

Gas bottle problem

There are 2.5 million gas bottles in Hungary. They want to fill more gas in them. The volume of the bottle limits the maximum ammount of gas. (i.e. the smaller the bottle the higher the pressure in it - for a given ammount of gas)

What is the lot and what is the sample?
\(\underset{\substack{Known

Histogram}}{Sample} \xrightarrow{conclusion} \underset{\)| Unknown |
| :---: |
| Density function |$}{\frac{\text { Lot }}{\text { Lot }}}$

Random variable

Continuous random variable

$P(a<x \leq b)=\int_{a}^{b} f(x) d x$
$F\left(x_{i}\right)=P\left(x \leq x_{i}\right)=\int_{-\infty}^{x_{i}} f(x) d x$
density function
distribution function

Parameter and statistic

- expected value:	sample mean:
$E(x)=\int_{-\infty}^{\infty} x f(x) d x$	$\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}$

- variance
- sample variance

$$
\operatorname{Var}(x)=\int_{-\infty}^{\infty}[x-E(x)]^{2} f(x) d x \quad s^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}
$$

The expected value and variance of the function of random variables

$$
E(c x)=c E(x)
$$

The expected value of the volume of gas bottles is $25.8 \mathrm{dm}^{3}$. What is the expected value in cm^{3} ?

$$
\operatorname{Var}(c x)=c^{2} \operatorname{Var}(x)
$$

The variance of the volume of gas bottles is 0.25 $\left(\mathrm{dm}^{3}\right)^{2}$. What is the variance in $\left(\mathrm{cm}^{3}\right)^{2}$?

Independent measurements

The data in the samples are the results of measurements. These are subject to error.

Type of measurement errors:

- systematic
- random

Why is it important to do independent repetitions?
Two measurements are independent if their errors are independent.

The expected value and variance of the function of random variables

If $x_{1}, x_{2}, \ldots, x_{n}$ are independent:
$E\left(x_{1}+x_{2}+\ldots+x_{n}\right)=E\left(x_{1}\right)+E\left(x_{2}\right)+\ldots+E\left(x_{n}\right)$
$\operatorname{Var}\left(x_{1}+x_{2}+\ldots+x_{n}\right)=\operatorname{Var}\left(x_{1}\right)+\operatorname{Var}\left(x_{2}\right)+\ldots+\operatorname{Var}\left(x_{n}\right)$

If $x_{1}, x_{2}, \ldots, x_{n}$ are independent and has the same distribution, with $E(x)$ expected value and $\operatorname{Var}(x)$ variance.

$$
E\left(x_{1}+x_{2}+\ldots+x_{n}\right)=n E(x) \quad \operatorname{Var}\left(x_{1}+x_{2}+\ldots+x_{n}\right)=n \operatorname{Var}(x)
$$

Expected value and variance:

$$
E(x)=\mu \quad \operatorname{Var}(x)=\sigma^{2}
$$

Short notation:

$$
N\left(\mu, \sigma^{2}\right) \quad \text { e.g. } \quad N(0,1)
$$

Standardisation:

$$
\begin{array}{cl}
z=\frac{x-\mu}{\sigma} & f(z)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{z^{2}}{2}\right) \\
\mu=E(z)=0 & \sigma^{2}=\operatorname{Var}(z)=1
\end{array}
$$

What is the probability of finding the x Gauss d. random variable in the $(\mu-\sigma, \mu+\sigma)$ range?

$$
P(\mu-\sigma<x \leq \mu+\sigma)=F(\mu+\sigma)-F(\mu-\sigma)
$$

\[

\]

```
The variance of a measurement is 㤱=0.25g}\mp@subsup{}{}{2}\mathrm{ . The measurement is
unbiased. We measure a }10\textrm{g}\mathrm{ etalon weight. In which range will be
the measured weight with 95% probability?
```

This is what we know from the
This is the question: distribution function:
$P\left(x_{\text {lower }}<x \leq x_{\text {upper }}\right)=0.95$
Connection: $\quad z=\frac{x-\mu}{\sigma}$
$P\left(-z_{\alpha / 2}<z \leq z_{\alpha / 2}\right)=0.95$

$P(10-1.96 \cdot 0.5<x \leq 10+1.96 \cdot 0.5)=0.95$

Homework

The variance of a measurement is $\sigma^{2}=4 g^{2}$. The bias of the measurement is 2 g . We measure an object, its weight is 200 g .

1. In which range will be the outcome of the measurement with 99% probability?
2. What is the probability that the measured weight is above 205g?
3. What is the probability that the measured weight is below 200g?
4. What is that maximum value, that the measured weight will not achieve with 90% probability?

The volume of gas bottles are normally distributed with $25.8 \mathrm{dm}^{3}$ expected value and $0.0625\left(\mathrm{dm}^{3}\right)^{2}$ variance. What is that minimum volume, that 99.5% of the bottles exceed?

How many percent of the bottles will be in the $25.8 \pm 0.3 \mathrm{dm}^{3}$ interval?

In what interval will be 99% of the bottles?

Central limit theorem

The mean of sample elements taken from any distribution approximately follows Gauss d. around the expected value of the original d. with variance σ^{2} / n.

$$
\bar{x} \sim N\left(\mu, \sigma^{2} / N\right)
$$

Sum as well $\sum_{i=1}^{N} x_{i} \sim N\left(N \mu, N \sigma^{2}\right)$

Based on the Central Limit Theorem: $\quad z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}$

Calculate the 95% probability interval for the mean of a $n=5$ sample taken from a population of $\mu=10$ and $\sigma^{2}=0.25$!

This is what we know from the distribution function:
$P\left(\bar{x}_{\text {lower }}<\bar{x} \leq \bar{x}_{\text {upper }}\right)=0.95$

$P(10-1.96 \cdot 0.5 / \sqrt{5}<\bar{x} \leq 10+1.96 \cdot 0.5 / \sqrt{5})=0.95$

The mean of five measurements is 10 . The variance of the measurements is known form previous data: $\sigma^{2}=0.25$. In what range can be the true expected value of the measurements with 95% probability?
(Give a 95% confidence interval for the expected value!)

The way of thinking is the same as it was on the previous slide, but the inequality is rearranged so, that the expected value (mu) remains in the middle:

$$
\begin{gathered}
P\left(\bar{x}-z_{\alpha / 2} \sigma / \sqrt{n}<\mu \leq \bar{x}+z_{\alpha / 2} \sigma / \sqrt{n}\right)=1-\alpha \\
P(10-1.96 \cdot 0.5 / \sqrt{5}<\mu \leq 10+1.96 \cdot 0.5 / \sqrt{5})=0.95
\end{gathered}
$$

χ^{2} - (chi-square) distribution

$$
\begin{gathered}
\chi^{2}=\sum_{i=1}^{n} z_{i}^{2} \\
E\left(\chi^{2}\right)=v=n-1 \\
\operatorname{Var}\left(\chi^{2}\right)=2 v=2 n-2 \\
v \text { is the degrees } \\
\text { of freedom }
\end{gathered}
$$

Distribution of the variance (squared standard deviation) of a sample taken from a normally distributed population

$$
\begin{gathered}
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \\
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\chi^{2} \sigma^{2}, \quad v=n-1 \\
s^{2}=\frac{\chi^{2} \sigma^{2}}{v}
\end{gathered}
$$

A sample of 8 elements are taken from a normal distribution having $\sigma^{2}=0.08$. Calculate the interval in which the s^{2} is found at 95% probability.

This is what we know from the This is the question: distribution function:

$$
P\left(s_{\text {lower }}^{2}<s^{2} \leq s_{\text {upper }}^{2}\right)=0.95
$$

$$
P\left(\chi_{\text {iower }}^{2}<\chi^{2} \leq \chi_{\text {upper }}^{2}\right)=0.95
$$

$$
\text { Connection: } s^{2}=\frac{\chi^{2} \sigma^{2}}{v} \rightarrow \frac{s^{2} v}{\sigma^{2}}=\chi^{2}
$$

$S^{2}{ }_{\text {upper }}$

$$
P\left(\chi_{\text {lower }}^{2}<\frac{s^{2} v}{\sigma^{2}} \leq \chi_{\text {upper }}^{2}\right)=0.95
$$

$=0.95$ $=0.95$
Critical χ^{2} values

Statistics > Probability Calculator > Distributions...

$$
\begin{gathered}
P\left(\frac{\chi_{\text {lower }}^{2} \sigma^{2}}{v}<s^{2} \leq \frac{\chi_{\mathrm{upper}}^{2} \sigma^{2}}{v}\right)=0.95 \\
=P\left(\frac{1.69 \cdot 0.08}{7}<s^{2} \leq \frac{16.0 \cdot 0.08}{7}\right)=P\left(0.0193<s^{2} \leq 0.183\right)=0.95
\end{gathered}
$$

Confidence interval

This interval contains the parameter (e.g. $\mu, \sigma_{\ldots \text {...) with 1- } \alpha}$ probability.

A sample of 8 elements are taken from a normal distribution. The sample variance is $s^{2}=0.08$. Calculate the interval in which the the

Interpreting
variance $\left(\sigma^{2}\right)$ is found at 95% probability!
If the 95% confidence interval is calculated for the expected value from 100 different sample, than approximately 95 interval contains the true expected value out of the 100.
(Give a 95% confidence interval for $\sigma^{2}!$)

$$
P\left(\frac{s^{2} v}{\chi_{\text {lower }}^{2}}>\sigma^{2} \geq \frac{s^{2} v}{\chi_{\text {upper }}^{2}}\right)=0.95 \quad \begin{aligned}
& \text { ! Inequality } \\
& \begin{array}{l}
\text { sign is } \\
\text { reversed }!
\end{array}
\end{aligned}
$$

The confidence interval refers to the PARAMETER. (Not to x, or s ...)

Results of 10 measurements:
24.46; 23.93; 25.79; 25.17; 23.82; 25.39; 26.54; 23.85; 24.19;
25.50.

Give the 95% confidence interval for the true (expected) value!

Fdistribution

two parameters:
v_{1} is the degrees of freedom for the numerator, v_{2} is for the denominator

$$
F=\frac{s_{1}^{2} / \sigma_{1}^{2}}{s_{2}^{2} / \sigma_{2}^{2}}
$$

$$
\begin{aligned}
& \text { if } \quad \sigma_{1}^{2}=\sigma_{2}^{2} \\
& F=s_{1}^{2} / s_{2}^{2}
\end{aligned}
$$

Critical values for the F distribution
Two sets of measurements (4 and 7 repetitions) were performed using the same method and device.
Give the 90% probability interval for the ratio of sample variances (squared standard deviations).
The population variances are equal: $\sigma_{1}^{2}=\sigma_{2}^{2}$
$P\left(F_{\text {lower }}<s_{1}^{2} / s_{2}^{2} \leq F_{\text {upper }}\right)=P\left(F_{0.95}<s_{1}^{2} / s_{2}^{2} \leq F_{0.05}\right)=0.90$

