4. ENZYME KINETICS

Enzyme kinetics

Investigation of enzymatic reaction rate, identification of parameters.

$$E + S \leftrightarrow E + P$$

For stoichiometric calculations all components should be given in moles or grams. But: enzymes are not pure proteins! \rightarrow amount of enzymes is measured through their catalytic effect $\rightarrow \underline{ACTIVITY}$

Enzyme kinetics

One **UNIT** is the amount of the enzyme which consumes 1 μ mol substrate or forms 1 μ mol product during 1 minute *at given reac-tion circumstances*.

- SI: 1 Katal: 1 mol substrate (product) during 1 s. (too huge!!) \rightarrow nKat = 10⁻⁹ Kat (nanoKatal)
 - 1 Kat = $6^{*}10^{7}$ U, 1 U = $1.666^{*}10^{-8}$ Kat, 1 U = 1/60 µKat, 1 U = 16.67 nKat

Specific activity: U/mass or U/volume \rightarrow U/mg, U/ml

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$

Conditions:

- \succ k₋₂ = 0 (the second step is irreversible)
- the first step reaches the equilibrium quickly =
 RAPID EQUILIBRIUM: k₁SE = k₋₁ (ES)

Dissociation constant of (ES):

$$K_{s} = \frac{k_{-1}}{k_{1}} = \frac{S.E}{(ES)}$$

stable ES complex, EP complex negligible

$$E + S \stackrel{k_1}{=} ES \stackrel{k_2}{=} E + P$$

one active centre, one substrate

concentration can be applied (instead of activity)
 (S) >> (E₀) i.e. E₀ / S << 1

Reaction rate:

$$V = \frac{dP}{dt} = k_2(ES)$$

Mass balance for E: $E + (ES) = E_o$

Divide these equations!

The rate equation:

$$V = V_{max} \frac{S}{K_s + S} \quad \text{or} \quad \frac{V}{V_{max}} = \frac{\frac{S}{K_s}}{1 + \frac{S}{K}}$$

BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék

S

M és M

Maud Menten 1879-1960

Leonor Michaelis 1875-1949

Michaelis, L., Menten, M. (1913) Die kinetik der invertinwirkung, Biochemische Zeitung 49, 333-369

Briggs-Haldane kinetics

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$

The same differential equtions but the condition:

$$\frac{\mathrm{dS}}{\mathrm{dt}} = -k_1 \mathrm{ES} + k_{-1} \mathrm{(ES)}$$

(quasi) steady state:

d(ES)/dt = 0

$$\frac{d(ES)}{dt} = k_1 ES - k_{-1} (ES) - k_2 (ES)$$

(S) >> (E₀) i.e. $E_0/S << 1$ $k_1ES > k_{-1}(ES)$ ill. $k_1ES > k_2(ES)$

 $\frac{\mathrm{dP}}{\mathrm{dt}} = \mathbf{k}_2 \left(\mathbf{ES} \right)$

Briggs-Haldane kinetics

After a short transition period (pre-steady state) the rate is almost constant (quasi-steady state).

Briggs, G. E., and Haldane, J. B. (1925) A Note on the Kinetics of Enzyme Action, *Bio-chem J 19*, 338-339.

BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék

10

Briggs-Haldane kinetics

Discussion

Michaelis-Menten

$$V = V_{max} \frac{S}{K_s + S}$$

$$\mathbf{K}_{\mathrm{s}} = \frac{\mathbf{k}_{-1}}{\mathbf{k}_{1}}$$

Briggs-Haldane

$$V = V_{max} \frac{S}{K_m + S}$$

$$\mathbf{K}_{\mathrm{m}} = \frac{\mathbf{k}_{-1} + \mathbf{k}_2}{\mathbf{k}_1}$$

$$\mathbf{K}_{\mathrm{m}} = \mathbf{K}_{\mathrm{s}} + \frac{\mathbf{k}_{2}}{\mathbf{k}_{1}}$$

if $(k_1) >> (k_2)$ the two constants are equal!

Discussion

Hyperbola

How to measure reaction rate?

In M-M and B-H equations V means initial reaction rate $(V_0 \rightarrow \text{extrapolated to t=0})$.

Parameter estimation

Linearised diagrams are used:

- Calculation of nonlinear regression was complicated without computers
- It provides additional info about enzyme inhibition

BME Alkalmazott Bi

1. Lineweaver-Burk plot

1/v - 1/S

Linearised forms

2. Hanes-Langmuir plot S/v - S

$$\frac{S}{V} = \frac{K_m}{V_{max}} + \frac{1}{V_{max}} \cdot S$$

3. Eady-Hofstee plot v/S - v

$$V = V_{max} - K_m \frac{V}{S}$$

/S

Effect of enzyme concentration

If $v_{max} = k_2 \cdot E_0$, then:

Interpretation of kinetic parameters

 V_{max} : its not a climax, but limit \rightarrow border of rate

It's not an enzyme feature, it depends on E_0 :

 $V_{max} = k_2 \cdot E_0 \rightarrow = \mathbf{ACTIVITY}$

 $\mathbf{k_2}$ is the real enzyme feature = turnover number $[s^{-1}] \rightarrow$

transformation frequency

Extending to every enzymes and every kinetics:

$$V_{max} = k_{cat} \cdot E_0$$

 \mathbf{k}_{cat} [s⁻¹]: Turnover frequency of one enzyme molecule (at S-saturation): how many substrate molecules are transformed in one second by one enzyme molecule.

Kinetic parameters: K_s, K_m

- > Affinity of enzyme to substrate
- Usually the S concentration in a living cell easy adaption to changes
- \succ K_S has changed \rightarrow Inhibitor? Activator?
- Enzyme analytics:
- activity measurement:
 - S>>K_S v=v_{max}
- substrate measurement:
 - S<<K_S linear range

Interpretation of kinetic parameters

k ₁	10 ⁷ -10 ¹⁰ dm ³ mol ⁻¹ min ⁻¹ [max. value (~10 ¹¹)
	limited by diffusivity of small molecules]
k ₋₁	10 ² -10 ⁶ min ⁻¹
k_2	50-10 ⁷ min ⁻¹
κ _m	10 ⁻⁶ - 10 ⁻² mol/dm ³

TABLE 13-1. The values of K_M , k_{cat} , and k_{cat}/K_M for Some Enzymes and Substrates

Enzyme	Substrate	$K_M(M)$	k _{cat} (s ⁻¹)	$k_{\rm cat}/K_M (M^{-1}{ m s}^{-1})$
Acetylcholinesterase	Acetylcholine	9.5 × 10 ^{−5}	1.4×10^{4}	1.5 × 10 ⁸
Carbonic anhydrase	CO ₂ HCO ₃	1.2×10^{-2} 2.6×10^{-2}	$1.0 imes 10^{6}$ $4.0 imes 10^{5}$	8.3×10^{7} 1.5×10^{7}
Catalase	H ₂ O ₂	2.5 × 10 ⁻²	1.0×10^{7}	$4.0 imes10^{8}$
Chymotrypsin	N-Acetylglycine ethyl ester N-Acetylvaline ethyl ester N-Acetyltyrosine ethyl ester	4.4×10^{-1} 8.8×10^{-2} 6.6×10^{-4}	5.1×10^{-2} 1.7×10^{-1} 1.9×10^{2}	1.2×10^{-1} 1.9 2.9×10^{5}
Fumarase	Fumarate Malate	5.0×10^{-6} 2.5×10^{-5}	8.0×10^2 9.0×10^2	1.6×10^{8} 3.6×10^{7}
Urease	Urea	2.5×10^{-2}	1.0×10^{4}	$4.0 imes 10^{5}$

Reversible reactions

Many enzyme catalysed reactions - mainly biopolymer hydrolysis - are highly shifted to the right hand side, practically k_{-2} may really be neglected.

But conversions like

glucose ⇒ fructose (glucose isomerase) ~50 : 50 %

are of reversible character.

Reversible reactions

While $k_{-2} = 0$ in both kinetic models reactions seems to be irreversible. Models for reversible (equilibrium) reactions are built up from models of two countercurrent irreversible reaction.

Presume the presence of EP complex:

$$E + S \rightleftharpoons ES \rightleftharpoons EP \rightleftharpoons E + P$$
$$k_{-1} \quad k_{-2}$$

Reversible reactions

The netto rate is the difference of the two processes:

$$V_{\text{netto}} = V_{\text{fore}} - V_{\text{back}} = k_2 (\text{ES}) - k_{-2} (\text{EP})$$

Repeat the previous deduction, divide the equation with:

$$E_{o} = E + (ES) + (EP)$$

$$\frac{v_{fore}}{E_{o}} = \frac{k_{2}(ES)}{E + (ES) + (EP)} \qquad \frac{v_{back}}{E_{o}} = \frac{k_{-2}(EP)}{E + (ES) + (EP)}$$

From these:

$$\Delta v = \frac{E_0 k_2 (ES) - E_0 k_{-2} (EP)}{E + (ES) + (EP)}$$

BME Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék

> 26

Reversible reactions

Substitute v_{max}:

$$\Delta v = \frac{v_{\max S}(ES) - v_{\max P}(EP)}{E + (ES) + (EP)}$$

Substitute complex concentrations:

$$(ES) = E \frac{S}{K_s} \qquad (EP) = E \frac{P}{K_P}$$

$$\Delta v = \frac{v_{\max S} \frac{S}{K_s} E - v_{\max P} \frac{P}{K_p} E}{E + \frac{S}{K_s} E + \frac{P}{K_p} E}$$
equa

$$= S_{equilibrium}$$

$$\Delta V = \frac{V_{maxs} \left(S \left(\frac{P}{K_{eq}} \right) \right)}{K_{ms} \left(1 + \frac{P}{K_{mp}} \right) + S}$$

Reversible M-M equation

