Rehearsal

The most important continuous distribution: Gauss (normal) distribution
$f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right] \quad$ Two parameters: μ and σ^{2}

μ is different

σ is differen \dagger

Expected value and variance:

$$
E(x)=\mu \quad \operatorname{Var}(x)=\sigma^{2}
$$

Short notation:

$$
N\left(\mu, \sigma^{2}\right) \quad \text { e.g. } \quad N(0,1)
$$

Standardisation:

$$
\begin{array}{cc}
z=\frac{x-\mu}{\sigma} & f(z)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{z^{2}}{2}\right) \\
\mu=E(z)=0 & \sigma^{2}=\operatorname{Var}(z)=1
\end{array}
$$

What is the probability of finding the x Gauss d. random variable in the $(\mu-\sigma, \mu+\sigma)$ range?
$P(\mu-\sigma<x \leq \mu+\sigma)=F(\mu+\sigma)-F(\mu-\sigma)$

\[

\]

The variance of a measurement is $\sigma^{2}=0.25 \mathrm{~g}^{2}$. The measurement is unbiased. We measure an object, its weight is 10 g . In which range will be the outcome of the measurement with 95% probability?
$1-\alpha=0.95 \% \quad \alpha=0.05$

The variance of a measurement is $\sigma^{2}=0.25 \mathrm{~g}^{2}$. The measurement is unbiased. We measure an object, its weight is 10 g . In which range will be the outcome of the measurement with 95% probability?

This is what we know from the
This is the question:

$$
P\left(x_{\text {lower }}<x \leq x_{\text {upper }}\right)=0.95
$$ distribution function:

$$
P\left(-z_{\alpha / 2}<z \leq z_{\alpha / 2}\right)=0.95
$$

$$
\text { Connection: } \quad z=\frac{x-\mu}{\sigma}
$$

$$
P\left(-z_{\alpha / 2}<\frac{x-\mu}{\sigma} \leq z_{\alpha / 2}\right)=0.95
$$

$$
P(\overbrace{\mu-z_{\alpha / 2} \sigma / \sqrt{n}}^{x_{\text {lower }}}<x \leq \overbrace{\mu+z_{\alpha / 2} \sigma / \sqrt{n}}^{x_{\text {upper }}})=1-\alpha
$$

$$
P(10-1.96 \cdot 0.5<x \leq 10+1.96 \cdot 0.5)=0.95
$$

Central limit theorem

The mean of sample elements taken from any distribution approximately follows Gauss d. around the expected value of the original d. with variance σ^{2} / n.

The approximation steadily improves as the number of observations increases.

$$
\bar{x} \sim N\left(\mu, \sigma^{2} / N\right)
$$

Sum as well $\sum_{i=1}^{N} x_{i} \sim N\left(N \mu, N \sigma^{2}\right)$
Based on the Central Limit Theorem: $z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}$

This is what we know from the
This is the question:

$$
P\left(\bar{x}_{\text {lower }}<\bar{x} \leq \bar{x}_{\text {upper }}\right)=0.95
$$

$$
\text { Connection: } z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}
$$

$$
P\left(-z_{\alpha / 2}<\frac{\bar{x}-\mu}{\sigma / \sqrt{n}} \leq z_{\alpha / 2}\right)=0.95
$$

$$
P(\overbrace{\mu-z_{\alpha / 2} \sigma / \sqrt{n}}^{\bar{x}_{\text {lower }}}<\bar{x} \leq \overbrace{\mu+z_{\alpha / 2} \sigma / \sqrt{n}}^{\bar{x}_{u p p e r}}=1-\alpha
$$

$$
P(10-1.96 \cdot 0.5 / \sqrt{5}<\bar{x} \leq 10+1.96 \cdot 0.5 / \sqrt{5})=0.95
$$

The size of the produced parts (from a particular process) follows normal distribution. The expected value is 10 , the variance is 0.25 . The lower specification limit is 8.5 cm . What is the ratio of noncomforming parts from this process?

