notions:

STERILITÁS -- STERILITY

I.: small risk

II.: others

ASZEPTIKUSSÁG -- ASEPTICITY

ELSZIGFTELÉS, IZOLÁLÁS -- CONTAINMENT

Killing microbes

Protect the system from the microbes aseptic operation=maintaining sterility

GMO

Protecting the environment from microbes

Patogenes Víruses GMO-s rDNS production problems

OECD 1986 – Recombinant DNA Safety Considerations EC 1990 Council Directive on the Contained use od GMOs

CONTAMINATION

DECREASING YIELD ALTERATION IN PROCESS BEHAVIOUR (KINETICS) PLUS STERILIZATION NEED WHOLE CHARGE GOES WRONG Extra work, money (SCALE DEPENDENT DEMAGE) **VPROBLEM AT DOWN-STREAM**

METHODS for removal and killing of microbial cells mechanical methods: filtration, centrifugation, flotation, electromagnetic irradiation: UV, X , chemical methods: dezinfection, heat.

Thermal death of microorganisms

Temperature ranges of the growth of microbes

heat sensitivity depends upon (given species): life history of the cell, age of the cell
 (e.g.: cells from the exponencial growth phase are more sensitive than cells from the stacioner phase)

- cells are more sensitive against moist heat than against dry heat
- heat sensitivity (thermal death) increases with incr. temperature
- heat sensitivity depends on media

pH, viscosity, osmotic pressure, presence of defending colloids,

KINETICS OF THERMAL DEATH AT CONSTANT TEMP.

$$\frac{\mathrm{dN}}{\mathrm{dt}} = -\mathrm{kN}$$

N number of living cells [pc/cm³]k thermal death rate (decay) constant [min⁻¹].

$$ln \frac{N}{N_0} = -kt$$

$$\int_{N_0}^{N} \frac{dN}{N} = \int_{N_0}^{N} dlnN = -\int_{0}^{t} kdt \quad \rightarrow \begin{cases} \\ N = N_0 e^{-kt} \end{cases}$$

STERILIZATION				
Microbe	T[°C]	k[min ⁻¹]	E _a [KJ/mol]	
Bacillus subtilis				
(vegetative)	110	27	310	
Bacillus subtilis				
(spores)	121,1	3	-	
Bacillus				
stearothermophilus	104	0,051	283	
(spores)	125	6,06	283	
	130	17,52	283	
Clostridium botulinum				
(spores)	104	0,42	344	
Hemoglobin				
(heatdenaturation)	68	6,3·10 ⁻³	312	

Medium components heat decay apparent activation energies [kJ/mol]

Reaction between carbohydrates and proteins	130,6
B ₁ vitamin decay	87,9
B ₂ vitamin decay	98,8

Mean life span

decimal reduction time

Probabilistic approach of thermal death

Kinetic description is good if N_o>>1 ! Thermal death is also a stochastic process

Definition: the life span of one cell (spore)is the length time during which the cell (spore) will just remain viable.

mean life span of the population

$$\overline{t} = \frac{1}{N_0} \sum_{i=1}^{\infty} N_i t_i$$

Life span

N₀ no of all the spores N_i no of the spores with life span of t_i

Mean thermal decay constant

$$\frac{1}{\overline{t}} = \overline{k}$$

CONDITIONS

If temp is the same everywhere in the vessel, No growth, (!!!!) Behaviour of the individual spores is independent of the others.

Probability of the event that at time t the no of the survivors is exactly N ($N=0,1,2,...N_o$), follows a binomal distribution:

$$\mathbf{P}_{\mathbf{N}}(t) = \begin{pmatrix} \mathbf{N}_{0} \\ \mathbf{N} \end{pmatrix} [\mathbf{p}(t)]^{\mathbf{N}} [1-\mathbf{p}(t)]^{(\mathbf{N}_{0}-\mathbf{N})}$$

 $p(t) = e^{-\overline{k}t}$

$$P_{N}(t) = \frac{N_{0}!}{(N_{0} - N)!N!} \left(e^{-\overline{k}t}\right)^{N} \left(1 - e^{-\overline{k}t}\right)^{(N_{0} - N)}$$

$$P_{N}(t) = \frac{N_{0}!}{(N_{0} - N)!N!} \left(e^{-\overline{k}t}\right)^{N} \left(1 - e^{-\overline{k}t}\right)^{(N_{0} - N)}$$

What is the prob. that all the spores had already died by the time t?

$$P_0(t) = (1 - e^{-\overline{k}t})^{N_0} < 1$$

Always higher than 0:

$$1 - P_0(t) = 1 - (1 - e^{-kt})^{N_0} > 0$$

At a common sterilization process $N_0 >> 1$

$$1 - P_0(t) \cong 1 - e^{-N}$$

in which $N = N_0 e^{-\overline{k}}$

$$= 1 - e^{-N_0 e^{-\overline{k}t}} \approx N_0 e^{-\overline{k}t}$$

e^{-x} ~ 1-x+...according to a Taylor serie

(Cell in the whole system)

Steam out

Steam in

köpeny

Batch sterilization of culture media

S SERRIIZEZ ÁSON

Thermal death during heating period:

Thermal death during holding period:

$$\ln \frac{N_0}{N} = \int_0^{t_1} k dt = \nabla \text{heating}$$

$$ln \frac{N_1}{N_2} = k_{\text{holding}} \cdot (t_2 - t_1) = \nabla_{\text{holding}}$$

Thermal death during cooling period:

$$ln \frac{N_2}{N_v} = \int_{t_2}^{t_v} kdt = \nabla_{\text{cooling}}$$

$$\nabla = \nabla_{\text{heat}} + \nabla_{\text{hold}} + \nabla_{\text{cool}}$$
$$\ln \frac{N_0}{N_v} = \ln \left(\frac{N_0}{N_1} \frac{N_1}{N_2} \frac{N_2}{N_v} \right) = \ln \frac{N_0}{N_1} + \ln \frac{N_1}{N_2} + \ln \frac{N_2}{N_v}$$

e.g.: 0,20 0,75 0,05

 10^{-3} N₀ = 10⁵ / ml

100 liter	$\frac{10^5 \cdot 10^5}{10^{-3}} = 10^{13}$	∇ = 32,2
$10 m^3$	$\frac{10^5 \cdot 10^4 \cdot 10^3}{10^{-3}} = 10^{15}$	∇ = 36,8
$100 m^3$	$\frac{10^5 \cdot 10^5 \cdot 10^3}{10^{-3}} = 10^{16}$	∇ = 39 , 2

10x: increases with 2,3

Continuous sterilization of culture media

Fermentor size limitproductivity: (kg product/fermentor.m³.year).Advantages of the cont. Sterilization process:

-at higher temp.(130-140 °C) with shorter process time

increased safety less thermal decay of culture medium components

-the continuous process more reproducible,

-stable quality of the sterile media this may increase the fermentation yield

-cont. Ster. Equipment and the process easily controllable, automatization possible.

Plate and frame heat exchanger

SPIRAL HEAT EXCH.

CONTINUOUS MEDIUM STERILIZATION PROCESS OUTLINE

Continuous sterilizer (design) calculation

For holding section:

q – tube cross sectional area (m²)

MIXING SHAFT AIR IN, OUT INGREDIENTS: PIPES VALVES INOKULUM LINE SENSORS PUMPS

DOWN-STREAM: STERILE NONSTERILE

STERILE INOCULATIO

THERMODYNAMIC STEAM TRAP

MEMBRANE VALVES

VISSZACSPÓSZELEP

AIR FILTRATION

DEPTH FILTER

Fig. 8: Antiphage system.

