HYPOTHESIS TESTS

We are interested in the population, but the sample is in our hands.

Some assumption is made on the population (e.g. the value of μ and/or σ), and this assumption is accepted or rejected based on the data.

May the data come from a distribution ...? E.g. $\mu=\mu_0$?

$$H_0: \mu = \mu_0$$

$$H_1: \mu \neq \mu_0$$

Null hypothesis

Alternative hypothesis

z-test

 $H_0: \mu = \mu_0$

$$H_1: \mu \neq \mu_0$$

$$z = \frac{\overline{x} - (\mu)}{\sigma / \sqrt{n}} \qquad \qquad z_0 = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \qquad \qquad \text{test statistic}$$

$$z_0 = \frac{\overline{x} - \mu_0}{z_0}$$

If H_0 is true, $z_0 = z$

$$P\left(-z_{\alpha/2} < \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}} \le z_{\alpha/2}\right) = 1 - \alpha$$

If z_0 takes its value in the usual range, accepted.

z-test

$$H_0: \mu = \mu_0$$
 $H_1: \mu \neq \mu_0$

$$H_1: \mu \neq \mu_0$$

$$z = \frac{\overline{x} - (\mu)}{\sigma / \sqrt{n}} \qquad z_0 = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

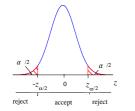
$$z_0 = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

test statistic

$$P\left(-z_{\alpha/2} < \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}} \le z_{\alpha/2}\right) = 1 - \alpha$$

lpha is the significance level

Region of acceptance



$$P(-z_{a/2} < z_0 \le z_{a/2} | H_0) = 1 - \alpha$$

$$z_0 = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

$$P\left(-z_{\alpha/2} < \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}} \le z_{\alpha/2} | \mathbf{H}_0\right) = 1 - \alpha$$

$$P\left(\mu_0 - z_{\alpha/2}\sigma/\sqrt{n} < \overline{x} < \mu_0 + z_{\alpha/2}\sigma/\sqrt{n}\right) = 1 - \alpha$$

Confidence interval and hypothesis test

$$P\left(-z_{a/2} < \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}} \le z_{a/2} | \mathbf{H}_0\right) = 1 - \alpha$$

$$P(\overline{x} - z_{\alpha/2}\sigma/\sqrt{n} < u_0) \le \overline{x} + z_{\alpha/2}\sigma/\sqrt{n}) = 1 - \alpha$$

confidence interval for μ :

$$P(\overline{x} - z_{\alpha/2}\sigma / \sqrt{n} < \mu) \le \overline{x} + z_{\alpha/2}\sigma / \sqrt{n}) = 1 - \alpha$$

If the confidence interval contains the hypothesised $\mu_{\!\scriptscriptstyle 0}$ value, $H_{\!\scriptscriptstyle 0}$ is accepted.

Example 1

The mass of an object is measured with 4 repeated measurements.

The sample mean is 5.0125 g.

From historical data the variance is known as σ^2 = 10⁻⁴ g^2 .

May we believe (based on the data) that the expected value (the true mass of the object if the balance is unbiased) is 5.0000 g?

$$\mathbf{H}_{\scriptscriptstyle{0}}:\boldsymbol{\mu}=\boldsymbol{\mu}_{\scriptscriptstyle{0}}$$

$$H_1: \mu \neq \mu_0$$

E.g in case of $H_1: \mu \neq \mu_0$ $P\left(-z_{a/2} < \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}} \le z_{a/2}\right) = 1 - \alpha$

Is the value of the test statistic in the region of acceptance?

$H_0: \mu = \mu_0 = 5.0000, \quad H_1: \mu \neq \mu_0 = 5.0000$

$$\bar{x} = 5.0125$$
, $\sigma^2 = 10^{-4}$, $n = 4$, $\alpha = 0.05$

$$z_0 = \frac{\overline{x} - \mu_0}{\overline{x} - \mu_0} =$$

$$z_{a/2} =$$

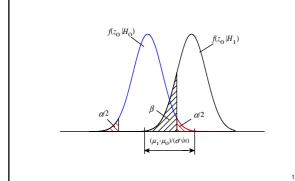
Error of first and second kind

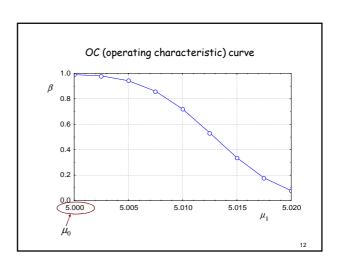
	Decision	
	The H ₀ hypothesis is	
	accepted	rejected
H ₀ is true	Proper decision	Error of first kind (a)
Ho is false	Error of second kind (β)	Proper decision

"fail to reject"

10

Probability of committing an error of second kind





One-sample t test

$$z_0 = \frac{\overline{x} - \mu_0}{\widehat{\sigma} / \sqrt{n}}$$

$$t_0 = \frac{\overline{x} - \mu_0}{s \sqrt[3]{\sqrt{n}}}$$

 $H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0$

$$P\left(-t_{a/2} < t_0 \le t_{a/2}\right) = P\left(-t_{a/2} < \frac{\overline{x} - \mu_0}{s/\sqrt{n}} \le t_{a/2}\right) = 1 - \alpha$$

$$P(\overline{x}-t_{a/2} s/\sqrt{n} < \mu_0 \le \overline{x} + t_{a/2} s/\sqrt{n}) = 1 - \alpha$$

CI contains the hypothesised μ_0 value, accepted

Example 2 Checking the bias of a gauge

 $H_0: E(x) = x_{ref} \quad H_1: E(x) \neq \mu_0 = x_{ref}$

 x_{ref} =6.0 (standard)

$$t_0 = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$

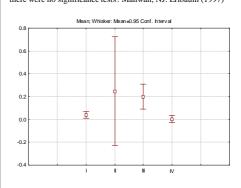
i	x_i	$x_i - x_{ref}$
1	5.8	-0.2
3	5.7	-0.3
	5.9	-0.1
4	5.9	-0.1
5	6.0	0.0
6	6.1	0.1
7	6.0	0.0
8	6.1	0.0
9	6.4	0.4
10	6.3	0.3
11	6.0	0.0
12	6.1	0.1
13	6.2	0.2
1.4	5.6	0.4

0.0

CI contains the hypothesised μ_0 =6.0 value, accepted

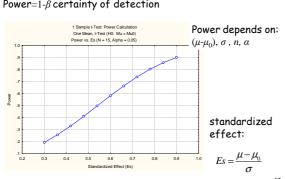
p is the probability of obtaining this or more extreme result if H_0 is true (probability of error of first kind) Std. Err.: standard error of mean

J. H. Steiger, R.T. Fouladi: Noncentrality Interval Estimation and the Evaluation of Statistical Models, Chapter 9 in: L.L. Harlow, S.A. Mulaik, J.H. Steiger: What if there were no significance tests? Mahwah, NJ: Erlbaum (1997)



Power, statistically significant difference

Power=1- β certainty of detection



The sample size (n=15) and error of first kind is fixed (a=0.05) , σ = 0.212. What difference (μ - μ_0) can be detected with 90%

probability (β =0.1)?