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Optimal Feed Locations and Number of Trays for Distillation Columns 
with Multiple Feeds 

Jagadisan Viswanathan* and Ignacio E. Grossmannt 
Engineering Design Research Center, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 

MINLP models for finding the optimal locations for the feeds and the number of trays required 
for a specified separation for a distillation column with multiple feeds are presented. Systems with 
ideal, Soave-Redlich-Kwong equation of state and UNIQUAC thermodynamic models are considered. 
This rigorous procedure requires no assumptions concerning the order of the feeds-Le., the disposition 
of any feed with respect to other feeds. The optimization step automatically determines the order 
and the locations. 

Introduction 

Distillation columns with multiple feeds with different 
compositions occur frequently in practice. Clearly, there 
are economic benefits in letting the feeds enter at  different 
locations depending on their characteristics (molar flow 
rates, compositions, thermal conditions, etc). Yet, so far 
as is known, no rigorous procedures exist for the design 
of such columns. 

Approximate methods (e.g., Nikolaides and Malone 
(1987) and Van Winkle (196711, however, have been 
proposed. These are very useful for preliminary designs 
and rapid screening of alternatives. However, the ap- 
proximate methods make simplifying assumptions such 
as constant relative volatility and constant molal overflow, 
which generally do not hold in nonideal systems. 

In this Research Note, an algorithmic approach for 
solving these design problems is presented. First, we 
consider the problem where the number of trays in the 
column are known and it is required to find the optimal 
locations for the feeds. Next, we consider the problem of 
finding simultaneously the optimal locations and the 
number of trays for a specified separation. No assumption 
concerning the disposition of any feed with respect to other 
feeds needs to be made-the order and the locations for 
the feeds are determined automatically. 

In the framework adopted here, the equations and 
inequalities describing the thermodynamics of the system 
(the defining equations for fugacities, enthalpies, etc.) are 
included explicitly in the optimization problem-in more 
familiar terminology, the approach is completely equation- 
based (although, strictly speaking, one should say equation- 
and inequality-based). This means that, for example, for 
a system with c components governed by Soave-Redlich- 
Kwong equation of state thermodynamics, there are (6c 
+ 13) equations and 3 inequalities and (5c + 13) additional 
or intermediate variables to describe the phase equilibium 
relations on a tray-rather than c equations as one would 
normally expect when invoking (external) procedures for 
computation of thermodynamic properties. The resulting 
system is large and sparse, and so, the full power of sparse 
matrix techniques can be utilized for the efficient solution 
of both the nonlinear program (NLP) and the mixed integer 
program (MIP). It should be noted, however, that this is 
by no means a restriction: the proposed model and the 
solution procedure will work equally well in the usual 
framework for solving distillation problems where external 
thermodynamic subroutines are invoked. 

* To whom correspondence should be addressed. E-mail: 

t E-mail: i&c@andrew.cmu.edu. 
jvOv@cs.cmu.edu. 

This Research Note is essentially self-contained; how- 
ever, the reader may find some useful additional infor- 
mation in Viswanathan and Grossmann (19931, where the 
MINLP approach for finding the number of trays for a 
column with a single feed is described. 

MINLP Model for Optimal Locations for a 
Column with Known Number of Trays 

Consider a distillation column (Figure 1) with N trays, 
including the condenser and the reboiler. The stages are 
numbered bottom upward so that the reboiler is the first 
tray and the condenser is the last (Nth) tray. Only the 
total condenser and kettle-type reboiler case is con- 
sidered-the other cases can be dealt with similarly. For 
definiteness, only two feeds are considered. The straight- 
forward extension to three or more feeds is indicated in 
Remarks at  the end of this section. 

Let I = (1,2, ..., n3 denote the set of trays and let R = 
(11, C = (4, and S = (2, 3, ..., N - 1) denote subsets 
corresponding to the trays in the reboiler, in the condenser, 
and within the column, respectively. 

Let 3 l  and 32 denote the feeds. Let c denote the number 
of components in the feeds, and let J = (1,2, ..., c) denote 

h,k, k = 1,2 denote, respectively, the molar flow rate, the 
temperature, the pressure, the vapor fraction, the vector 
of mole fractions (with components, zk,  zh, ..., &), and the 
molar specific enthalpy of the corresponding feeds. 

Let pi denote the pressure prevailing on tray i. It is 
assumed that Preb = Pi, Pbot = P2, P t ~ p  = PN-I, and Pcon = 
PN are given, although one may treat them as variables to 
be determined, if desired. (In many cases, it is quite 
adequate to regard all of them as equal to the same value.) 
Then p1 2 p2 1 ... P N - ~  1 PN, and for simplicity, let p,k 1 

Let Li, x i ,  h f ,  and fi denote the molar flow rate, the 
vector of mole fractions, the molar specific enthalpy, and 
the fugacity of component j ,  respectively, of the liquid 
leaving tray i. Similarly, let Vi, yi, hv, and fv denote the 
corresponding quantities for the vapor. Let f'i denote the 
temperature prevailing on tray i. Then 

the corresponding index set. Let Fk, @, pf, k k k  uf,  zf, and 

Pbot, k = 1, 2. 

L L  
f i j  = fij(Ti, pi, Xi19 xi29 xic) 

V f: = fij(Ti, pi, yil, yi2, ~ i c )  

h: = hp(Ti, pi, xil, xi2 ,  ..., xiC) 

0888-588519312632-2942$04.00/0 0 1993 American Chemical Society 
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Definition of reflux ratio: 

LN = rPl 
Enthalpy balances: 

(L, + P& - v ~ - , ~ Z ,  = qcon i E C 

L,h? + Vi# - Li+lh,F;l - V,,h:, - -f$: - fpzf" = 0 
i E S  

I I I * q  

P2hk + Vi# - Li+,hLl = Qreb (6) 

Constraints on feeds and their locations: For k = 1, 2 

i E R 

t1I;kz3 i E S  

Pressure profile: 

Figure 1. Optimal locations for feeds. 

where the functions and/or procedures on the right-hand 
sides depend on the thermodynamic model used. 

Let PI  and P2 denote the top and bottom product rates, 
respectively and let r denote the reflux ratio. Let v i  and 
l;lk denote the recoveries of the light key in the top 
product (liquid or vapor, depending) and the heavy key 
in the bottom liquid product, respectively. Let Qreb and 
qmn denote the reboiler and condenser duties, respectively. 

Let f f ,  i E S, denote the amount of 3l entering tray i ,  
i.e., E,,&: = P. Similarly, for fiy i E S. Let z i ,  i E S be 
the binary variable associated with the selection of tray 
i for the location of the feed 3l Le.; zi = 1 iff all of the feed 
31 enters on tray i. Similarly, for zf, i E S. 

The modeling equations are as follows: 
Phase equilibrium relations: 

c=fz ~ E J ,  i E I  (2)  

Phase equilibrium normalizations: 

(3)  

(4) 

Component material balances: V j E J: 

P g i j  + Viyij - Li+lxi+lj = 0 i E R (5) 

PN-1 ptop 

P2 = Pbot 

pi-1 -2pi + pi+l = 0 3 I i I N -  2 (8) 

Remarks: 
1. The system of equations (8) ensure that the pressure 

profile is linear between top and bottom of the column. 
2. In the above, the candidate locations for both the 

feeds are assumed to be 2 I i I N - 1. In some cases, the 
set of (contiguous) candidate locations may be smaller, 
e.g., 2 I i l  I i I i 2  I N - 1. The required modifications 
are straightforward. 

3. If there are more than two feeds, then the additional 
terms in (5) and (6) and the additional set of constraints 
similar to (7) are obvious. 

4. Sometimes it may be possible to order the feeds 
according to the relative proportions of light and heavy 
components. If, for example, feed 3l contains a signif- 
icantly higher proportion of the heavier components than 
32, then one can impose the logical condition that 32 enters 
on or above the tray on which 3l enters by 

These inequalities ensure that if Z! = 1 for some i E S, 
i.e., 3l enters on tray i ,  then, that implies E i ~ i ~ ~ - ~  2% = 
1,  i.e., 32 enters on some tray on or above tray i. 

5. It is quite easy to model the situation where one 
wants to consider the splitting of one or more of the feeds 
for introduction at more than one location. Suppose, for 
instance, we want to consider the possibility of splitting 
the second feed for introduction at m different locations: 
Then, the last equation in (7) is to be changed to 

&z; = m 
a€ 

where m > 1. In case one does not know a priori the value 
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FZ 

Figure 2. Simultaneous determination of number of trays and 
optimal locations for feeds. 

of m, but has only an estimate, say mmm, then the above 
equation is to be replaced by the inequalities 

i.e., the second feed can be split and introduced in at most 
mmax different locations. The optimization step will 
automatically determine the (optimal) values for the split 
fractions. 

The MINLP problem is to minimize or maximize an 
objective function subject to all the above equations and 
inequalities (1)-(8), bounds on the variables, and speci- 
fications such as top/bottom product rates, purity, and 
recovery. 

MINLP Model for Finding the Number of Trays 

The notation is as in the previous section. It is assumed 
that a reasonable estimate of the upper bound on the 
number of trays N is available-for example, from 
Gilliland's correlation. 

In the previous section, the location of the entering tray 
for reflux, i.e., N - 1, is fixed. But now the problem is to 
find the optimal location for the reflux as well (Figure 2). 
However, the entering location of the boilup is fixed. It is 
worth noting that this idea could have been used even for 
the single-feed case considered in Viswanathan and 
Grossmann (1993). 

Let ri, i E S, denote the amount of reflux entering tray 
i and zf, i E S ,  be the binary variable associated with 
location for the reflux; i.e., z: = 1 iff all the reflux enters 
on tray i. Let ( x i ,  x i ,  ..., x i )  denote the vector of mole 
fractions of the reflux and hr denote its molar specific 
enthalpy. Let f m m  denote any reasonable estimate on the 

upper bound of liquid and vapor flow rates within the 
system. Then, the modeling equations are as follows: 

Phase equilibrium relations: 

f i = f z  j E J ,  i E I  (9) 

Phase equilibrium normalizations: 

Component material balances: V j E J ,  

xf = xi j  i E C 

(10) 

Vi-lyi-lj - (r + l)Plxij = 0 i E C 

Lizij + Vaij - Li+lxi+lj - Vi-lYi-lj - 
f+ij - f!z$ - rixf = o i E s 

(12) Pzzij + Vaij  - Li+lxI+lj = 0 i E R 

Simplification: 

L,=O 
Enthalpy balances: 

h'=h; i E C  

(r + l)Plh,F' - Vi_,hrl = qcon i E C 

Lihf + Vihv - Li+,hiL,, - Vi-lhrl - 
-f,!h: -8h; - rihr = 0 i E S 

Pzhk + Vihv - Li+,hLl = qreb i E R (13) 

Constraints on feeds and their locations: for k = 1, 2, 

q z :  = 1 
1€  

Constraints on the amounts of reflux and their locations: 

&ri = rp, 
I €  

&zf = 1 
I €  

(16) 

Logical relations between the locations of the feeds and 
the reflux: 

(16) 
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marks similar to those at the end of the last section apply. 
Note also that there is no flow of liquid on the trays above 

Table 111. Data for MF3 

Pressure profile: 

3 I i I N - 2  

As before, the MINLP problem is to minimize or 
maximize an objective function subject to (9)-(17). Re- 

Table I. Data for MF1 
system 
thermodynamic model 

vapor phase 
liquid phase 

source for thermodynamic data 
condenser type 
reboiler type 
number of trays (N) 
feed 1 

feed 2 

purity constraint on 
top product 

purity constraint on 
bottom product 

upper bound on 
reflux ratio 

objective function 
direction of optimization 

Table 11. Data for MF2 

benzene-toluene-o-xylene 

ideal 
ideal 
Reid et al. (1987) 
total 
kettle type 
45 
P = 50, zfl = (0.15,0.25,0.60) 
p:  = 1.2 bar, t: = 411.459 K, 

P = 50, zt" = (0.55,0.25,0.20) 
pt" = 1.2 bar, ti" = 390.387 K, 

v: = 0.1 

ut" = 0.0 
Preb = 1.25, Phot = 1.20, 

%46,1 2 0.999 
 top 1.10, Pcon = 1.05 bar 

%1,2 %1,3 2 0.999 

10 

2.4217 x 1 0 b q r e b  
minimize 

system 
thermodynamic model 

source for thermodynamic data 
condenser type 
reboiler type 
number of trays (N) 
feed 1 

feed 2 

recovery constraint on 
top product 

recovery constraint on 
bottom product 

upper bound on reflux ratio 
objective function 
direction of optimization 

n-hexane-n-heptaue-n-nonane 
both liquid and vapor phaes 

are modeled by 
Soave-Redlich-Kwong 
equation of state 

Reid et 01. (1987) 
total 
kettle type 
35 
P = 50,~: = (0.30,0.10,0.60) 
p:  = 1.4682 bar, ti; = 390.506 K, 

P = 50, z: = (0.40,0.30,0.30) 
p," = 1.5785 bar, t: = 379.441 K, 

u: = 0.0 

u: = 0.0 
Prab 1.7404, Pbot E 1.7301, 

p t o p  = 1.388, peon = 1.3785 bar 
Pl%&(F5h + Pz;) s 0.01 

Pg,,lI(F'z:, + Pz;) 50.01 

r 
minimize 

system 
thermodynamic model 

vapor phase 
liquid phase 

source for thermodynamic data 
condenser type 
reboiler type 
number of trays (M 
feed 1 

feed 2 

upper bound on reflux ratio 
objective function 
direction of optimization 

Table IV. Data for MF4 

acetone-acetonitrilewater 

virial 
UNIQUAC 
Prausnitz et al. (1980) 
partial 
kettle type 
30 
P = 5 0 , ~ :  = (0.05,0.85,0.10) 
p:  = 1.045 bar, t: = 350.321 K, 

P = 50 ,~ :  = (0.55,0.25,0.20) 
p ;  = 1.045 bar, t: = 347.465 K, 

u: = 0.0 

u; = 1.0 
Preb 1.1, Pbot = 1.055, 

p t o p  = 1.035, Peon 1.015 bar 
25 

maximize 
(Vi + ih) - 3.33 x 1 0 - 7 ~ ~ ~  - qcon) 

system 
thermodynamic model 

vapor phase 
liquid phase 

source for thermodynamic data 
condenser type 
reboiler type 
number of trays (N) 
feed 1 

feed 2 

azeotropy condition 
'purity" condition 
recovery condition 
upper bound on reflux ratio 
objective function 
direction of optimization 

ethanol-water 

virial 
UNIQUAC 
Prausnitz et al. (1980) 
total 
kettle type 
30 
P = 80, z: = (0.05,0.95) 
p: = 1.055 bar, t i  = 364.588 K, 

P = 2 0 , ~ :  = (0.60,0.40) 
p: ; 1.055 bar, ti" = 353.629 K, 

u: = 0.0 

= 0.5 
preb = 1.1, pbt  = 1.055, 

Xi1 5 yil, V i E Z 
Z N ~  1 YM - 0.005 
u h  t 0.96(Pzk + Pz;) 
25 
r 
minimize 

p top  1.035, Peon 1.015 bar 

Table V. Data for MF5 
system methanol-water 
thermodynamic model 

source for thermodynamic data Prausnitz et al. (1980) 

vapor phase virial 
liquid phase UNIQUAC 

condenser type 
reboiler type 
number of trays (N) 
feed 1 

feed 2 

feed 3 

purity constraint on 
top product 

purity constraint on 
bottom product 

upper bound on reflux ratio 
objective function 
direction of optimization 

. .  
total 
kettle type 
60 
P = 43.5,~: = (0.15,0.85) 
p: = 1.42 bar, ti = 365.0 K, 

F = 29.5, z: = (0.50,0.50) 
p:  = 4.8 bar, t: = 392.697 K, 

FQ = 27.0,~: = (0.89,O.ll) 
p;  = 1.38 bar, t: = 347.797 K, 

u: = 0.0 

u: = 0.0 

ut" = 0.0 
Preb = 1.4476, phot 1.44064, 

p t o p  1.0408, Pcon = 1.0340 bar 
X&,1 t 0.9999 

Z1,Z 2 0.9999 

25 
r 
minimize 
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Table VI. Problem Sizes and Solution Times. 
~ ~~~~ 

no. of variables no. of rows no. of nonzero8 
problem continuous binary total nonlinear total nonlinear total solution time 
MF1 588 86 674 408 592 2056 3515 0.72 
MF2 1298 66 1364 670 1407 5205 8367 2.59 
MF3 1053 56 1109 813 1055 4130 5940 0.72 
MF4 787 56 843 543 792 2511 3885 0.27 
MF5 1621 174 1795 1083 1627 5031 8592 2.17 

Times reported are CPU minutes on an HP 9000/730 running HP-UX A.08.07. The NLP solver is CONOPT version 2.040417. 

Table VII. Solution of the Relaxed NLP 
(a) Feed Locations 

nonzero feeds 

f', = 49.996, fb = 0.004,4 = 50.000 
f = 49.985, f M  = 0.015, f 1 6  = 50.000 
f I z  = 50.0, f, = 50.0 
f ;  = 80.0, f = 20.0 
f k  = 43.5,d = 29.5, f i 3  = 27.0 

problem objective function nonzero binary variables 

1 
To 

MF1 52.149 zi6 = I ,& = 7.53-5,' Z& = 1 
MF2 1.594 z h  = 1 , ~ ;  = 3.13-4,~;~ = 1 

78.533 MF3 
MF4 3.494 

Z l l  = 1 , 2 2 0  = 1 
21 = 1,2 = 1 1 MF5 1.194 Z8 = 1,2 = 1, z;3 = 1 

(b) Reflux Ratio and Products 
top product, PI bottom product, PZ 

problem reflux ratio flow rate composition flow rate composition 
MF1 1.204 34.97 (0.999,9.923-4,7.9M) 65.03 (0.001,0.384,0.615) 
MF2 1.594 34.85 (0.994,0.006,1.36E5) 65.15 (0.005,0.304,0.691) 
MF3 14.291 11.86 (0.970,0.004,0.026) 88.14 (0.011,0.794,0.195) 
MF4 3.494 17.59 (0.873,0.127) 82.41 (0.008,0.992) 
MF5 1.194 45.30 (0.9999,0.0001) 54.7 (0.0001,0.9999) 

7.53-5 represents 7.5 X 106, etc 

Table VIII. Data for MT1 
system 
thermodynamic model 

vapor phase 
liquid phase 

source for thermodynamic data 
condenser type 
reboiler type 
estimated maximum number 

feed 1 
of trays(l\r) 

feed 2 

purity constraint on top product 
purity constraint on 

bottom product 
upper bound on reflux ratio 
objective function 
direction of optimization 

benzene-toluene-o-xylene 

ideal 
ideal 
Reid et al. (1987) 
total 
kettle type 
40 

P = 5 0 , ~ :  = (0.15,0.25,0.60) 
p i  = 1.2 bar, t i  = 411.459 K, 

P = 50, z i  = (0.55,0.25,0.20) 
p;  = 1.2 bar, ti  = 390.387 K, 

v; = 0.1 

v; = 0.0 
Preb 1.25, Pbot = 1.20, 

p t o p  = 1.10, peon = 1.05 bar 
X46J 10.999 
x1.2 + x1,3 1 0.999 

2 
r + Cie+mf(i)zf - 1 
minimlze 

the tray on which the reflux enters-these are "dry" trays 
on which there is no heat or mass transfer. 

Results on Optimal Locations 
The data for five problems are presented in Tables I-V. 

The subset of candidate locations is all the trays in the 
column (i.e., (2, 3, ..., N - 1)). The objective function in 
problem MF1 is the reboiler duty times a cost coefficient, 
while in problems MF2, MF4, and MF5, it is the reflux 
ratio-i.e., in these problems the objective is to minimize 
a measure of the operating cost. The objective function 
for problem MF3 is due to Kumar and Lucia (1988). It 
represents a trade-off between reboiler and condenser 
duties (operating costs) and recoveries of the light and 
heavy keys in the top vapor and bottom liquid products 
(a measure of benefit or revenues), respectively. 

Table IX. Data for MT2 
system 
thermodynamic model 

source for thermodynamic data 
condenser type 
reboiler type 
estimated maximum number 

of trays (N) 
feed 1 

feed 2 

recovery constraint on 
top product 

recovery constraint on 
bottom product 

upper bound on reflux ratio 
objective function 
direction of optimizatino 

n-hexane-n-heptane-n-nonane 
both liquid and vapor phases 

are modeled by 
Soave-Redlich-Kwong 
equation of state 

Reid et al. (1987) 
total 
kettle type 
35 

P = 50, z: = (0.30,0.10,0.60) 
p: = 1.4682 bar, t i  = 390.506 K, 

F = 50, z i  = (0.40,0.30,0.30) e = 1.5785 bar, t: = 379.441 K, 

v: = 0.0 

v; = 0.0 
Pieb 1.7404, Phot 1.7301, 

P t o p  = 1.388, peon 1.3786 bar 
Plx36,2/(F1zh + I?&) IO.01 

Pfll,l/(F'z:, + PZi) 50.01 

5 
3.64 X 10-8qwb + &@rd(i)zf - 1 
minimize 

The models were solved using a recent version of 
DICOPT++ (Viswanathan and Grossmann, 1990) inte- 
grated in GAMS (version 2.25). Recall that the OA/ER/ 
AP algorithm for MINLP begins with the solution of the 
NLP by treating the binary variables as continuous 
variables with lower bound zero and upper bound one 
("relaxed NLP"). The data on problem sizes and CPU 
times for solutions are shown in Table VI. The solutions 
of the relaxed NLPs are presented in Table VIIa. It is 
seen that within the accuracy of numerical computations 
the solution is found at  the relaxed NLP phase itself. This 
is remarkable, and it is possible that there is some 
thermodynamic significance for this result. Product 
distributions and reflux ratio from the solution of the 
relaxed NLP are shown in Table VIIb. 
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Table X. Data for MT3 Table XII. Data for MT6 
system 
thermodynamic model 

vapor phase 
liquid phase 

source for thermodynamic data 
condenser type 
reboiler type 
estimated maximum number 

subset of candidate locations 

feed 1 

of trays (M 

for reflux 

feed 2 

upper bound on reflux ratio 
objective function 

direction of optimization 

Table XI. Data for MT4 

acetone-acetonitrile-water 

virial 
UNIQUAC 
Prausnitz et al. (1980) 
partial 
kettle type 
35 

(11,12, ..., 34) 

P = 50, z: = (0.05,0.85,0.10) 
p: = 1.045 bar, t: = 350.321 K, 

F = 5 0 , ~ ;  = (0.55,0.25,0.20) 
p: = 1.045 bar, tf" = 347.465 K, 

u: = 0.0 

u; = 1.0 
p m b  = 1.1, phot E 1.055, 

ptop = 1.035, peon = 1.015 bar 
30 
vi + zb - 3.33 x lwqreb - q,on) - 

0.08(&ord(i)zf - 1) 
maximize 

system 
thermodynamic model 

vapor phase 
liquid phase 

source for thermodynamic data 
condenser type 
reboiler type 
estimated maximum number 

of trays (M 
feed 1 

feed 2 

azeotropy condition 
'purity" condition 
recovery condition 
upper bound on reflux ratio 
objective function 
direction of optimization 

ethanol-water 

virial 
UNIQUAC 
Prausnitz et al. (1980) 
total 
kettle type 
30 

P = 8 0 , ~ :  = (0.05,0.95) 
pi = 1.055 bar, t: = 364.588 K, 

F = 2 0 , ~ ;  = (0.60,0.40) 
p i  = 1.055 bar, t;  = 353.529 K, 

u: = 0.0 

u: = 0.5 
p r a b  = 1.1, p b o t  = 1.055, 

Til 5 Yil, V i E 

10.96(Fzp) 
10 
r + C,,=+xd(i)zf - 1 
minimize 

ptop = 1.035, peon = 1.015 bar 

%N1 2 YN1- 0.005 

Problem MF2 is the same as example 1 in Nikolaides 
and Malone (1987). The optimal feed locations found here 
(tray numbers 20 and 15) are different from those (tray 
numbers 26 and 16) used by them. The optimal value of 
the reflux ratio obtained (1.594) is smaller than the value 
(1.728) reported in that paper. The Aspen Plus simulation 
program with the optimal locations found here predicts 
a value of 1.606 for the reflux ratio for the given recovery 
specifications. 

The cubic equation of the SoaveRedlich-Kwong equa- 
tion of state generally has one real root, but sometimes 
can have three real roots. For the phase (liquid or vapor) 
chosen, the correct root is selected by imposing the 
empirical criteria for isothermal compressibility factors 
(Poling et al., 1981). (The compressibility factor, z = Pu/ 
RT, should not be confounded with the isothermal 
compressibility factor, /3 = (l/u)(au/aP)T.) These are the 
three inequalities mentioned in the last-but-one paragraph 
of the Introduction. 

It may be also pointed out that there is a slight difference 
in the thermodynamic model for problem MF2 and MT2 
(below) in that in MF2 there are (5c + 13) equations and 
3 inequalities and (4c + 13) additional variables to decrease 
the phase equilibrium relations on a tray, while for MT2 

methanol-water system 
thermodynamic model 

source for thermodynamic data Prausnitz et al. (1980) 

reboiler type kettle type 
estimated maximum number 60 

subset of candidate locations 

feed 1 

vapor phase virial 
liquid phase UNIQUAC 

condenser type total 

of trays (N) 

for feed trays 
(2,3, ..., 20) 

P = 43.5,~: = (0.15,0.85) 
pi = 1.42 bar, t: = 365.0 K, 

F = 29.5,~; = (0.50,0.50) 
p; = 4.8 bar, tf" = 392.697 K, 

F3 = 27.0,~: = (0.89,O.ll) 
pf3 = 1.38 bar, t: = 347.797 K, 

u: = 0.0 

u; = 0.0 

u; = 0.0 

feed 2 

feed 3 

Preb = 1.4475, Pbot  = 1.44064, 
ptop = 1.0408, peon = 1.0340 bar 

purity constraint on 
top product 

purity constraint on 
bottom product 

upper bound on reflux ratio 

%W,1 2 0.999 

%1,2 2 0.999 

20 
objective function 6.3887 x 1Odqreb + 

EiEprd(i)zi - 1 
minimize direction of optimization 

there are (6c + 13) equations and 3 inequalities and (5c 
+ 13) variables-the additional c equations and c variables 
being the definitions of the K values: 

L V Kij = dij(Ti, pi, xi19 xi,J/dij(Ti, pi, Yi l ,  ~ i 2 ,  *** ,  YiJ 
(18) 

where 4: and 4; denote, respectively, the fugacity coef- 
ficient of the j th  component in vapor and liquid leaving 
tray i. In other words, phase equilibrium was expressed 
in MF2 without introducing explicitly the definitions of 
K values (see below). 

Results on Number of Trays and Optimal 
Locations 

The data and problem sizes for five problems are 
presented in Tables VIII-XII. In the objective function 
of these problems, the symbol ord(i) denotes the ordinal 
number of the indexed tray. Recall that EiEszi = 1, Le., 
reflux enters exactly on one tray, and so EiEsord(i)zf - 1 
is just the number of trays within the column. Thus, in 
these problems the objective function is a representative 
sum of the capital cost (number of trays) and the operating 
cost (reflux ratio or reboiler duty). In problem MT3, the 
trade-off is between recovery of key components and the 
sum of capital and operating costa. 

The data on problem sizes are shown in Table XIII. 
The computational resource usages are given in Table XIV. 
Note the smaller subset of candidate locations for the feeds 
(problem MT5) and the reflux (problem MT3). In all 
other cases, the candidate locations were all the trays in 
the column. The values of the binary variables at  the end 
of major iterations determined by the algorithm are shown 
in Table XVa. Paths to the solutions are shown in Table 
XVb. Optimal design values are shown in Table XVIa, 
and the distribution of products as shown in Table XVIb. 

It is interesting to compare the results for problem MT2 
with those for problem MF2. Although the reflux ratio 



2948 Ind. Eng. Chem. Res., Vol. 32, No. 11, 1993 

Table XIII. Problem Sizes 
no. of variables no. of row8 no. of nonzeros 

problem continuous binary total linear nonlinear total linear nonlinear total 
MT1 638 114 752 472 359 831 3761 2355 6116 
MT2 1543 99 1642 901 
MT3 1324 99 1423 515 
MT4 874 84 958 475 
MT5 1683 115 1798 836 

Table XIV. Solver Times. 
solver times 

major NLP, MIP, 
problem iterations min min 

MT1 3 1.42 5.47 
MT2 10 43.93 11.96 
MT3 4 20.97 17.24 
MT4 3 2.56 1.36 
MT5 7 52.77 16.65 

Total, 
min 
6.89 

55.89 
38.21 
3.92 

69.42 

NLP, 
% 

20.6 
78.6 
54.9 
65.1 
76.0 

- 
MIP, 

% 
79.4 
21.4 
45.1 
34.9 
24.0 

0 N major iterations mean N NLP problems (including relaxed 
NLP) and (N - 1) MIP problems. Times reported are CPU minutes 
on an HP 9000/730 running HP-UX A.08.07. The NLP solver is 
CONOPT version 2.040-017. MIPS were solved with OSL release 
2.002; SOSl conditions are not implemented in this release of GAMS/ 
DICOPT++/OSL interface (even though they are implemented in 
GAMS/OSL interface for mixed integer linear programs). 

is higher (1.809 vs 1.5941, the number of trays is smaller 
(27 vs 3 3 ,  but the order of the feeds has changed. The 
Aspen Plus program with this configuration (i.e., 27 trays 
with feeds at  the optimal locations) and pressure and 
recovery specifications predicts a reflux ratio of 1.826. As 
pointed out by Sargent and Gaminibandara (19761, the 
solutions of mathematical optimization problems in dis- 
tillation columns often do not conform to one's intuitive 
understanding of the problems. Nikolaides and Malone 
(1987) also report several counterintuitive results. 
As noted in the last paragraph of the previous section, 

there is a slight difference in the thermodynamic models 
of MF2 and MT2. Recall that in MF2 the solution was 
found in the relaxed NLP step itself, while in MT2, the 
MIP master problem has to be solved nine times-the 
introduction of c additional equations and variables in 
(18) seems to have helped in f id ing  the solutions of both 
the nonlinear programs and mixed integer programs. 

The results of problem MT4 show that the first feed 
enters on tray number 2. This suggests that the reboiler 
could also have been considered as a candidate for the 
feed location. Extension to such special cases can be easily 
handled in this framework. 

Finally, in view of the results for the first case, i.e., where 
the number of trays is known, one may be tempted to 
treat the binary variables 2: and z' in the second case as 
just continuous variables with lower bound zero and upper 
bound one. This will, of course, considerably reduce the 
number of binary variables, but in general, this will lead 
to a different optimum, because the master problems set 
up in the OAIERIAP algorithm are different. 

Conclusions 

This short note has presented the MINLP approach for 
finding the optimal locations and the number of trays for 
a distillation column with multiple feeds. As shown with 
the results, even difficult problems with nonideal ther- 
modynamics can be solved in this framework. Although 
the solutions cannot be guaranteed to be globally optimal, 
the OA/ER/AP algorithm has been shown to be a robust 
tool for solving these problems. 

915 1816 5711 6204 11915 
948 1463 3707 5187 8894 
543 1018 3028 2799 5827 

1083 1919 6252 5619 11871 

Table XV. Paths to Solutions 
(a) Nonzero Binary Variables 

problem iteration nonzero binary variables 
MT1 

MT2 

MT3 

MT4 

MT5 

1 

2 
3 
1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
1 

2 
3 
4 
1 

2 
3 
1 

2 
3 
4 
5 
6 
7 

z j  = 0.47, zil = 0.226, zi2 = 0.304, ziZ = 0.530, 
zi3 = 0.470, ztg = 0.470, z t g  0.530 

Z L  = 1, Z i 2  = 1, ZTg = 1 
zj, = 1, Z i Z  = 1, Z t 8  = 1 
z j  = 0.702, zi7 = 0.193, ZL 0.103, 

zr - 0.002, zl4 = 0.098, zi5 0.298, 
Z! 0.298, z17 1 = 0.298, zso = 0.002, 
Z i 1  = 0.002, Z i 2  = 0.002, z h  = 0.002 

z h  = 1, .is = 1, z:3 = 1 
z h  = 1, = 1, Z t 3  = 1 
z h  = 1, Z i 6  = 1, 2 f z  = 1 
.;a = 1, .is = 1, z;, = 1 
z h  = 1, Z i 7  = 1, 2t3 = 1 
216 = 1, Z i 6  = 1, 2;2 = 1 
z h  = 1, Z i 6  = 1, z;, = 1 
z h  = 1, Z i 7  = 1, Z t Z  = 1 
z h  = 1, Z i 7  = 1, 2t4 = 1 

Z i 3  = 1,z; = 1, 2:7 = 1 
z'u = 1,z; = 1, Z t 7  = 1 
z h  = I, 2; = 1,217 = 1 
2; = 0.901, Z L  = 0.099,z: = 1.o00, 

z t  = 1,z;  = 1,z; = 1 
z b  = 1,z;  = 1,z; = 1 

zil = 0.375, zi4 = 0.141,& = 0.300, ZL 0.183, 
= 1.o00, = 0.375, zf7 0.625 

= 0.605, z2 = 0.099,~: 0.099, 
2; = 0 . 0 9 9 , Z g  9 = 0.099 

z j  = 0.553, z h  = 0.249, ZL 
zi =_l.OOO, z i  = 1.o00, z:, = 0.015, 
z12 - 0.447, ~ : 3  = 0.447 

0.199, 

z h  = 1,z: = 1,z; = 1, z:2 = 1 
2i3 = 1,z: = 1,z; = 1, z:z = 1 
z i3  = I,.: = I, 2: = 1, Z& = 1 
2h = 1,z; = 1,z; = 1, z;z = 1 
Z i 3  = 1,z: = 1,z: = 1, Z f 3  = 1 
Z L  = 1,z: = 1,z; = 1, Z i Z  = 1 

(b) Objective Function Values 

value of objective function for problem major major 
iteration solution 

no. step 
NLP 
MIP 
NLP 
MIP 
NLP 
MIP 
NLP 
MIP 

MT1 MT2 
18.647 21.0201 
30.552 35.5064 
30.646 
31.752 35.5420 
31.564 m 

3 5.5 5 3 5 

35.5666 
m 

5 NLP m 

5 MIP 35.5845 
6 
6 
7 
7 
8 
8 
9 
9 

10 

NLP m 

NLP m 
MIP 35.5890 

MIP 35.6026 
NLP 37.0389 
MIP 35.6316 

MIP 35.6447 
NLP 37.1228 

NLP m 

MT3 MT4 MT5 
76.841 
77.369 
76.448 
76.866 
76.454 
76.813 
76.436 

8.090 220.290 
28.436 227.924 
27.085 0 

31.851 227.949 
30.583 253.184 

227.966 

227.973 
253.164 
227.991 
253.095 
258.577 
253.756 

m 



Table XVI. Optimal Design and Solutions 
(a) Optimal Design 

problem refluxratio feed 1 feed2 feed3 reflux 
MT1 1.646 12 19 30 
MT2 1.809 15 14 26 
MT3 14.299 8 17 24 
MT4 4.085 2 5 24 
MT5 1.041 4 5 13 53 

(b) Optimal Solutions-Products 
top product, PI 

entering tray no. for 

bottom product, Pz 

problem rate composition rate composition 
flow flow 

MT1 34.97 (0.999,0.001,0.0) 65.03 (0.001,0.384,0.615) 
MT2 34.85 (0.994,0.006,0.0) 65.15 (0.005,0.304,0.691) 
MT3 11.78 (0.959,0.009,0.032) 88.22 (0.014,0.792,0.194) 
MT4 17.59 (0.873,0.127) 82.41 (0.008,0.992) 
MT5 45.30 (0.999,0.001) 54.70 (0.001,0.999) 

The output files of the examples presented above are 
being made available for sharing by anonymous ftp (file 
transfer protocol). The first author (J.V.) may be con- 
tacted for details. 
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