HYPOTHESIS TESTS

$$z\text{-test}$$

$$H_{0}: \mu = \mu_{0} \qquad H_{1}: \mu \neq \mu_{0}$$

$$z = \frac{\overline{x} - \mu_{0}}{\sigma/\sqrt{n}} \qquad z_{0} = \frac{\overline{x} - \mu_{0}}{\sigma/\sqrt{n}} \qquad \text{test statistic}$$

$$P\left(-z_{a/2} < \frac{\overline{x} - \mu_{0}}{\sigma/\sqrt{n}} \le z_{a/2}\right) = 1 - \alpha$$

$$\alpha \text{ is the significance level}$$

Example 1
The mass of an object is measured with 4 repeated
measurements.
The sample mean is 5.0125 g.
From historical data the variance is known as
$$\sigma^2 = 10^{-4} g^2$$
.
May we believe (based on the data) that the expected
value (the true mass of the object if the balance is
unbiased) is 5.0000 g?
 $H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0$

$$H_{0}: \mu = \mu_{0} = 5.0000, \quad H_{1}: \mu \neq \mu_{0} = 5.0000$$
$$\bar{x} = 5.0125, \quad \sigma^{2} = 10^{-4}, \quad n = 4, \quad \alpha = 0.05$$
$$z_{0} = \frac{\bar{x} - \mu_{0}}{\sigma/\sqrt{n}} = z_{a/2} = z_{a/2}$$

	Decision			
	The H ₀ hyp	The H_0 hypothesis is		
	accepted	rejected		
H_0 is true	Proper decision	Error of first kind		
H_0 is false	Error of second kind	Proper decision	-	

Example 2	i	x_i	$x_i - x_{ref}$
Checking the bias of a gauge	1	5.8	-0.2
	2	5.7	-0.3
$\mathbf{L} \in \mathcal{D}(\mathcal{L})$ $\mathbf{L} \in \mathcal{D}(\mathcal{L})$	3	5.9	-0.1
$H_0: E(x) = x_{ref}$ $H_1: E(x) \neq \mu_0 = x_{ref}$	4	5.9	-0.1
	5	6.0	0.0
r = 6.0 (standard)	6	6.1	0.1
$x_{ref} = 0.0$ (Standard)	7	6.0	0.0
= "	8	6.1	0.0
$t_0 = \frac{x - \mu_0}{\sqrt{2}}$	9	6.4	0.4
s/\sqrt{n}	10	6.3	0.3
	11	6.0	0.0
	12	6.1	0.1
	13	6.2	0.2
	14	5.6	-0.4
	15	6.0	0.0
			1

