

RADIOPHARMACEUTICALS

Samy Sadek, Ph.D.

Associate Professor, New York Medical College. Radiopharmaceutical Chemist, St. Vincent's Hospital-Manhattan.

X-Ray Discovery: Roentgen

Wilhelm Roentgen ca. 1895. Inset photo: Radiograph of Frau Roentgen's hand.

Discovery of Radioactivity

Antoine Henri Becquerel (1852-1908)

Discovery of Radium & Polonium

Marie Curie ca. 1920. Inset: Pierre Curie (Marie's favorite picture of her husband).

Pierre Curie (1859-1906) Marie Curie (1867-1934)

The FATHER OF NUCLEAR PHYSICS: ERNEST RUTHERFORD

Ernest Rutherford in his Laboratory at McGill University ca. 1903.

Georgedestlevery

<u>The Father of</u> Nuclear Medicine:

George de Hevesy (1885 - 1966) Received Nobel Prize in 1943 for his pioneering work with isotopes as tracers. Winner of Atom for Peace Award 1959.

The First Practical Application of Radioisotopes

George de Hevesy & his landlady:

- Using radioactive material he proved two things:
 - The landlady was indeed "recycling" leftovers from their plates!
 - More importantly, that small amounts of radioactive materials could be used to "trace" the fate of a substance in a system.

Nuclear Medicine Vs Radiography

Nuclear Medicine = Function

- Blood Flow: Myocardial, Brain
- Metabolic Marker: ¹⁸FDG, ¹²³I-Fatty Acids
- Organ Function: Phagocytosis/ Liver
- **Compartmental Localization:** Gated-Cardiac, ¹³³Xe, GI Bleeding.
- Cell Sequestration: Heat Denatured ^{99m}Tc-RBCs/Spleen
- **Receptors Density:** Dopamine
- **Targeted:** Antibodies
- Gastric Emptying: Real Meal Vs Barium Meal

Nomenclature

• Nuclide

 It is identified by an exact nuclear composition including the mass # A and atomic # Z

• Radionuclide

- Unstable or radioactive nuclide

Isotopes

Nuclides with the same atomic # and exhibit the same chemical properties

• Isomers

 Nuclides having the same number of protons and neutrons but differing in energy states

Radiopharmaceuticals

- <u>Definition</u>: A Radiopharmaceutical is a Radioactive Drug used for Diagnosis or Therapy in a Tracer Quantities with no Pharmacological Effect.
- Composed of two parts
 - Radionuclide
 - Pharmaceutical
- They Should undergo all quality control measures required of a conventional drug.
- Radiopharmaceutical Vs Radiochemical

Properties of an Ideal Diagnostic Radiopharmaceutical

• <u>Types of Emission</u>:

- Pure Gamma Emitter: (Alpha & Beta Particles are Unimageable & Deliver High Radiation Dose.)
- Energy of Gamma Rays:
 - Ideal: 100-250 keV e.g. ^{99m}Tc, ¹²³I, ¹¹¹In
 - Suboptimal:<100 keV e.g. ²⁰¹Tl

>250 keV e.g. ⁶⁷Ga &¹³¹I

- <u>Photon Abundance.</u>
 - Should be high to minimize imaging time

POP QUIZ

• Explain why gamma rays with energy lower than 100 keV and higher than 250 keV are not ideal for imaging?

Collimator Crystal Light Guide Photomultiplier Tubes Electronics

Ideal Diagnostic Radiopharmaceutical (Cont..)

• Target to Nontarget Ratio:

 It should be high to maximize the efficacy of diagnosis and minimize the radiation dose to patient

- **Easy Availability:**
 - Readily Available, Easily Produced & Inexpensive:

• ¹¹C Vs ^{99m}Tc

Ideal Diagnostic Radiopharmaceutical (Cont..)

- Effective Half-life:
 - It should be short enough to minimize the radiation dose to patients and long enough to perform the procedure. Ideally 1.5 times the duration of the diagnostic procedure.

 $1/T_{\rm E} = 1/T_{\rm B} + 1/T_{\rm P}$ $T_{\rm E} = T_{\rm B} T_{\rm P} / T_{\rm B} + T_{\rm P}$

POP QUIZ

- For a Bone Scan which is a 4-hr procedure, ^{99m}Tc-MDP with an effective half-life of 6 hrs is the ideal radiopharmaceutical:
 - True False
- For a liver scan which is 1-hr procedure, ^{99m}Tc-sulfur colloid with an effective half-life of 6 hrs is the ideal agent:
 - True False

Ideal Diagnostic Radiopharmaceutical (Cont..)

- Patient Safety
 - Should exhibit no toxicity to the patient.
- Preparation and Quality Control
 - Should be simple with little manipulation.
 - No complicated equipment
 - No time consuming steps

POP QUIZ

 Given the physical properties of commonly used radionuclides in the next two slides, mention which radionuclides are ideal for imaging. Explain why?

Physical Constants of Commonly Used Radionuclides

Nuclide	T _{phys}	E _{??} (keV)	% abundance
Cr-51	28 d	320	9
Ga-67	79.2 h	94 184 296	40 24 22
I-123	13.3 h	159	83
I-125	60 d	35	140

Physical Constants of Commonly Used Radionuclides

Nuclide	$\mathbf{T}_{\mathbf{phys}}$	E _{??} (keV)	% abundance
¹³¹ I	8.08 d	364.5	82
¹¹¹ In	67 h	173	89
		247	94
^{99m} Tc	6.02 h	140	90
²⁰¹ Tl	73 h	135	2
		167	8
		71(Hg X-rays)	95

Properties of the Ideal Therapeutic Radiopharmaceutical

- <u>Types of Emission:</u>
 - Pure ?-particles: It is more controllable and easier to detect if spilled compared to ?-particles.
- Energy of ?-particles:
 - Medium/high energy (>1 MeV): It causes adequate and regulated tissue damage.

Properties of the Ideal Therapeutic Radiopharmaceutical

- Effective half-life:
 - Moderately long (5-20 days) to deliver enough dose to target tissues.
- <u>Target-to-Nontarget Ratio:</u>
 - High ratio results in damage to the target tissue with minimal dose to other tissues.
- Easy Availability:
 - Readily available, Easily produced & Inexpensive

Types of Radiopharmaceuticals

• <u>Ready-to-use:</u>

- ¹²³I Capsules, ⁶⁷Ga Citrate, ²⁰¹Th Chloride, ¹³³Xe gas, ^{99m}Tc Pertechnetate
- Instant Tc-99m Kits:
 - MDP, DTPA, MAA,
- <u>Tc-99m Requiring Heating</u>:
 - MAG₃, Sestamibi, Sulfur Colloid
- **Products Requiring Significant Manipulation:**
 - ^{99m}Tc or ¹¹¹In-WBCs, ^{99m}Tc-RBCs, ⁵¹Cr-RBCs.

Preparation of Radiopharmaceuticals

- Production of Radionuclides.
- Synthesis of Non-Radioactive Carrier
- Reaction of the Radionuclide with the Non-Radioactive Carrier.

Production of Radionuclides

- Primary Source:
 - * Reactor * Cyclotron
- Secondary Source:

Generators:*A -----> ***B** -----> **C**

Nuclear Reactor

Nuclear Reactors

- ^{A}X (n,?) ^{A+1}X
- ${}^{98}Mo(n,?) {}^{99}Mo----> {}^{99m}Tc$
- Starting Material and Products have the Same Chemical Identity.
- Low Specific Activity Radionuclides

Cyclotrons

- **Example :** ⁶⁸Zn (p,2n) ⁶⁷Ga
- Starting Material & Product Have Different Chemical Identity
- Radionuclides with High Specific Activity
- Expensive
- Radionuclides Decay by ?+ or EC

Cyclotron

Fission Reaction

Byproducts of Fission Reactions

- (n,f): ²³⁵U(n) ²³⁶U(f) -----> ⁹⁹Mo, ¹³¹I, ¹³³Xe,etc
 - Starting Material and Products are Different
 - High Specific Activity Radionuclides.

Radionuclide Generators: Principles

• A long-lived parent radionuclide is allowed to decay to its short-lived daughter radionuclide and the latter is chemically separated in a physiological solution.

Successive Decay and Parent/Daughter Equilibrium

A-----> B -----> C

- If $t_{1/2}$ of $B < t_{1/2}$ of A (10 to 50 times)
 - Transient equilibrium. : Activity of Daughter becomes higher than that of the parent and decay with the same rate.
 - If t_{1/2} of B << t_{1/2} of A (100-1000 times)
 - Secular equilibrium: Activity and decay rate of daughter and parent are the same.

GENERATORS

- Types of Equilibrium
- Characteristics of Ideal Generators System
- Principles of Operation of a ⁹⁹Mo/^{99m}Tc Generator
- Quality Control of ⁹⁹Mo/^{99m}Tc Generator

PARENT-DAUGHTER EQUILIBRIA

- Transient Equilibrium
- Secular Equilibrium

Ideal Generators: Characteristics

- Easily Transportable
- Easy Separation of Daughter From Parent in Sterile, Pyrogen-Free Form.
- High Yield of Separation.
- No Radionuclidic Impurities.
- Parent with Reasonable Half Life.
- Daughter with Ideal Half life and Gamma Energy.
- Chemistry of the Daughter Allows Hospital Preparation

The Original ^{99m}Tc/⁹⁹Mo Generator Without Shielding

⁹⁹Mo/^{99m}Tc Generator

- <u>Parent</u>: ⁹⁹Mo as molybdate (⁹⁹MO₄⁻²)
- <u>Daughter</u>:^{99m}Tc as pertechnetate(^{99m}TcO₄⁻¹)
- <u>Adsorbent Material</u>: Alumina (aluminum oxide, Al₂O₃)
- <u>Eluent</u>: saline (0.9% NaCl)
- <u>Eluate</u>: ^{99m}TcO₄⁻

- Half-life: 66 hr.
- Decays by ?⁻ emission, gamma: 740, 780 keV.
- High affinity to alumina compared to ^{99m}Tc.

Technetium-99m

• **Desirable Characteristics:**

- Available in a generator form
- Emits monoenergetic gamma rays of 140 keV
- ideal physical half life: 6 hours
- Lack of beta emissions
- Its daughter (⁹⁹Tc) has a half-life of 2.12X10⁵ Years ---> no extra radiation dose to the patient
- Suitable for in-house preparation of many radiopharmaceuticals.

⁹⁹Mo/^{99m}Tc Generator: Principles of Operation

47

A DRY COLUMN Mo-99/Te-99m GENERATOR: INTERNAL CONSTRUCTION

Typical Decay-Growth Relationship of ⁹⁹Mo & ^{99m}Tc in a Generator

49

Other Radionuclide Generators

Daughter	^{113m} In	^{81m} Kr	⁸² Rb	⁶⁸ Ga
T _{1/2} (min)	100	0.22	1.33	68
E _? (keV)	393	193	511,777	511
Parent	Sn-113	Rb- 81	Sr-82	Ge-68
$T_{1/2}(day)$	118	0.2	25	275

GENERATOR QUALITY CONTROL

- Types of Impurities
 - Radionuclide Impurity: ⁹⁹Mo
 - Chemical Impurity: Al⁺³
- Required QC Testing
 - Moly Breakthrough
 - Al ⁺³ Breakthrough

⁹⁹Mo Breakthrough

- Limit (USP & NRC): 0.15?Ci ⁹⁹Mo/mCi ^{99m}Tc at the time of administration. As a rule of thumb:0.038?Ci ⁹⁹Mo/mCi of ^{99m}Tc at elution time is good for 12 hr.
- <u>Detection Method</u>: the eluate vial is shielded in a lead pot (6mm) to stop all 140-keV photons of ^{99m}Tc and count 740-780 keV of ⁹⁹Mo. The shielded vial is assayed in a dose calibrator using ⁹⁹Mo setting.
- **Frequency:** Every elution

Aluminum Breakthrough

- <u>Effect</u>: interferes with labeling:
 - Sulfur colloid: precipitate
 - labeling of RBCs: agglutination
- <u>Limit (USP):</u> 10?g Al/ml ^{99m}Tc or 10 ppm.
- <u>Method of Detection</u>: one drop each of the eluate and the standard solution are spotted on a special strip and the intensities of the colors are compared. If the eluate spot is more red then Al is excessive.
- **<u>Frequency</u>**: every elution