lk }}^{\text {c }} \geq 0.96\left(F^{1} z_{\text {If }}^{1}+F^{2} z_{\text {fl }}^{2}\right)$
r
im

Table V. Data for MFs

Table VI. Problem Sizes and Solution Times ${ }^{\wedge}$

problem	no. of variables			no. of rows		no. of nonzeros		solution time
	continuous	binary	total	nonlinear	total	nonlinear	total	
MF1	588	86	674	408	592	2056	3515	0.72
MF2	1298	66	1364	670	1407	5205	8367	2.59
MF3	1053	56	1109	813	1055	4130	5940	0.72
MF4	787	56	843	543	792	2511	3885	0.27
MF5	1621	174	1795	1083	1627	5031	8592	2.17

${ }^{a}$ Times reported are CPU minutes on an HP $9000 / 730$ running HP-UX A.08.07. The NLP solver is CONOPT version $2.040-017$.
Table VII. Solution of the Relaxed NLP
(a) Feed Locations

problem	objective function	nonzero binary variables	nonzero feeds
MF1	52.149	$z_{15}^{1}=1, z_{44}^{1}=7.5 \mathrm{E}-5,{ }^{a} z_{25}^{2}=1$	$f_{15}^{1}=49.996, f_{44}^{1}=0.004, f_{25}^{2}=50.000$
MF2	1.594	$z_{20}^{1}=1, z_{34}^{1}=3.1 \mathrm{E}-4, z_{15}^{2}=1$	$f_{20}^{1}=49.985, f_{34}^{1}=0.015, f_{15}^{1}=50.000$
MF3	3.433	$z_{11}^{1}=1, z_{20}^{2}=1$	$f_{12}^{1}=50.0, f_{20}^{2}=50.0$
MF4	1.194	$z_{1}^{1}=1, z_{4}^{2}=1$	$f_{1}^{1}=80.0, f_{4}^{2}=20.0$
MF5	$z_{6}^{1}=1, z_{7}^{2}=1, z_{13}^{3}=1$	$f_{6}^{1}=43.5, f_{7}^{2}=29.5, f_{13}^{3}=27.0$	

(b) Reflux Ratio and Products

			top product, P_{1}	bottom product, P_{2}	
problem	reflux ratio	flow rate	composition	flow rate	composition
MF1	1.204	34.97	$(0.999,9.92 \mathrm{E}-4,7.9 \mathrm{E}-6)$	65.03	$(0.001,0.384,0.615)$
MF2	1.594	34.85	$(0.994,0.006,1.36 \mathrm{E}-5)$	65.15	$(0.005,0.304,0.691)$
MF3	14.291	11.86	$(0.970,0.004,0.026)$	88.14	$(0.011,0.794,0.195)$
MF4	3.494	17.59	$(0.873,0.127)$	82.41	$(0.008,0.992)$
MF5	1.194	45.30	$(0.9999,0.0001)$	54.7	$(0.0001,0.9999)$

${ }^{a} 7.5 \mathrm{E}-5$ represents 7.5×10^{-5}, etc.

Table VIII. Data for MT1

	benzene-toluene-o-xylene
thermodynamic model	
vapor phase	ideal
liquid phase	ideal
source for thermodynamic data	Reid et al. (1987)
condenser type	total
reboiler type	kettle type
estimated maximum number of trays (N)	40
feed 1	$F^{1}=50, z_{5}^{1}=(0.15,0.25,0.60)$
	$\begin{aligned} & p_{\mathrm{f}}^{1}=1.2 \text { bar, } t_{\mathrm{f}}^{1}=411.459 \mathrm{~K}, \\ & v_{\mathrm{f}}^{1}=0.1 \end{aligned}$
feed 2	$F^{2}=50, z_{\mathrm{f}}^{2}=(0.55,0.25,0.20)$
	$\begin{gathered} p_{\mathrm{f}}^{2}=1.2 \mathrm{bar}, t_{\mathrm{f}}^{2}=390.387 \mathrm{~K}, \\ v_{\mathrm{f}}^{2}=0.0 \end{gathered}$
	$\begin{aligned} & p_{\text {reb }}=1.25, p_{\text {bot }}=1.20, \\ & p_{\text {top }}=1.10, p_{\text {con }}=1.05 \text { bar } \end{aligned}$
purity constraint on top product	$x_{45,1} \geq 0.999$
purity constraint on bottom product	$x_{1,2}+x_{1,3} \geq 0.999$
upper bound on reflux ratio	2
objective function	$r+\sum_{i \in S^{\circ}} \mathrm{rrd}(\mathrm{i}) \mathbf{z}_{i}^{\mathrm{r}}-1$
direction of optimization	minimize

the tray on which the reflux enters-these are "dry" trays on which there is no heat or mass transfer.

Results on Optimal Locations

The data for five problems are presented in Tables I-V. The subset of candidate locations is all the trays in the column (i.e., $\{2,3, \ldots, N-1\}$). The objective function in problem MF1 is the reboiler duty times a cost coefficient, while in problems MF2, MF4, and MF5, it is the reflux ratio-i.e., in these problems the objective is to minimize a measure of the operating cost. The objective function for problem MF3 is due to Kumar and Lucia (1988). It represents a trade-off between reboiler and condenser duties (operating costs) and recoveries of the light and heavy keys in the top vapor and bottom liquid products (a measure of benefit or revenues), respectively.

Table IX. Data for MT2
$\left.\begin{array}{ll}\hline \begin{array}{l}\text { system } \\ \text { thermodynamic model } \\ \end{array} & \begin{array}{c}n \text {-hexane- } n \text {-heptane-n-nonane } \\ \text { both liquid and vapor phases } \\ \text { are modeled by }\end{array} \\ \text { Soave-Redlich-Kwong }\end{array}\right]$

The models were solved using a recent version of DICOPT++ (Viswanathan and Grossmann, 1990) integrated in GAMS (version 2.25). Recall that the OA/ER/ AP algorithm for MINLP begins with the solution of the NLP by treating the binary variables as continuous variables with lower bound zero and upper bound one ("relaxed NLP"). The data on problem sizes and CPU times for solutions are shown in Table VI. The solutions of the relaxed NLPs are presented in Table VIIa. It is seen that within the accuracy of numerical computations the solution is found at the relaxed NL.P phase itself. This is remarkable, and it is possible that there is some thermodynamic significance for this result. Product distributions and reflux ratio from the solution of the relaxed NLP are shown in Table VIIb.

Table X. Data for MT3

system	acetone-acetonitrile-water
thermodynamic model	
vapor phase	virial
liquid phase	UNIQUAC
source for thermodynamic data	Prausnitz et al. (1980)
condenser type	partial
reboiler type	kettle type
estimated maximum number of trays (N)	
subset of candidate locations for reflux	\{11, 12, ..., 34\}
feed 1	$\begin{aligned} & F^{1}=50, z_{\mathrm{f}}^{1}=(0.05,0.85,0.10) \\ & p_{\mathrm{f}}^{1}=1.045 \text { bar, } t_{\mathrm{f}}^{1}=350.321 \mathrm{~K}, \\ & v_{\mathrm{f}}^{1}=0.0 \end{aligned}$
feed 2	$\begin{aligned} & F^{2}=50, z_{\mathrm{f}}^{2}=(0.55,0.25,0.20) \\ & p_{\mathrm{f}}^{2}=1.045 \text { bar, } t_{\mathrm{f}}^{2}=347.465 \mathrm{~K}, \\ & v_{\mathrm{f}}^{2}=1.0 \end{aligned}$
	$p_{\text {reb }}=1.1, p_{b o t}=1.055$, $p_{\text {top }}=1.035, p_{\text {con }}=1.015$ bar
upper bound on reflux ratio objective function	30
direction of optimization	$\begin{aligned} & v_{\mathrm{lk}}^{\mathrm{l}}+l_{\mathrm{hk}}-3.33 \times 10^{-1}\left(q_{\mathrm{reb}}-q_{\mathrm{con}}\right) \\ & 0.08\left(\sum_{\left.i \in S^{\circ} \operatorname{rd}(i) z_{i}^{\mathrm{r}}-1\right)}^{\text {maximize }}\right. \end{aligned}$
Table XI. Data for MT4	
system	ethanol-water
thermodynamic model	
vapor phase	virial
liquid phase	UNIQUAC
source for thermodynamic data	Prausnitz et al. (1980)
condenser type	total
estimated maximum number of trays (N)	30
feed 1	$F^{1}=80, z_{f}^{1}=(0.05,0.95)$
	$\begin{aligned} p_{f}^{1}= & 1.055 \mathrm{bar}, t_{f}^{1}=364.588 \mathrm{~K}, \\ v_{f}^{1} & =0.0 \end{aligned}$
feed 2	$F^{2}=20, z_{f}^{2}=(0.60,0.40)$
	$\begin{aligned} p_{\mathrm{f}}^{2} & =1.055 \text { bar, } t_{\mathrm{f}}^{2}=353.529 \mathrm{~K}, \\ v_{\mathrm{f}}^{2} & =0.5 \end{aligned}$
	$\begin{aligned} & p_{\text {reb }}=1.1, p_{\text {bot }}=1.055, \\ & p_{\text {top }}=1.035, p_{\text {con }}=1.015 \mathrm{bar} \end{aligned}$
azeotropy condition	$x_{i 1} \leq y_{i 1}, \forall i \in I$
"purity" condition	$x_{N 1} \geq y_{N 1}-0.005$
recovery condition	$v_{1 \mathrm{lk}}^{\mathrm{c}} \geq 0.96\left(F z_{\mathrm{fl}}\right)$
upper bound on reflux ratio	
objective function	$r+\sum_{i \in s}$ ord $(i) z_{i}^{\text {r }}-1$
direction of optimization	minimize

Problem MF2 is the same as example 1 in Nikolaides and Malone (1987). The optimal feed locations found here (tray numbers 20 and 15) are different from those (tray numbers 26 and 16) used by them. The optimal value of the reflux ratio obtained (1.594) is smaller than the value (1.728) reported in that paper. The Aspen Plus simulation program with the optimal locations found here predicts a value of 1.606 for the reflux ratio for the given recovery specifications.

The cubic equation of the Soave-Redlich-Kwong equation of state generally has one real root, but sometimes can have three real roots. For the phase (liquid or vapor) chosen, the correct root is selected by imposing the empirical criteria for isothermal compressibility factors (Poling et al., 1981). (The compressibility factor, $z=P v /$ $R T$, should not be confounded with the isothermal compressibility factor, $\beta=(1 / v)(\partial v / \partial P)_{T}$.) These are the three inequalities mentioned in the last-but-one paragraph of the Introduction.

It may be also pointed out that there is a slight difference in the thermodynamic model for problem MF2 and MT2 (below) in that in MF2 there are $(5 c+13)$ equations and 3 inequalities and $(4 c+13)$ additional variables to decrease the phase equilibrium relations on a tray, while for MT2

Table XII. Data for MT5

system	methanol-water
thermodynamic model	
vapor phase	virial
liquid phase	UNIQUAC
source for thermodynamic data	Prausnitz et al. (1980)
condenser type	total
reboiler type	kettle type
estimated maximum number of trays (N)	60
subset of candidate locations for feed trays	$\{2,3, \ldots, 20\}$
feed 1	$F^{1}=43.5, z_{\text {f }}^{1}=(0.15,0.85)$
	$\begin{aligned} & p_{\mathrm{f}}^{1}=1.42 \mathrm{bar}, t_{\mathrm{f}}^{1}=365.0 \mathrm{~K}, \\ & v_{\mathrm{f}}^{1}=0.0 \end{aligned}$
feed 2	$F^{2}=29.5, z_{\text {f }}^{2}=(0.50,0.50)$
	$\begin{aligned} & p_{\mathrm{f}}^{2}=4.8 \mathrm{bar}, t_{\mathrm{f}}^{2}=392.697 \mathrm{~K}, \\ & v_{\mathrm{f}}^{2}=0.0 \end{aligned}$
feed 3	$F^{6}=27.0, z_{\text {f }}^{3}=(0.89,0.11)$
	$\begin{gathered} p_{f}^{3}=1.38 \mathrm{bar}, t_{f}^{3}=347.797 \mathrm{~K}, \\ v_{f}^{3}=0.0 \end{gathered}$
	$\begin{aligned} & p_{\text {reb }}=1.4475, p_{\text {bot }}=1.44064, \\ & p_{\text {top }}=1.0408, p_{\text {con }}=1.0340 \mathrm{bar} \end{aligned}$
purity constraint on top product	$x_{60,1} \geq 0.999$
purity constraint on bottom product	$x_{1,2} \geq 0.999$
upper bound on reflux ratio	20
objective function	$\begin{gathered} 6.3887 \times 10^{-5} q_{r e b}+ \\ \sum_{i \in S} \operatorname{ord}(i) z_{i}^{\mathrm{r}}-1 \end{gathered}$
direction of optimization	minimize

there are $(6 c+13)$ equations and 3 inequalities and ($5 c$ +13) variables-the additional c equations and c variables being the definitions of the K values:

$$
\begin{equation*}
K_{i j}=\phi_{i j}^{\mathrm{L}}\left(T_{i}, p_{i}, x_{i 1}, x_{i 2}, \ldots, x_{i c}\right) / \phi_{i j}^{\mathrm{V}}\left(T_{i}, p_{i}, y_{i 1}, y_{i 2}, \ldots, y_{i c}\right) \tag{18}
\end{equation*}
$$

where $\phi_{i j}^{\mathrm{V}}$ and $\phi_{i j}^{\mathrm{L}}$ denote, respectively, the fugacity coefficient of the j th component in vapor and liquid leaving tray i. In other words, phase equilibrium was expressed in MF2 without introducing explicitly the definitions of K values (see below).

Results on Number of Trays and Optimal Locations

The data and problem sizes for five problems are presented in Tables VIII-XII. In the objective function of these problems, the symbol ord(i) denotes the ordinal number of the indexed tray. Recall that $\sum_{i \in S} z_{i}^{\mathrm{r}}=1$, i.e., reflux enters exactly on one tray, and so $\sum_{i \in S}$ ord $(i) z_{i}^{\mathrm{r}}-1$ is just the number of trays within the column. Thus, in these problems the objective function is a representative sum of the capital cost (number of trays) and the operating cost (reflux ratio or reboiler duty). In problem MT3, the trade-off is between recovery of key components and the sum of capital and operating costs.

The data on problem sizes are shown in Table XIII. The computational resource usages are given in Table XIV. Note the smaller subset of candidate locations for the feeds (problem MT5) and the reflux (problem MT3). In all other cases, the candidate locations were all the trays in the column. The values of the binary variables at the end of major iterations determined by the algorithm are shown in Table XVa. Paths to the solutions are shown in Table XVb. Optimal design values are shown in Table XVIa, and the distribution of products as shown in Table XVIb.
It is interesting to compare the results for problem MT2 with those for problem MF2. Although the reflux ratio

Table XIII. Problem Sizes

problem	no. of variables			no. of rows			no. of nonzeros		
	continuous	binary	total	linear	nonlinear	total	linear	nonlinear	total
MT1	638	114	752	472	359	831	3761	2355	6116
MT2	1543	99	1642	901	915	1816	5711	6204	11915
MT3	1324	99	1423	515	948	1463	3707	5187	8894
MT4	874	84	958	475	543	1018	3028	2799	5827
MT5	1683	115	1798	836	1083	1919	6252	5619	11871

Table XIV. Solver Times ${ }^{*}$

		solver times									
	major problem iterations	NLP, min	MIP, min						Total, \min	NLP, $\%$	MIP, $\%$
MT1	3	1.42	5.47	6.89	20.6	79.4					
MT2	10	43.93	11.96	55.89	78.6	21.4					
MT3	4	20.97	17.24	38.21	54.9	45.1					
MT4	3	2.56	1.36	3.92	65.1	34.9					
MT5	7	52.77	16.65	69.42	76.0	24.0					

${ }^{a} N$ major iterations mean N NLP problems (including relaxed NLP) and ($N-1$) MIP problems. Times reported are CPU minutes

Conclusions

problem iteration	nonzero binary variables	
MT1	1	$z_{3}^{\mathrm{r}}=0.47, z_{31}^{\mathrm{r}}=0.226, z_{32}^{\mathrm{r}}=0.304, z_{12}^{1}=0.530$,
		$z_{13}^{1}=0.470, z_{18}^{2}=0.470, z_{19}^{2}=0.530$

$$
z_{34}^{\mathrm{r}}=0.002, z_{14}^{1}=0.098, z_{15}^{1}=0.298
$$

$$
z_{16}^{1}=0.298, z_{17}^{1}=0.298, z_{30}^{1}=0.002,
$$ on an HP $9000 / 730$ running HP-UX A.08.07. The NLP solver is CONOPT version $2.040-017$. MIPs were solved with OSL release 2.002;SOS1 conditions are not implemented in this release of GAMS/ DICOPT++/OSL interface (even though they are implemented in GAMS/OSL interface for mixed integer linear programs).

is higher (1.809 vs 1.594), the number of trays is smaller (27 vs 35), but the order of the feeds has changed. The Aspen Plus program with this configuration (i.e., 27 trays with feeds at the optimal locations) and pressure and recovery specifications predicts a reflux ratio of 1.826 . As pointed out by Sargent and Gaminibandara (1976), the solutions of mathematical optimization problems in distillation columns often do not conform to one's intuitive understanding of the problems. Nikolaides and Malone (1987) also report several counterintuitive results.

As noted in the last paragraph of the previous section, there is a slight difference in the thermodynamic models of MF2 and MT2. Recall that in MF2 the solution was found in the relaxed NLP step itself, while in MT2, the MIP master problem has to be solved nine times-the introduction of c additional equations and variables in (18) seems to have helped in finding the solutions of both the nonlinear programs and mixed integer programs.

The results of problem MT4 show that the first feed enters on tray number 2. This suggests that the reboiler could also have been considered as a candidate for the feed location. Extension to such special cases can be easily handled in this framework.

Finally, in view of the results for the first case, i.e., where the number of trays is known, one may be tempted to treat the binary variables z_{i}^{1} and z_{i}^{2} in the second case as just continuous variables with lower bound zero and upper bound one. This will, of course, considerably reduce the number of binary variables, but in general, this will lead to a different optimum, because the master problems set up in the OA/ER/AP algorithm are different.

This short note has presented the MINLP approach for finding the optimal locations and the number of trays for a distillation column with multiple feeds. As shown with the results, even difficult problems with nonideal thermodynamics can be solved in this framework. Although the solutions cannot be guaranteed to be globally optimal, the OA/ER/AP algorithm has been shown to be a robust tool for solving these problems.

Table XV. Paths to Solutions
(a) Nonzero Binary Variables
$z_{3}^{\mathrm{r}}=0.47, z_{31}^{\mathrm{r}}=0.226, z_{32}^{\mathrm{r}}=0.304, z_{12}^{1}=$
$z_{13}^{1}=0.470, z_{18}^{2}=0.470, z_{19}^{2}=0.530$
$3 \quad z^{\mathrm{F}}=1, z_{10}^{1}=1, z^{2}=1$
MT2 $\quad 1 \quad z_{3}^{\mathrm{r}}=0.702, z_{27}^{\mathrm{r}}=0.193, z_{28}^{\mathrm{r}}=0.103$,
$z_{31}^{1}=0.002, z_{32}^{1}=0.002, z_{33}^{1}=0.002$
$z_{26}^{\mathrm{r}}=1, z_{16}^{1}=1, z_{13}^{2}=1$
$z_{26}^{\mathrm{r}}=1, z_{15}^{1}=1, z_{13}^{2}=1$
$z_{26}^{\mathrm{T}}=1, z_{16}^{1}=1, z_{12}^{2}=1$
$z_{26}^{\mathrm{r}}=1, z_{16}^{1}=1, z_{14}^{2}=1$
$z_{26}^{\mathrm{t}}=1, z_{17}^{1}=1, z_{13}^{2}=1$
$z_{26}^{r}=1, z_{15}^{1}=1, z_{12}^{2}=1$
$z_{26}^{r}=1, z_{15}^{1}=1, z_{14}^{2}=1$
$z_{26}^{\mathrm{P}}=1, z_{17}^{1}=1, z_{12}^{2}=1$
$z_{26}^{\mathrm{T}}=1, z_{17}^{1}=1, z_{14}^{2}=1$
MT3 $\quad 1 \quad z_{11}^{\mathrm{r}}=0.375, z_{24}^{\mathrm{r}}=0.141, z_{25}^{\mathrm{r}}=0.300, z_{26}^{\mathrm{r}}=0.183$, $z_{8}^{1}=1.000, z_{16}^{2}=0.375, z_{17}^{2}=0.625$
$z_{28}^{\mathrm{r}}=1, z_{8}^{1}=1, z_{17}^{2}=1$
$z_{24}^{\mathrm{r}}=1, z_{8}^{1}=1, z_{17}^{2}=1$
$z_{25}^{\mathrm{T}}=1, z_{8}^{1}=1, z_{17}^{2}=1$
MT4 $\quad 1 \quad \begin{array}{lll}z_{3}^{\mathrm{T}}=0.901, z_{29}^{\mathrm{T}}=0.099, z_{2}^{1}=1.000,\end{array}$ $z_{2}^{2}=0.605, z_{3}^{2}=0.099, z_{4}^{2}=0.099$,
$z_{5}^{2}=0.099, z_{6}^{2}=0.099$
$z_{24}^{\mathrm{T}}=1, z_{2}^{1}=1, z_{5}^{2}=1$
$z_{28}^{\mathrm{T}}=1, z_{2}^{1}=1, z_{5}^{2}=1$
MT
$z_{3}^{\tau}=0.553, z_{53}^{\mathrm{r}}=0.249, z_{54}^{\mathrm{r}}=0.199$, $z_{4}^{1}=1.000, z_{6}^{2}=1.000, z_{11}^{3}=0.015$, $z_{12}^{3}=0.447, z_{13}^{3}=0.447$
$z_{53}^{\mathrm{r}}=1, z_{4}^{1}=1, z_{6}^{2}=1, z_{12}^{3}=1$
$z_{55}^{\mathrm{r}}=1, z_{4}^{1}=1, z_{5}^{2}=1, z_{12}^{3}=1$
$z_{53}^{r}=1, z_{4}^{1}=1, z_{6}^{2}=1, z_{13}^{3}=1$
$z_{53}^{r}=1, z_{5}^{1}=1, z_{6}^{2}=1, z_{12}^{3}=1$
$z_{53}^{\mathrm{r}}=1, z_{4}^{1}=1, z_{5}^{2}=1, z_{13}^{3}=1$
$z_{54}^{\mathrm{r}}=1, z_{4}^{1}=1, z_{8}^{2}=1, z_{12}^{8}=1$
(b) Objective Function Values

major iteration no.	major solution step	value of objective function for problem				
		MT1	MT2	MT3	MT4	MT5
1	NLP	18.647	21.0201	76.841	8.090	220.290
1	MIP	30.552	35.5064	77.369	28.436	227.924
2	NLP	30.646	∞	76.448	27.085	∞
2	MIP	31.752	35.5420	76.866	31.851	227.949
3	NLP	31.564	∞	76.454	30.583	253.184
3	MIP		35.5535	76.813		227.966
4	NLP		∞	76.436		∞
4	MIP		35.5666			227.973
5	NLP		∞			253.164
5	MIP		35.5845			227.991
6	NLP		∞			253.095
6	MIP		35.5890			258.577
7	NLP		∞			253.756
7	MIP		35.6026			
8	NLP		37.0389			
8	MIP		35.6316			
9	NLP		∞			
9	MIP		35.6447			
10	NLP		37.1228			

Table XVI. Optimal Design and Solutions
(a) Optimal Design

		entering tray no. for			
problem	reflux ratio	feed 1	feed 2	feed 3	reflux
MT1	1.646	12	19		30
MT2	1.809	15	14		26
MT3	14.299	8	17		24
MT4	4.085	2	5		24
MT5	1.041	4	5	13	53

(b) Optimal Solutions-Products

	top product, P_{1}			bottom product, P_{2}	
	flow			flow	
problem	rate	composition		rate	composition
MT1	34.97	$(0.999,0.001,0.0)$		65.03	$(0.001,0.384,0.615)$
MT2	34.85	$(0.994,0.006,0.0)$		65.15	$(0.005,0.304,0.691)$
MT3	11.78	$(0.959,0.009,0.032)$	88.22	$(0.014,0.792,0.194)$	
MT4	17.59	$(0.873,0.127)$		82.41	$(0.008,0.992)$
MT5	45.30	$(0.999,0.001)$	54.70	$(0.001,0.999)$	

The output files of the examples presented above are being made available for sharing by anonymous ftp (file transfer protocol). The first author (J.V.) may be contacted for details.

Acknowledgment

This research was funded in part from a joint project in collaboration with Air Products and Chemicals, Cray Research, and Aspen Technology. Thanks are due to Oliver Smith of Air Products and Chemicals for posing this interesting class of problems and for some work on some other examples. We thank Dr. Arne Stolbjerg Drud of the Technical University of Denmark, Bagsvaerd for making CONOPT available for this research.

Literature Cited

(1) Drud, A. S. CONOPT-a large-scale GRG code. ORSA J. Comput. 1993a, in press.
(2) Drud, A. S. GAMS/CONOPT. In GAMS: A User's Guide; Brooke, A., Kendrick, D., Meeraus, A., Eds.; Scientific Press: Redwood City, CA, 1993b, in press.
(3) Kumar, A.;Lucia, A. Distillation optimization. Comput. Chem. Eng. 1988, 12, 1263-1266.
(4) Nikolaides, I. P.; Malone, M. F. Approximate Design of Multiple-Feed/Side-Stream Distillation Systems. Ind. Eng. Chem. Res. 1987, 26, 1839-1845.
(5) Poling, B. E.; Grens, E. A., II; Prausnitz, J. M. Thermodynamic Properties from a Cubic Equation of State: Avoiding Trivial Roots and Spurious Derivatives. Ind. Eng. Chem. Process Des. Dev. 1981, 20, 127-130.
(6) Prausnitz, J. M.; Anderson, T. F.; Grens, E. A.; Eckert, C. A.; Hsieh, R.; O'Connell, J. P. Computer Calculations for Multicomponent Vapor-Liquid and Liquid-Liquid Equilibria; Prentice-Hall: Englewood Cliffs, NJ, 1980.
(7) Reid, R. C.; Prausnitz, J. M.; Poling, B. E. The Properties of Gases and Liquids, 4th ed.; McGraw-Hill: New York, 1987.
(8) Sargent, R. W. H.; Gaminibandara, K. Optimum Design of Plate Distillation Columns. In Optimization in Action; Dixon, L. C. W., Ed.; Academic Press: London, 1976.
(9) Van Winkle, M. Distillation; McGraw-Hill: New York, 1967.
(10) Viswanathan, J.; Grossmann, I. E. A combined penalty function and outer approximation method for MINLP optimization. Comput. Chem. Eng. 1990, 14, 769-782.
(11) Viswanathan, J.; Grossmann, I. E. An alternate MINLP model for finding the number of trays for a specified separation objective. Comput. Chem. Eng. 1993, 17, 949-955.

Received for review May 10, 1993 Accepted September 7, 1993*

[^1]
[^0]: * To whom correspondence should be addressed. E-mail: jvov@cs.cmu.edu.
 ${ }^{\dagger}$ E-mail: ig0c@andrew.cmu.edu.

[^1]: - Abstract published in Advance ACS Abstracts, October 15, 1993.

