Physical Chemistry and Structural Chemistry

Zoltán Rolik

2018 fall

Introduction

Physical Chemistry

- Physical Chemistry I - Equilibrium (phase equilibrium, chemical equilibrium)
- Physical Chemistry II - Change (reaction kinetics, transport, electrochemistry)
- Physical Chemistry III - Structure (molecular structure, spectroscopy, materials science)

Introduction

Curriculum

- Introduction
- The basics of quantum mechanics
- The structure of the hydrogen atom
- Structure of many-electron atoms
- Optical spectroscopy
- Rotational spectroscopy
- Vibrational spectroscopy
- Electronic structure of molecules

Introduction

Curriculum

－Photoelectron spectroscopy
－Lasers and laser spectroscopy
－Fundamentals of nuclear structure
－Nuclear magnetic resonance
－Mass spectrometry
－X－ray diffraction

Introduction to spectroscopy

The structure of atoms, molecules, and other particles is described by quantum mechanics.

The foundation of quantum mechanics was laid in the 1920 's.
Preliminaries: some experiments which contradict the principles of classical physics

Introduction to spectroscopy

Joseph Fraunhofer's experiment, 1815

The sunlight was dispersed by a grating.
Dark lines were observed in the continuous spectrum.

Introduction to spectroscopy

The spectrum of the sun

Explanation:

- the sun emits continuous radiation
- the particles of the gas surrounding the Earth and the Sun absorb only photons of particular wavelength/frequency
- particle A absorbs light of $\nu_{A 1}, \nu_{A 2}, \ldots$ frequency particle B absorbs light of $\nu_{B 1}, \nu_{B 2}, \ldots$ frequency, etc.
- hence the energy of particle A can be changed by quanta of $\Delta E_{A}=h \nu_{A 1}, h \nu_{A 2}, \ldots$ and the energy of particle B can be changed by $\Delta E_{B}=h \nu_{B 1}, h \nu_{B 2}, \ldots$

Single-beam UV-visible absorption spectrophotometer

light

Oxazine 1

UV－visible absorption spectrum of Oxazine 1

Some physical properties of submicroscopic particles are quantized, that is, the corresponding physical quantities have only discrete values.

This realization is reflected by the term quantum mechanics

Schrödinger equation

In the non-relativistic case the submicroscopic systems can be described by the Schrödinger equation

$$
i \hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t)=\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{r}, t)\right] \Psi(\mathbf{r}, t)
$$

Let's start from the beginning. What does i stand for?

Basic concepts from mathematics

complex numbers ${ }^{\text {a }}$

${ }^{a}$ P. Atkins, J. Paula, R. Friedman, Chapter 2

- Natural numbers
- negative numbers (Diophantus [200-c. 284 CE]: The solution of the $4=4 x+20$ equation is absurd.)
- rational numbers (Pythagorean school: all phenomena in the universe can be reduced to whole numbers and their ratios)
but what is $\sqrt{2}$?

- irrational numbers (Hippasus, 5th century BC) ...

Basic concepts from mathematics

Real numbers form a closed set for the
$a+b, a-b, a * b, a / b(a, b \in \mathcal{R})$ operations．
But what is $\sqrt{-1}$ ？（Cardano，1545）

Basic concepts from mathematics

real line vs. complex plane
1D vs. 2D
$(x) \quad(x, y)$
$x, y \in \mathcal{R}$ (ordered pairs) $(x, y) \neq(y, x)$

Basic concepts from mathematics

$$
\begin{gathered}
\text { addition, }(a, b)+(c, d) \triangleq(a+c, b+d) \\
\text { subtraction, }(a, b)-(c, d) \triangleq(a-c, b-d) \\
\text { multiplication, }(a, b) \cdot(c, d) \triangleq(a c-b d, a d+b c)
\end{gathered}
$$

real numbers have the form of $(a, 0)$ they lie on the real axis:

$$
\begin{aligned}
&(a, 0)+(c, 0) \triangleq(a+c, 0) \\
&(a, 0)-(c, 0) \triangleq(a-c, 0) \\
&(a, 0) \cdot(c, 0) \triangleq(a c, 0)
\end{aligned}
$$

Basic concepts from mathematics

imaginary numbers have the form of $(0, b)$ they lie on the imaginary axis：

$$
\begin{aligned}
z & =(0, b) \\
z \cdot z & =z^{2} \\
(0, b) \cdot(0, b) & \triangleq\left(-b^{2}, 0\right) \\
z^{2} & =-b^{2} \quad z \in \mathcal{C} \quad, b \in \mathcal{R} \\
(0,1) \cdot(0,1) & \triangleq(-1,0)
\end{aligned}
$$

Basic concepts from mathematics

complex numbers

$z=(0,1)$ is special，it is denoted by i ，and called the imaginary unit $\left(i^{2}=-1\right)$ with its help $z=(a, b)=a+b i$
complex conjugate of $z=a+b i$ is denoted by a star superscript $z^{*}=a-b i$
$z \cdot z^{*}=(a+b i) \cdot(a-b i)=a^{2}+b^{2}=|z|^{2}$

Basic concepts from mathematics

 complex numbersdivision by a complex number:

$$
\begin{aligned}
\frac{a+b i}{c+d i} & =\frac{a+b i}{c+d i} \cdot \frac{c-d i}{c-d i} \\
& =\frac{(a+b i)(c-d i)}{c^{2}+d^{2}} \\
& =\frac{(a c+b d)}{c^{2}+d^{2}}+\frac{(b c-a d)}{c^{2}+d^{2}} i
\end{aligned}
$$

Basic concepts from mathematics

complex numbers

polar form of complex numbers

$$
\begin{aligned}
& z=a+b i=r \cdot(\cos \varphi+i \sin \varphi) \\
& r=\sqrt{a^{2}+b^{2}} \quad \tan \varphi=\frac{b}{a}
\end{aligned}
$$

multiplication and division in polar form:

$$
\begin{aligned}
z_{1} & =r_{1}\left(\cos \varphi_{1}+i \sin \varphi_{1}\right) \quad z_{2}=r_{2}\left(\cos \varphi_{2}+i \sin \varphi_{2}\right) \\
z_{1} \cdot z_{2} & =r_{1} \cdot r_{2}\left(\cos \left(\varphi_{1}+\varphi_{2}\right)+i \sin \left(\varphi_{1}+\varphi_{2}\right)\right) \\
\frac{z_{1}}{z_{2}} & =\frac{r_{1}}{r_{2}}\left(\cos \left(\varphi_{1}-\varphi_{2}\right)+i \sin \left(\varphi_{1}-\varphi_{2}\right)\right)
\end{aligned}
$$

Basic concepts from mathematics

Taylor－series

if $f(x)$ is infinitely differentiable at a real or complex number a then

$$
\begin{aligned}
f(x) & =f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}+\frac{1}{3 \cdot 2} f^{\prime \prime \prime}(a)(x-a)^{3}+\ldots \\
& =\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
\end{aligned}
$$

when $a=0$ it is called a Mclaurin series

Basic concepts from mathematics
Taylor-series, $a=0$

$$
\begin{aligned}
f(x) & =\exp (x)=e^{x} \\
e^{x} & =e^{0}+\left(e^{0}\right)^{\prime}(x-0)+\frac{1}{2}\left(e^{0}\right)^{\prime \prime}(x-0)^{2}+\frac{1}{3 \cdot 2}\left(e^{0}\right)^{\prime \prime \prime}(x-0)^{3}+\ldots \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}
\end{aligned}
$$

Basic concepts from mathematics
Taylor-series, $a=0$

$$
f(x)=\sin (x)
$$

$$
\begin{aligned}
\sin x & =0+x+0-\frac{1}{3!} x^{3}+0+\frac{1}{5!} x^{5}+0-\frac{1}{7!} x^{7}+\ldots \\
& =\sum_{n=0}^{\infty} \frac{-1^{n}}{(2 n+1)!} x^{2 n+1}
\end{aligned}
$$

Basic concepts from mathematics
Taylor-series, $a=0$

$$
f(x)=\cos (x)
$$

$$
\begin{aligned}
\cos x & =1+0-\frac{1}{2!} x^{2}+0+\frac{1}{4!} x^{4}+0-\frac{1}{6!} x^{6}+\ldots \\
& =\sum_{n=0}^{\infty} \frac{-1^{n}}{(2 n)!} x^{2 n}
\end{aligned}
$$

Basic concepts from mathematics

Euler's formula

$$
\begin{array}{ll}
i^{0}=1 & i^{1}=i \\
i^{2}=-1 & i^{3}=-i
\end{array}
$$

recall that $e^{z}=1+z+\frac{1}{2} z^{2}+\frac{1}{3!} z^{3}+\ldots$
if $z=i x$

$$
e^{i x}=1+i x+\frac{1}{2} i^{2} x^{2}+\frac{1}{3!} i^{3} x^{3}+\frac{1}{4!} i^{4} x^{4}+\frac{1}{5!} i^{5} x^{5}+\ldots
$$

Basic concepts from mathematics

Euler's formula

$$
\begin{aligned}
e^{i x} & =1+i x+\frac{1}{2} i^{2} x^{2}+\frac{1}{3!} i^{3} x^{3}+\frac{1}{4!} i^{4} x^{4}+\frac{1}{5!} i^{5} x^{5}+\ldots \\
& =1+i x-\frac{1}{2} x^{2}-i \frac{1}{3!} x^{3}+\frac{1}{4!} x^{4}+i \frac{1}{5!} x^{5}+\ldots \\
& =1-\frac{1}{2} x^{2}+\frac{1}{4!} x^{4}+i x-i \frac{1}{3!} x^{3}+i \frac{1}{5!} x^{5}+\ldots \\
& =\left(1-\frac{1}{2} x^{2}+\frac{1}{4!} x^{4}+\ldots\right)+i\left(x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}+\ldots\right) \\
& =\cos x+i \sin x
\end{aligned}
$$

Basic concepts from mathematics

exponential form of complex numbers

$$
\begin{aligned}
z & =a+b i=r \cdot(\cos \varphi+i \sin \varphi) \quad \text { polar form } \\
e^{i \varphi} & =\cos \varphi+i \sin \varphi \\
z & =r \cdot e^{i \varphi} \quad \text { exponential form }
\end{aligned}
$$

Basic concepts from classical mechanics

 conserved propertiesconservation laws ${ }^{\text {a }}$
some measurable physical properties do not change

- mass (m) ${ }^{b}$ and energy (E)
- electric charge (q)
- linear momentum (p)
- angular momentum (I)
${ }^{\text {a }}$ There is always a symmetry behind the conservation laws: conservation of energy is connected to the time-invariance of physical systems.
${ }^{b}$ conservation of mass is not exact: nuclear fusions

Energy

the ability to do work

- the kinetic energy $\left(E_{\text {kin }} \mid K\right)$ is due to motion; $E_{\text {kin }}=f(\mathbf{p})$
a moving object can do work
- the potential energy ($\left.E_{\text {pot }} \mid V\right)$ is due to position; $E_{\text {pot }}=g(\mathbf{r})$ stored energy of an object that can do work
- $E_{\text {tot }}=E_{\text {kin }}+E_{\text {pot }}$ or $H=K+V$
- Hamilton function: $\mathrm{E}=\mathrm{H}=\mathrm{H}(\mathbf{p}, \mathbf{q})$, where \mathbf{p}, \mathbf{q} are the canonical coordinates.

Kinetic energy

recall the scalar product of vectors: $\mathbf{v} \cdot \mathbf{v}=|\mathbf{v}|^{2}=v^{2}$

$$
\begin{aligned}
E_{\text {kin }} & =\frac{1}{2} m v^{2} \\
\mathbf{p} & =m \mathbf{v} \\
p^{2} & =m^{2} v^{2} \\
E_{\text {kin }} & =\frac{p^{2}}{2 m}
\end{aligned}
$$

Some simple classical systems

$E_{\mathrm{pot}}=0$

$$
\begin{aligned}
E_{\mathrm{tot}} & =E_{\mathrm{kin}}=\frac{p^{2}}{2 m} & x(t)=x(0)+\sqrt{\frac{2 E_{\mathrm{kin}}}{m}} t \\
\sqrt{2 m E_{\mathrm{kin}}} & =p=m \frac{d x}{d t} & p(t)=m v(t)=m \frac{d x}{d t}=m \sqrt{\frac{2 E_{\mathrm{kin}}}{m}} \\
\frac{d x}{d t} & =\sqrt{\frac{2 E_{\mathrm{kin}}}{m}} & p(t)=\sqrt{2 m E_{\mathrm{kin}}} \\
\int_{x(0)}^{x(t)} d x & =\sqrt{\frac{2 E_{\mathrm{kin}}}{m}} \int_{0}^{t} d t &
\end{aligned}
$$

Harmonic oscillator (classical case)

restoring force is proportional to the displacement from the equilibrium position
the spring stores the energy as $V(x)=\frac{1}{2} k x^{2} \Rightarrow F_{x}=-\frac{d V}{d x}$

$$
\begin{array}{rl|l}
\mathbf{F}=-k \mathbf{x} & \lambda^{2}=-\frac{k}{m} \\
m \frac{d^{2} x}{d t^{2}} & =-k x & \lambda= \pm i \sqrt{\frac{k}{m}}= \pm i \omega \\
m \lambda^{2} e^{\lambda t} & =-k e^{\lambda t} & x(t)=c_{1} e^{i \omega t}+c_{2} e^{-i \omega t}=A \sin (\omega t+\varphi) \\
\left(m \lambda^{2}+k\right) e^{\lambda t} & =0 & p(t)=m \frac{d x}{d t}=\omega A m \cos (\omega t+\varphi) \\
x(t)=e^{\lambda t} \Rightarrow \frac{d x}{d t}=\lambda e^{\lambda t} \Rightarrow \frac{d^{2} x}{d t^{2}}=\lambda^{2} e^{\lambda t}
\end{array}
$$

Circular motion

uniform circular motion, centripetal force, F_{cp}, and angular momentum, ℓ

$$
\begin{gathered}
F_{\mathrm{cp}}=m \cdot a=m \cdot r \omega^{2}=m \cdot \frac{v^{2}}{r} \\
\ell=r \cdot p=r \cdot m v
\end{gathered}
$$

$$
\begin{aligned}
\frac{\Delta s}{\Delta \varphi} & =\frac{2 \pi r}{2 \pi} \Rightarrow \Delta s=r \cdot \Delta \varphi \\
v & =\frac{d s}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta s}{\Delta t}=r \cdot \lim _{\Delta t \rightarrow 0} \frac{\Delta \varphi}{\Delta t} \\
& =r \cdot \omega
\end{aligned}
$$

$$
\begin{aligned}
\frac{\Delta v}{\Delta \varphi} & =\frac{2 \pi v}{2 \pi} \Rightarrow \Delta v=v \cdot \Delta \varphi \\
a & =\frac{d v}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t}=v \cdot \lim _{\Delta t \rightarrow 0} \frac{\Delta \varphi}{\Delta t} \\
& =v \cdot \omega=r \cdot \omega^{2}
\end{aligned}
$$

Circular motion

special case of rotational motion, \mathbf{r} is fixed

$$
\begin{aligned}
x(t) & =A \sin \left(\frac{2 \pi}{T} t\right)=A \sin (\omega t) \\
v & =r \omega \\
a & =v \omega=r \omega^{2} \\
F & =\frac{m v^{2}}{r}
\end{aligned}
$$

Linear and angular motions

linear momentum velocity \mathbf{v} angular velocity $\quad \omega=\frac{\mathbf{r} \times \mathbf{v}}{r^{2}}$ mass

Kinetic energy $\frac{p^{2}}{2 m}$

Classical wave equation

model ${ }^{a}$

```
*}\mathrm{ asee also in wikipedia, Wave equation, Hooke's law
```

－elastic，homogeneous string stretched to a length of L
－endpoints are fixed
－ρ is the mass of the string per unit length
－$u(x, t)$ represents the displacement of the string at a point x at a time t from its equilibrium position
－only vertical movements are allowed

$$
\begin{aligned}
& F_{y}=\underbrace{k e_{2}}_{T_{2}} \sin (\alpha+\Delta L)-\underbrace{}_{2} e_{1} \sin (\alpha) \\
& T_{2} \cos (\alpha+\Delta L)=T_{1} \cos (\alpha)=k e=T
\end{aligned}
$$

at the end $\alpha, l \longrightarrow 0$

Classical wave equation

$$
\begin{aligned}
T_{1} \cdot \cos \alpha & =T_{2} \cdot \cos (\alpha+\Delta \alpha):=T \\
T_{2} \cdot \sin (\alpha+\Delta \alpha)-T_{1} \cdot \sin \alpha & =m \cdot a=\rho \Delta x \cdot \frac{\partial^{2} u(x, t)}{\partial t^{2}} \\
\frac{T_{2} \cdot \sin (\alpha+\Delta \alpha)}{T_{2} \cdot \cos (\alpha+\Delta \alpha)}-\frac{T_{1} \cdot \sin \alpha}{T_{1} \cdot \cos \alpha} & =\frac{1}{T} \rho \cdot \Delta x \cdot \frac{\partial^{2} u(x, t)}{\partial t^{2}} \\
\tan (\alpha+\Delta \alpha)-\tan \alpha & =\frac{1}{T} \rho \cdot \Delta x \cdot \frac{\partial^{2} u(x, t)}{\partial t^{2}} \\
\frac{\partial u_{x+\Delta x}}{\partial x}-\frac{\partial u_{x}}{\partial x} & =\frac{1}{T} \rho \cdot \Delta x \cdot \frac{\partial^{2} u(x, t)}{\partial t^{2}}
\end{aligned}
$$

Classical wave equation

$$
\begin{aligned}
\frac{\partial u_{x+\Delta x}}{\partial x}-\frac{\partial u_{x}}{\partial x} & =\frac{1}{T} \rho \cdot \Delta x \cdot \frac{\partial^{2} u(x, t)}{\partial t^{2}} \\
\frac{\frac{\partial u_{x+\Delta x}}{\partial x}-\frac{\partial u_{x}}{\partial x}}{\Delta x} & =\frac{1}{T} \rho \cdot \frac{\partial^{2} u(x, t)}{\partial t^{2}} \\
\frac{\partial^{2} u(x, t)}{\partial x^{2}} & =\frac{1}{T / \rho} \cdot \frac{\partial^{2} u(x, t)}{\partial t^{2}} \\
\frac{\partial^{2} u(x, t)}{\partial x^{2}} & =\frac{1}{c^{2}} \cdot \frac{\partial^{2} u(x, t)}{\partial t^{2}}
\end{aligned}
$$

Solutions of the wane eq.

$$
\begin{aligned}
& u(x, t)=e^{i(k x-\omega t)} \\
& \frac{\partial^{2} u}{\partial x^{2}}=-t^{2} u \cdot \frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}=\frac{-\omega^{2}}{c^{2}} u \\
& \Rightarrow t=\frac{\omega}{c}=\frac{2 \pi}{\lambda}
\end{aligned}
$$

functions $u(t, t)=\sin (\varepsilon x-\omega t)$ and solutions!

Energy levels of atoms and molecules

traveling，standing waves and interference

$$
\begin{aligned}
\Psi(x, t) & =A \cdot \sin (k x-\omega t) \\
\sin \alpha+\sin \beta & =2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right) \\
\Psi(x, t)_{\text {interference }} & =A \cdot \sin (k x-\omega t)+A \cdot \sin (k x-\omega t+\varphi)=2 A \cdot \sin \left(k x-\omega t+\frac{\varphi}{2}\right) \cos \left(\frac{\varphi}{2}\right) \\
\Psi(x, t)_{\text {standing }} & =A \cdot \sin (k x-\omega t)+A \cdot \sin (k x+\omega t)=2 A \cdot \sin (k x) \cos (\omega t) \\
\Psi(x, t)_{\text {standing }} & =A \cdot \sin (k x-\omega t)-A \cdot \sin (k x+\omega t)=2 A \cdot \cos (k x) \sin (\omega t)
\end{aligned}
$$

Boundary conditions: $u(-a, t)=0$

$$
u(a, t)=0
$$

$$
\begin{aligned}
u_{n}(x, t) & =\sin \left(k_{n} x\right) \cdot \cos \omega t \\
a c_{n} & =n \pi \quad, n=1,2_{1} \ldots, \quad \Rightarrow k_{n}=\frac{n \pi}{a} \\
\bar{u}_{m}(x, t) & =\cos \left(\varepsilon_{m} x\right) \cdot \cos \omega t \\
a \varepsilon_{m} & \left.=m \pi+\frac{\pi}{2}, m=0,1,2, \Rightarrow \varepsilon_{m}=\frac{1}{a} \pi \pi+\frac{\pi}{2}\right) \\
u(x, t) & =\sum_{n} c_{n} u_{n}+\sum_{m} \bar{c}_{m} \bar{u}_{m}
\end{aligned}
$$

\angle general form of standing waves

Energy levels of atoms and molecules

light
light is electromagnetic radiation: $\Psi(x, t)=A \cdot \sin (k x-\omega t)=A \cdot \sin \left(\frac{2 \pi}{\lambda}(x-c t)\right)$ amplitude, A, maximum displacement from the rest position wavelength, λ, the distance between two successive maxima

－Black－body radiation（Planck，1900），photoelectric effect （Einstein，1905），heat capacity of low temperature isolator crystals（Debye，1912）：energy is quantized，$E=h \nu$ ．

Diagram of the maximum kinetic energy as a
function of the frequency of light on zinc．
－de Broglie（1924）：all matter has wave properties，$p=\frac{h}{\lambda}=\hbar k$

Energy levels of atoms and molecules

H emission spectrum
the experimental emission spectrum of the H －atom

Energy levels of atoms and molecules

H emission spectrum ${ }^{a}$

${ }^{a}$ wikipedia, Hydrogen spectral series

Ritz combination rule: spectral lines include frequencies that are either the sum or the difference of the frequencies of two other lines [the wavenumber ($\tilde{\nu}=1 / \lambda$) of any spectral line is the difference between two terms $\tilde{\nu}=\operatorname{term}(i)-\operatorname{term}(j)]$

Energy levels of atoms and molecules

 atomic emission spectra，characteristic for the atoms

Energy levels of atoms and molecules

Bohr's theory of the H -atom (1913) a

${ }^{a}$ wikipedia

- existence of stationary orbits (fixed nucleus and circular orbit), no electromagnetic radiation
- frequency condition: $\Delta E=h \nu$ (h is the Planck constant, $6.626 \cdot 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$)
- angular momentum is quantized: $\ell=n \hbar, \hbar=h / 2 \pi$

Energy levels of atoms and molecules

Bohr's theory of the H-atom (1913)

$$
\begin{aligned}
F_{\text {electrostatic }} & =F_{\text {centripetal }} \\
\frac{e^{2}}{4 \pi \epsilon_{0} r^{2}} & =\frac{m_{e} v^{2}}{r} \\
\ell=n \hbar & =r \cdot m_{e} v \\
v & =\frac{n \hbar}{r \cdot m_{e}}
\end{aligned}
$$

$$
\begin{aligned}
v^{2} & =\frac{n^{2} \hbar^{2}}{m_{e}^{2} r^{2}} \\
\frac{e^{2}}{4 \pi \epsilon_{0} r^{2}} & =\frac{m_{e} \frac{n^{2} \hbar^{2}}{m_{e}^{2} r^{2}}}{r} \\
r & =\frac{n^{2} \hbar^{2} 4 \pi \epsilon_{0}}{m_{e} e^{2}}
\end{aligned}
$$

Bohr radius, $a_{0}=0.529 \AA,(n=1)$
vacuum permittivity $\epsilon_{0}=8.854187817620 \ldots \times 10^{-12} \mathrm{~A}^{2} \mathrm{~s}^{4} \mathrm{~kg}^{-1} \mathrm{~m}^{-3}$

Energy levels of atoms and molecules

Bohr's theory of the H -atom

$$
\begin{aligned}
E_{\mathrm{tot}} & =E_{\mathrm{kin}}+E_{\mathrm{pot}} \\
& =\frac{1}{2} m_{e} v^{2}-\frac{e^{2}}{4 \pi \epsilon_{0} r} \\
& =\frac{1}{2} \frac{e^{2}}{4 \pi \epsilon_{0} r}-\frac{e^{2}}{4 \pi \epsilon_{0} r}=-\frac{1}{2} \frac{e^{2}}{4 \pi \epsilon_{0} r} \\
& =-\frac{1}{2} \frac{e^{2}}{4 \pi \epsilon_{0} \frac{n^{2} \hbar^{2} 4 \pi \epsilon_{0}}{m_{e} e^{2}}} \\
& =-\frac{m_{e} e^{4}}{8 \epsilon_{0} h^{2}} \frac{1}{n^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{e^{2}}{4 \pi \epsilon_{0} r^{2}} & =\frac{m_{e} v^{2}}{r} \\
m_{e} v^{2} & =\frac{r e^{2}}{4 \pi \epsilon_{0} r^{2}} \\
r & =\frac{n^{2} \hbar^{2} 4 \pi \epsilon_{0}}{m_{e} e^{2}} \\
\hbar^{2} & =\frac{h^{2}}{4 \pi^{2}}
\end{aligned}
$$

Energy levels of atoms and molecules

Bohr's theory of the H -atom

$$
\begin{aligned}
\Delta E & =h \nu=h \frac{c}{\lambda}=h c \tilde{\nu} \\
\Delta E & =E_{n_{2}}-E_{n_{1}}=\frac{m_{e} e^{4}}{8 \epsilon_{0} h^{2}}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right) \\
\tilde{\nu} & =\frac{1}{h c} \frac{m_{e} e^{4}}{8 \epsilon_{0} h^{2}}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right) \\
\tilde{\nu} & =R_{H}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right) \\
R_{H} & =\frac{1}{h c} \frac{m_{e} e^{4}}{8 \epsilon_{0} h^{2}}=109737 \mathrm{~cm}^{-1} \\
R_{H} & =109638 \mathrm{~cm}^{-1} \text { from experiment }
\end{aligned}
$$

Energy levels of atoms and molecules

Bohr's theory of the H-atom

$\operatorname{Bohr}\left(n_{2}>n_{1}\right): \quad \tilde{\nu}=\frac{1}{h c} \frac{m_{e} e^{4}}{8 \epsilon_{0} h^{2}}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right) \mathrm{cm}^{-1}$

1
${ }^{1}$ On December 1, 2011, it was announced that Voyager 1 detected the first Lyman-alpha radiation originating from the Milky Way galaxy. Lyman-alpha radiation had previously been detected from other galaxies, but due to interference from the Sun, the radiation from the Milky Way was not detectable.

Energy levels of atoms and molecules

plausibility of Bohr's quantization condition, $\ell=n \hbar$

$$
\begin{aligned}
p_{\text {photon }} & =\frac{h}{\lambda}(\text { Einstein }) \\
p_{\text {particle }} & =\frac{h}{\lambda}(\text { de Broglie }) \\
\lambda & =\frac{h}{p_{\text {particle }}} \\
2 r \pi & =n \cdot \lambda \\
2 r \pi & =n \cdot \frac{h}{p_{\text {electron }}} \\
\ell=r \cdot p & =n \cdot \frac{h}{2 \pi}
\end{aligned}
$$

constructive, destructive interferences
standing wave - stationary orbit

Energy levels of atoms and molecules

 plausibility of Bohr＇s quantization condition，$\ell=n \hbar$Wave－particle duality：＂It seems as though we must use sometimes the one theory and sometimes the other，while at times we may use either． We are faced with a new kind of difficulty．We have two contradictory pictures of reality；separately neither of them fully explains the phenomena of light，but together they do．＂（Einstein）
$c=\lambda \cdot \nu$

$$
E=h \cdot \nu
$$

Time-dependent Schrödinger equation

some arguments for the Schrödinger equation

of course there is no proof of it, it is a postulate
Free particle waves: $\Psi(x, t)=e^{i(k x-\omega t)}$

$$
\begin{array}{l|c}
\omega=E / \hbar \text { (Planck) } & k=p / \hbar \text { (De Broglie) } \\
\frac{\partial}{\partial t} \Psi(x, t)=-\frac{i}{\hbar} E \Psi(x, t) & \frac{\partial^{2}}{\partial x^{2}} \Psi(x, t)=\left(\frac{i}{\hbar}\right)^{2} p^{2} \Psi(x, t) \\
i \hbar \frac{\partial}{\partial t} \Psi(x, t)=E \Psi(x, t) & -\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \Psi(x, t)=\frac{p^{2}}{2 m} \Psi(x, t)
\end{array}
$$

The energy is a classical free particle:

$$
E=\frac{p^{2}}{2 m}
$$

$$
i \hbar \frac{\partial}{\partial t} \psi(x, t)=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x, t)
$$

Schrödinger equation

particle in a force field, time-independent Schrödinger equation

If the particle is not free (3D):

$$
i \hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t)=\left\{-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)+V(\mathbf{r})\right\} \Psi(\mathbf{r}, t)
$$

A particular solution of the time-dependent Schrödinger equation:
$\Psi(\mathbf{r}, t)=\Phi(\mathbf{r}) e^{-\frac{i}{\hbar} E t}$

$$
i \hbar \frac{\partial}{\partial t} \Phi(\mathbf{r}) e^{-\frac{i}{\hbar} E t}=E \Phi(\mathbf{r}) e^{-\frac{i}{\hbar} E t}
$$

Using the relations above we obtain the time-independent
Schrödinger equation

$$
\left\{-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)+V(\mathbf{r})\right\} \Phi(\mathbf{r})=E \Phi(\mathbf{r})
$$

Energy levels of atoms and molecules

Schrödinger equation for the particle in the 1D box model ${ }^{a}$

${ }^{a}$ Atkins，part II，chapter 8

$$
\begin{aligned}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi(x)}{d x^{2}} & +V(x) \Psi(x)=E \Psi(x) \\
E_{\mathrm{kin}} & +E_{\mathrm{pot}}=E_{\mathrm{tot}} \\
\frac{\partial^{2} \Psi(x)}{\partial x^{2}} & =\frac{-2 m(E-V(x))}{\hbar^{2}} \Psi(x) \\
\frac{d^{2} y}{d x^{2}} & =-k^{2} \cdot y \\
y & \in\left\{e^{i k x}, \sin (k x), \cos (k x)\right\}
\end{aligned}
$$

Wall

Energy levels of atoms and molecules

Schrödinger equation for the particle in the 1D box model

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi(x)}{d x^{2}}+V(x) \Psi(x)=E \Psi(x)
$$

No particle in the infinit potential area! $\Psi(x)=0$ if $x<0$ or $x>L$.

$$
\left.\begin{array}{rlrl}
\frac{\partial^{2} \Psi(x)}{\partial x^{2}} & =\frac{-2 m E}{\hbar^{2}} \Psi(x) & & \Psi(0)=0 \\
k & =\sqrt{\frac{2 m E}{\hbar^{2}}} & & k L=n \pi \quad n=(1,2, \cdots)
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{l}
C=0 \\
D=0 \text { or } \sin k L=0
\end{array}\right.
$$

$$
\Psi(x)=D \sin \frac{n \pi}{L} x
$$

Energy levels of atoms and molecules

Schrödinger equation for the particle in the 1D box model

$$
\begin{aligned}
& V(x)= \begin{cases}\infty, & -\infty<x \leq 0 \\
0, & 0<x<L \\
\infty, & L \leq x<\infty\end{cases} \\
& k=\sqrt{\frac{2 m E}{\hbar^{2}}} \quad=\frac{n \pi}{L} \\
& k^{2}=\frac{2 m E}{\hbar^{2}} \quad=\frac{n^{2} \pi^{2}}{L^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{2 m E}{\hbar^{2}} & =\frac{n^{2} \pi^{2}}{L^{2}} \\
E_{n} & =\frac{n^{2} h^{2}}{8 m L^{2}}
\end{aligned}
$$

Born probability interpretation： $\int_{-\infty}^{\infty} \Psi^{2}(x) d x=1$

Energy levels of atoms and molecules

 properties of the solutions- Born probability interpretation $\int_{-\infty}^{\infty} \Psi^{2}(x) d x=1$ i.e., probability of finding the particle between x and $x+d x$ is $\psi^{\mathbf{2}}(x) d x$
- if $n \uparrow$ then $\mathrm{E} \uparrow$
- $n=1$, zero-point energy
- Ψ has $n-1$ nodes in the $0<x<L$ interval
- ground and excited states
- with increasing mass the energy gap between the levels, $E_{n+1}-E_{n}$, decreases $\rho(\mathbf{r})=\Psi^{*}(\mathbf{r}) \Psi(\mathbf{r})$ satisfies the continuity equation, $\frac{\partial \rho}{\partial t}+\operatorname{div} \mathbf{j}=0$, where $\mathbf{j}(\mathbf{r}, t)=\frac{\hbar}{2 m i}\left[\Psi^{*}(\nabla \Psi)-\Psi\left(\nabla \Psi^{*}\right)\right]$ is the probability current.

Energy levels of atoms and molecules

Schrödinger equation for the particle in the 1D box model

Born probability interpretation

$$
\int_{-\infty}^{\infty} \Psi^{2}(x) d x=1 \Rightarrow \Psi(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi}{L} x\right)
$$

$$
\begin{aligned}
\Psi(x) & =D \sin \left(\frac{n \pi}{L} x\right) \\
D^{2} \int_{-\infty}^{\infty} \sin ^{2}\left(\frac{n \pi}{L} x\right) d x & =D^{2} \int_{0}^{L} \sin ^{2}\left(\frac{n \pi}{L} x\right) d x=1 \\
D & =\sqrt{\frac{2}{L}} \\
\Psi(x) & =\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi}{L} x\right)
\end{aligned}
$$

$$
\begin{aligned}
z & =\frac{n \pi}{L} x \\
d z & =\frac{n \pi}{L} d x \\
\int_{0}^{n \pi} d z & =\frac{n \pi}{L} \int_{0}^{L} d x \\
\sin ^{2} z & =\frac{\sin ^{2} z+\cos ^{2} z+\sin ^{2} z-\cos ^{2} z}{2} \\
& =\frac{1-\cos 2 z}{2}
\end{aligned}
$$

Energy levels of atoms and molecules

Schrödinger equation for the free particle, $V(x)=0, E_{\text {kin }}=E_{\text {tot }}$

$$
\begin{array}{rlrl}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi(x)}{d x^{2}} & =E_{\text {kin }} \Psi(x) & \Psi(x) & =A \cdot \sin \left(\frac{2 \pi}{\lambda} x\right) \\
\frac{\partial^{2} \Psi(x)}{\partial x^{2}} & =\frac{-2 m E_{\text {kin }}}{\hbar^{2}} \Psi(x) & k & =\frac{2 \pi}{\lambda} \\
k^{2} & =\frac{2 m E_{\text {kin }}}{\hbar^{2}} & 2 m E_{\text {kin }} & =2 m \cdot \frac{1}{2} m v^{2}=p^{2} \\
\Psi(x) & =A \cdot \sin (k x) & p^{2} & =k^{2} \hbar^{2}=\left(\frac{2 \pi}{\lambda}\right)^{2} \cdot\left(\frac{h}{2 \pi}\right)^{2} \\
\lambda & =\frac{h}{p}
\end{array}
$$

Energy levels of atoms and molecules

Schrödinger equation for the particle in the 2D box model

$$
-\frac{\hbar^{2}}{2 m}\left\{\frac{\partial^{2} \Psi}{\partial x^{2}}+\frac{\partial^{2} \Psi}{\partial y^{2}}\right\}+V \Psi=E \Psi
$$

$$
V(x, y)=\left\{\begin{array}{lr}
0, x \in\left(0, L_{1}\right) \wedge y \in\left(0, L_{2}\right) \\
\infty, & \text { otherwise }
\end{array}\right.
$$

Energy levels of atoms and molecules

Schrödinger equation for the particle in the 2D box model

$$
-\frac{\hbar^{2}}{2 m}\left\{\frac{\partial^{2} \Psi}{\partial x^{2}}+\frac{\partial^{2} \Psi}{\partial y^{2}}\right\}=E \Psi \quad \Psi(x, y)=F(x) \cdot G(y)
$$

separation of variables

$$
\begin{aligned}
\Psi & =F(x) \cdot G(y) \\
\frac{\partial^{2} \Psi}{\partial x^{2}} & =G(y) \frac{d^{2} F(x)}{d x^{2}} \\
\frac{\partial^{2} \Psi}{\partial y^{2}} & =F(x) \frac{d^{2} G(y)}{d y^{2}} \\
-\frac{\hbar^{2}}{2 m}\left\{G(y) \frac{d^{2} F(x)}{d x^{2}}+F(x) \frac{d^{2} G(y)}{d y^{2}}\right\} & =E F(x) G(y) \\
-\frac{\hbar^{2}}{2 m}\left\{\frac{1}{F(x)} \frac{d^{2} F(x)}{d x^{2}}+\frac{1}{G(y)} \frac{d^{2} G(y)}{d y^{2}}\right\} & =E
\end{aligned}
$$

$$
\begin{aligned}
-\frac{\hbar^{2}}{2 m} \frac{1}{F(x)} \frac{d^{2} F(x)}{d x^{2}} & =E_{x} \\
-\frac{\hbar^{2}}{2 m} \frac{1}{G(y)} \frac{d^{2} G(y)}{d y^{2}} & =E_{y} \\
-\frac{\hbar^{2}}{2 m} \frac{d^{2} F(x)}{d x^{2}} & =E_{x} F(x) \\
-\frac{\hbar^{2}}{2 m} \frac{d^{2} G(y)}{d y^{2}} & =E_{y} G(y)
\end{aligned}
$$

Energy levels of atoms and molecules

Schrödinger equation for the particle in the 2D box model

$$
\begin{array}{rlrl}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} F(x)}{d x^{2}} & =E_{x} F(x) & -\frac{\hbar^{2}}{2 m} \frac{d^{2} G(y)}{d y^{2}} & =E_{y} G(y) \\
E_{x} & =\frac{n_{1}^{2} h^{2}}{8 m L_{1}^{2}} & E_{y} & =\frac{n_{2}^{2} h^{2}}{8 m L_{2}^{2}} \\
F(x) & =\sqrt{\frac{2}{L_{1}}} \sin \frac{n_{1} \pi}{L_{1}} x & G(y) & =\sqrt{\frac{2}{L_{2}}} \sin \frac{n_{2} \pi}{L_{2}} y
\end{array}
$$

$$
\Psi(x, y)=F(x) \cdot G(y)=\sqrt{\frac{4}{L_{1} L_{2}}} \cdot \sin \frac{n_{1} \pi}{L_{1}} x \cdot \sin \frac{n_{2} \pi}{L_{2}} y
$$

$$
E=E_{x}+E_{y}=\left\{\left(\frac{n_{1}}{L_{1}}\right)^{2}+\left(\frac{n_{2}}{L_{2}}\right)^{2}\right\} \frac{h^{2}}{8 m}
$$

Energy levels of atoms and molecules

Schrödinger equation for the particle in the 2D box model

$$
\begin{aligned}
& \Psi(x, y)=\sqrt{\frac{4}{L_{1} L_{2}}} \cdot \sin \frac{n_{1} \pi}{L_{1}} x \cdot \sin \frac{n_{2} \pi}{L_{2}} y \\
& E\left(n_{1}, n_{2}\right)=\left\{\left(\frac{n_{1}}{L_{1}}\right)^{2}+\left(\frac{n_{2}}{L_{2}}\right)^{2}\right\} \frac{h^{2}}{8 m}
\end{aligned}
$$

consequence of symmetry, $L_{1}=L_{2}=L$

$$
\begin{gathered}
\Psi(x, y)=\sqrt{\frac{4}{L^{2}}} \cdot \sin \frac{n_{1} \pi}{L} x \cdot \sin \frac{n_{2} \pi}{L} y \\
E\left(n_{1}, n_{2}\right)=\left(n_{1}^{2}+n_{2}^{2}\right) \frac{h^{2}}{8 m L^{2}}
\end{gathered}
$$

$E(1,2)=E(2,1)$ but the wavefunctions are different
degeneracy: same energies different wavefunctions

Energy levels of atoms and molecules

Schrödinger equation for the particle in the 2D box model
degeneracy is the consequence of symmetry $\left|\psi_{11}\right|^{2}$

Energy levels of atoms and molecules

Schrödinger equation for the particle in the 3D box model

$$
-\frac{\hbar^{2}}{2 m}\left\{\frac{\partial^{2} \Psi}{\partial x^{2}}+\frac{\partial^{2} \Psi}{\partial y^{2}}+\frac{\partial^{2} \Psi}{\partial z^{2}}\right\}=E \Psi \quad \Psi(x, y, z)=F(x) \cdot G(y) \cdot H(z)
$$

$$
\begin{gathered}
\Psi(x, y, z)=F(x) \cdot G(y) \cdot H(z)=\sqrt{\frac{8}{L_{1} L_{2} L_{3}}} \cdot \sin \frac{n_{1} \pi}{L_{1}} x \cdot \sin \frac{n_{2} \pi}{L_{2}} y \cdot \sin \frac{n_{3} \pi}{L_{3}} z \\
E=E_{x}+E_{y}+E_{z}=\left\{\left(\frac{n_{1}}{L_{1}}\right)^{2}+\left(\frac{n_{2}}{L_{2}}\right)^{2}+\left(\frac{n_{3}}{L_{3}}\right)^{2}\right\} \frac{h^{2}}{8 m}
\end{gathered}
$$

Energy levels of atoms and molecules

Schrödinger equation for the particle in the 3D box model
degenerate case：cube $L_{1}=L_{2}=L_{3}=L$

$$
\begin{gathered}
\Psi(x, y, z)=\sqrt{\frac{8}{L^{3}}} \cdot \sin \frac{n_{1} \pi}{L} x \cdot \sin \frac{n_{2} \pi}{L} y \cdot \sin \frac{n_{3} \pi}{L} z \\
E\left(n_{1}, n_{2}, n_{3}\right)=\left(n_{1}^{2}+n_{2}^{2}+n_{3}^{2}\right) \frac{h^{2}}{8 m L^{2}}=\left(n_{1}^{2}+n_{2}^{2}+n_{3}^{2}\right) \frac{h^{2}}{8 m V^{2 / 3}}
\end{gathered}
$$

Postulates of Quantum Mechanics ${ }^{\text {a }}$

 postulate I${ }^{\text {a P P Atkins，J．Paula，R．Friedman，Chapter } 1}$

The state of a quantum－mechanical system is completely specified by the so－called wavefunction，$\Psi(\mathbf{r}, t)$ ，that depends on the coordinates of the particles and on time．$\Psi^{*}(\mathbf{r}, t) \Psi(\mathbf{r}, t) d x d y d z$ is the probability that the particle lies in the volume element $d \tau=d x d y d z$ located at \mathbf{r} at time t ．

Postulates of Quantum Mechanics

 postulate 1properties of $\Psi(\mathbf{r}, t)$

- continuous
- contiguously differentiable (if the $V(\mathbf{r})$ potential is realistic ...)
- finite (square integrable for bound states, i.e.,

$$
\left.\int_{-\infty}^{\infty}|\Psi|^{2} d \tau<\infty\right)
$$

- single valued

Postulates of Quantum Mechanics

 postulate IITo every observable in classical mechanics there exists a corresponding linear，Hermitian operator in quantum mechanics．

Operators in Quantum Mechanics

observables		$\hat{\Omega}$	operators
position	x	\hat{x}	multiplication by x
	r	$\hat{\mathbf{r}}$	multiplication by \mathbf{r}
potential energy	$V(x)$	$\hat{V}(\hat{x})$	multiplication by $V(x)$
	$V(\mathbf{r})$	$\hat{V}(\hat{\mathbf{r}})$	multiplication by $V(\mathbf{r})$
momentum	p_{x}	$\hat{p_{X}}$	$-i \hbar \frac{\partial}{\partial x}$
	p	$\hat{\mathbf{p}}$	$-i \hbar\left(\mathbf{e}_{x} \frac{\partial}{\partial x}+\mathbf{e}_{y} \frac{\partial}{\partial y}+\mathbf{e}_{z} \frac{\partial}{\partial z}\right)$
kinetic energy	K_{x}	\hat{K}_{x}	$-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}$
	K	\hat{K}	$-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)$
total energy	E	\hat{H}	$\hat{\boldsymbol{T}}+\hat{\boldsymbol{V}}$

Postulates of Quantum Mechanics

 postulate IIIIn any measurement of the observable associated with the operator
$\hat{\boldsymbol{\Omega}}$, the only values that will ever be observed are the eigenvalues ω_{i} which satisfy the eigenvalue equation $\hat{\boldsymbol{\Omega}} \Psi_{i}=\omega_{i} \Psi_{i}$

Operators in Quantum Mechanics

linear Hermitian operators
$\left\{-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V\right\} \Psi(x)=E \Psi(x) \quad \hat{\mathbf{H}} \Psi(x)=E \Psi(x)$
eigenvalue equation $\hat{\boldsymbol{\Omega}} \psi=\omega \psi$
for an operator there can be more than one eigenfunction usually different eigenfunctions have different eigenvalues（non degenerate） an operator is called linear if $\hat{\boldsymbol{\Omega}}(\alpha \psi+\phi)=\alpha \hat{\boldsymbol{\Omega}} \psi+\hat{\boldsymbol{\Omega}} \phi$ an operator is called Hermitian if $\int \psi_{i}^{*} \hat{\boldsymbol{\Omega}} \psi_{j} d \tau=\left\{\int \psi_{j}^{*} \hat{\boldsymbol{\Omega}} \psi_{i} d \tau\right\}^{*}$ eigenvalues for Hermitian operators are real

Postulates of Quantum Mechanics

 postulate IVIf the state of the system is described by a normalized wave function Ψ, then the average value of the observable corresponding to the operator $\hat{\boldsymbol{\Omega}}$ can be calculated as $\langle\omega\rangle=\int \Psi^{*} \hat{\boldsymbol{\Omega}} \psi d \tau$

Postulates of Quantum Mechanics

 postulate VThe wave function of a system evolves in time according to the time－dependent Schrödinger equation：$\hat{\mathbf{H}} \Psi(\mathbf{r}, t)=i \hbar \frac{\partial \Psi(\mathbf{r}, t)}{\partial t}$

Operators

required properties: measurable physical quantities are real
postulate III: $\hat{\boldsymbol{\Omega}} \Psi_{i}=\omega_{i} \Psi_{i} \quad \Rightarrow \quad \int \Psi_{i}^{*} \hat{\boldsymbol{\Omega}} \Psi_{i} d \tau=\omega_{i}$
(we assumed that Ψ_{i} is normalized, $\int_{-\infty}^{\infty} \Psi_{i}^{*} \Psi_{i} d \tau=1$)
eigenvalue equation
its complex conjugate

$$
\begin{aligned}
\hat{\Omega} \Psi & =\omega \Psi & \hat{\Omega}^{*} \Psi^{*} & =\omega^{*} \Psi^{*} \\
\int_{-\infty}^{\infty} \Psi^{*} \hat{\Omega} \Psi d \tau & =\omega \int_{-\infty}^{\infty} \Psi^{*} \Psi d \tau & \int_{-\infty}^{\infty} \psi \hat{\Omega}^{*} \Psi^{*} d \tau & =\omega^{*} \int_{-\infty}^{\infty} \psi \Psi^{*} d \tau \\
\int_{-\infty}^{\infty} \Psi^{*} \hat{\Omega} \Psi d \tau & =\omega & \int_{-\infty}^{\infty} \psi \hat{\Omega}^{*} \Psi^{*} d \tau & =\omega^{*}
\end{aligned}
$$

ω is real if $\omega=\omega^{*}$, i.e., $\int_{-\infty}^{\infty} \Psi^{*} \hat{\Omega} \Psi d \tau=\int_{-\infty}^{\infty} \Psi \hat{\Omega}^{*} \Psi^{*} d \tau$

Operators

required properties

hermitian operators

$$
\int \Psi^{*} \hat{\Omega} \Psi d \tau=\int \Psi \hat{\Omega}^{*} \Psi^{*} d \tau
$$

let Ψ be a linear combination of functions α and β and $\hat{\boldsymbol{\Omega}}$ is hermitian

$$
\begin{aligned}
\Psi & =c_{a} \alpha+c_{b} \beta \Rightarrow \Psi^{*}=c_{a}^{*} \alpha^{*}+c_{b}^{*} \beta^{*} \\
\int \Psi^{*} \hat{\boldsymbol{\Omega}} \Psi d \tau & =\int\left(c_{a}^{*} \alpha^{*}+c_{b}^{*} \beta^{*}\right) \hat{\boldsymbol{\Omega}}\left(c_{a} \alpha+c_{b} \beta\right) d \tau \\
& =\int\left(c_{a} \alpha+c_{b} \beta\right) \hat{\boldsymbol{\Omega}}^{*}\left(c_{a}^{*} \alpha^{*}+c_{b}^{*} \beta^{*}\right) d \tau=\int \Psi \hat{\boldsymbol{\Omega}}^{*} \Psi^{*} d \tau
\end{aligned}
$$

Operators

$$
\begin{aligned}
& \frac{\int\left(c_{a}^{*} \alpha^{*}+c_{b}^{*} \beta^{*}\right) \hat{\boldsymbol{\Omega}}\left(c_{a} \alpha+c_{b} \beta\right) d \tau}{\int c_{a}^{*} \alpha^{*} \hat{\boldsymbol{\Omega}} c_{a} \alpha d \tau+\int c_{a}^{*} \alpha^{*} \hat{\boldsymbol{\Omega}} c_{b} \beta d \tau}=\frac{\int\left(c_{a} \alpha+c_{b} \beta\right) \hat{\boldsymbol{\Omega}}^{*}\left(c_{a}^{*} \alpha^{*}+c_{b}^{*} \beta^{*}\right) d \tau}{\int c_{b}^{*} \beta^{*} \hat{\boldsymbol{\Omega}} c_{a} \alpha d \tau+\int c_{b}^{*} \beta^{*} \hat{\boldsymbol{\Omega}} c_{b} \beta d \tau} \\
&= \\
& \int c_{a} \alpha \hat{\boldsymbol{\Omega}}^{*} c_{a}^{*} \alpha^{*} d \tau+\int c_{a} \alpha \hat{\boldsymbol{\Omega}}^{*} c_{b}^{*} \beta^{*} d \tau+\int c_{b} \beta \hat{\boldsymbol{\Omega}}^{*} c_{a}^{*} \alpha^{*} d \tau+\int c_{b} \beta \hat{\boldsymbol{\Omega}}^{*} c_{b}^{*} \beta^{*} d \tau \\
& \hline
\end{aligned}
$$

Operators

$$
\begin{aligned}
& \begin{array}{l}
\int c_{a}^{*} \alpha^{*} \hat{\boldsymbol{\Omega}} c_{a} \alpha d \tau+\int c_{a}^{*} \alpha^{*} \hat{\boldsymbol{\Omega}} c_{b} \beta d \tau
\end{array}+\int c_{b}^{*} \beta^{*} \hat{\boldsymbol{\Omega}} c_{a} \alpha d \tau+\underline{\int c_{b}^{*} \beta^{*} \hat{\boldsymbol{\Omega}}_{b} \beta d \tau} \\
&= \\
& \frac{\int c_{a} \alpha \hat{\boldsymbol{\Omega}}^{*} c_{a}^{*} \alpha^{*} d \tau+\int c_{a} \alpha \hat{\boldsymbol{\Omega}}^{*} c_{b}^{*} \beta^{*} d \tau+\int c_{b} \beta \hat{\boldsymbol{\Omega}}^{*} c_{a}^{*} \alpha^{*} d \tau+\underline{\int c_{b} \beta \hat{\boldsymbol{\Omega}}^{*} c_{b}^{*} \beta^{*} d \tau}}{\int c_{a}^{*} \alpha^{*} \hat{\boldsymbol{\Omega}} c_{b} \beta d \tau+\int c_{b}^{*} \beta^{*} \hat{\boldsymbol{\Omega}} c_{a} \alpha d \tau}=\int c_{a} \alpha \hat{\boldsymbol{\Omega}}^{*} c_{b}^{*} \beta^{*} d \tau+\int c_{b} \beta \hat{\boldsymbol{\Omega}}^{*} c_{a}^{*} \alpha^{*} d \tau \\
& c_{a}^{*} c_{b}\left\{\int \alpha^{*} \hat{\boldsymbol{\Omega}} \beta d \tau-\int \beta \hat{\boldsymbol{\Omega}}^{*} \alpha^{*} d \tau\right\}=c_{a} c_{b}^{*}\left\{\int \alpha \hat{\boldsymbol{\Omega}}^{*} \beta^{*} d \tau-\int \beta^{*} \hat{\boldsymbol{\Omega}} \alpha d \tau\right\} \\
& \text { complex number }=\text { its complex conjugate } \\
& \int \alpha^{*} \hat{\boldsymbol{\Omega}} \beta d \tau=\int \beta \hat{\boldsymbol{\Omega}}^{*} \alpha^{*} d \tau \text { and } \int \alpha \hat{\boldsymbol{\Omega}}^{*} \beta^{*} d \tau=\int \beta^{*} \hat{\boldsymbol{\Omega}} \alpha d \tau
\end{aligned}
$$

Operators

hermitian operators

general definition

$$
\int \alpha^{*} \hat{\boldsymbol{\Omega}} \beta d \tau=\int \beta \hat{\boldsymbol{\Omega}}^{*} \alpha^{*} d \tau
$$

special case $(\beta=\alpha)$

$$
\int \alpha^{*} \hat{\boldsymbol{\Omega}} \alpha d \tau=\int \alpha \hat{\boldsymbol{\Omega}}^{*} \alpha^{*} d \tau
$$

Operators

the sum of hermitian operators is also a hermitian operator

$$
\hat{\boldsymbol{\Omega}}=\hat{\Omega}_{i}+\hat{\Omega}_{j}
$$

$$
\begin{aligned}
& \int \Psi^{*} \hat{\Omega}_{i} \Psi d \tau=\int \Psi \hat{\Omega}_{i}{ }^{*} \Psi^{*} d \tau \text { and } \int \Psi^{*} \hat{\Omega}_{j} \Psi d \tau=\int \Psi \hat{\Omega}_{j}{ }^{*} \Psi^{*} d \tau \\
& \int \Psi^{*} \hat{\boldsymbol{\Omega}} \Psi d \tau=\int \Psi^{*}\left\{\hat{\boldsymbol{\Omega}}_{\boldsymbol{i}}+\hat{\boldsymbol{\Omega}}_{\boldsymbol{i}}\right\} \Psi d \tau \\
& =\int \Psi^{*} \hat{\boldsymbol{\Omega}}_{\boldsymbol{i}} \Psi d \tau+\int \Psi^{*} \hat{\boldsymbol{\Omega}}_{\boldsymbol{j}} \Psi d \tau \\
& =\int \Psi \hat{\Omega}_{i}{ }^{*} \Psi^{*} d \tau+\int \Psi \hat{\Omega}_{j}{ }^{*} \Psi^{*} d \tau \text { (hermitian property) } \\
& =\int \Psi\left\{\hat{\boldsymbol{\Omega}}_{i}{ }^{*}+\hat{\boldsymbol{\Omega}}_{i}{ }^{*}\right\} \Psi^{*} d \tau \\
& =\int \Psi \hat{\mathbf{\Omega}}^{*} \Psi^{*} d \tau
\end{aligned}
$$

Operators

the hamiltonian，$\hat{\boldsymbol{H}}=\hat{\boldsymbol{K}}+\hat{\boldsymbol{V}}$ ，is a hermitian operator

observables		operators	
position	x	\hat{x}	multiplication by x
	r	$\hat{\mathbf{r}}$	multiplication by \mathbf{r}
potential energy	$V(x)$	$\hat{V}(\hat{x})$	multiplication by $V(x)$
	$V(\mathbf{r})$	$\hat{V}(\hat{\mathbf{r}})$	multiplication by $V(\mathbf{r})$
momentum	$p_{\text {x }}$	$\hat{p_{x}}$	$-i \hbar \frac{\partial}{\partial x}$
	p	$\hat{\mathbf{p}}$	$-i \hbar\left(\mathbf{e}_{x} \frac{\partial}{\partial x}+\mathbf{e}_{y} \frac{\partial}{\partial y}+\mathbf{e}_{z} \frac{\partial}{\partial z}\right)$
kinetic energy	K_{x}	\hat{K}_{x}	$-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}$
	K	\hat{K}	$-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)$
total energy	E	\hat{H}	$\hat{\boldsymbol{T}}+\hat{\boldsymbol{V}}$

Operators

the hamiltonian, $\hat{\boldsymbol{H}}=\hat{\boldsymbol{K}}+\hat{\boldsymbol{V}}$, is a hermitian operator
$\hat{\boldsymbol{V}}(x, y, z)$ is hermitian; it just stands for a multiplication by the potential function

$$
\begin{aligned}
\int \Psi^{*} \hat{\boldsymbol{V}} \Psi d \tau & =\int \Psi^{*} \cdot \hat{\boldsymbol{V}} \cdot \Psi d \tau \\
& =\int \Psi^{*} \cdot \hat{\boldsymbol{V}}^{*} \cdot \Psi d \tau \quad\left(\hat{\boldsymbol{V}}=\hat{\boldsymbol{V}}^{*} \text { real function }\right) \\
& =\int \Psi \cdot \hat{\boldsymbol{V}}^{*} \cdot \Psi^{*} d \tau \quad \text { multiplication is commutative }
\end{aligned}
$$

Operators

the hamiltonian，$\hat{\boldsymbol{H}}=\hat{\boldsymbol{K}}+\hat{\boldsymbol{V}}$ ，is a hermitian operator

－$\hat{K}_{x}=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}$ and the wavefunction must vanish at infinity
－recall that，$(u \cdot v)^{\prime}=u^{\prime} \cdot v+u \cdot v^{\prime}$ ，therefore， $\int u \cdot v^{\prime}=u \cdot v-\int u^{\prime} \cdot v$

$$
\begin{aligned}
-\frac{\hbar^{2}}{2 m} \int_{-\infty}^{\infty} \Psi^{*} \frac{d^{2} \Psi}{d x^{2}} d x & =-\left.\frac{\hbar^{2}}{2 m} \Psi^{*} \frac{d \Psi}{d x}\right|_{-\infty} ^{\infty}+\frac{\hbar^{2}}{2 m} \int_{-\infty}^{\infty} \frac{d \Psi^{*}}{d x} \frac{d \Psi}{d x} d x=0+\frac{\hbar^{2}}{2 m} \int_{-\infty}^{\infty} \frac{d \Psi^{*}}{d x} \frac{d \Psi}{d x} d x \\
& =\left.\frac{\hbar^{2}}{2 m} \frac{d \Psi^{*}}{d x} \Psi\right|_{-\infty} ^{\infty}-\frac{\hbar^{2}}{2 m} \int_{-\infty}^{\infty} \frac{d^{2} \Psi^{*}}{d x^{2}} \Psi d x=0-\frac{\hbar^{2}}{2 m} \int_{-\infty}^{\infty} \frac{d^{2} \Psi^{*}}{d x^{2}} \Psi d x
\end{aligned}
$$

\hat{K}_{X} is hermitian

$$
-\frac{\hbar^{2}}{2 m} \int_{-\infty}^{\infty} \Psi^{*} \frac{d^{2} \Psi}{d x^{2}} d x=-\frac{\hbar^{2}}{2 m} \int_{-\infty}^{\infty} \psi \frac{d^{2} \Psi^{*}}{d x^{2}} d x
$$

Operators

if $\hat{\boldsymbol{\Omega}}$ is a hermitian operator then eigenfunctions with different eigenvalues are orthogonal

$$
\begin{aligned}
& \left.\hat{\boldsymbol{\Omega}} \Psi_{i}=\omega_{i} \Psi_{i}\right\} / \text { take its complex conjugate } \\
& \left.\hat{\boldsymbol{\Omega}} \Psi_{j}=\omega_{j} \Psi_{j}\right\} \\
& \left.\hat{\boldsymbol{\Omega}}^{*} \Psi_{i}^{*}=\omega_{i} \Psi_{i}^{*}\right\} / \cdot \Psi_{j} \text { then integrate } \\
& \left.\hat{\boldsymbol{\Omega}} \Psi_{j}=\omega_{j} \Psi_{j}\right\} / \cdot \Psi_{i}^{*} \text { then integrate } \\
& \left.\begin{array}{rl}
\int \Psi_{j} \hat{\boldsymbol{\Omega}}^{*} \Psi_{i}^{*} d \tau & =\omega_{i} \int \Psi_{j} \Psi_{i}^{*} d \tau \\
\int \Psi_{i}^{*} \hat{\boldsymbol{\Omega}} \Psi_{j} d \tau & =\omega_{j} \int \Psi_{i}^{*} \Psi_{j} d \tau
\end{array}\right\} \Rightarrow\left(\omega_{i}-\omega_{j}\right) \int \Psi_{i}^{*} \Psi_{j} d \tau=0
\end{aligned}
$$

$\int \Psi_{i}^{*} \Psi_{j} d \tau=0$

Operators

if $\hat{\boldsymbol{\Omega}}$ is a hermitian operator then any linear combination of degenerate eigenstates/eigenfunctions is also an eigenstate/eigenfunction with the same eigenvalue

$$
\begin{aligned}
& \left.\begin{array}{l}
\hat{\boldsymbol{\Omega}} \Psi_{i}=\omega_{i} \Psi_{i} \\
\hat{\boldsymbol{\Omega}} \Psi_{j}=\omega_{j} \Psi_{j}
\end{array} \text { and } \omega_{i}=\omega_{j}=\omega\right\} \begin{array}{l}
\hat{\Omega} \Psi_{i}=\omega \Psi_{i} \\
\hat{\Omega} \Psi_{j}=\omega \Psi_{j}
\end{array} \\
& \Psi=c_{i} \Psi_{i}+c_{j} \Psi_{j} \\
& \hat{\mathbf{\Omega}} \Psi=\hat{\mathbf{\Omega}}\left(c_{i} \Psi_{i}+c_{j} \Psi_{j}\right) \quad=c_{i} \hat{\mathbf{\Omega}} \Psi_{i}+c_{j} \hat{\boldsymbol{\Omega}} \Psi_{j} \\
& =c_{i} \omega \Psi_{i}+c_{j} \omega \Psi_{j} \\
& =\omega\left(c_{i} \Psi_{i}+c_{j} \Psi_{j}\right) \\
& =\omega \Psi
\end{aligned}
$$

Operators

if $\hat{\boldsymbol{\Omega}}$ is a hermitian operator then any degenerate eigenstates/eigenfunctions can be orthogonalized

$$
\left.\begin{array}{c}
\hat{\boldsymbol{\Omega}} \Psi_{i}=\omega_{i} \Psi_{i} \\
\hat{\mathbf{\Omega}} \Psi_{j}=\omega_{j} \Psi_{j}
\end{array} \begin{array}{rl}
\text { and } \omega_{i}=\omega_{j}=\omega
\end{array}\right\} \begin{aligned}
& \hat{\boldsymbol{\Omega}} \Psi_{i}=\omega \Psi_{i} \\
& \hat{\boldsymbol{\Omega}} \Psi_{j}=\omega \Psi_{j} \\
& \phi_{i}
\end{aligned}=\Psi_{i} \quad \begin{aligned}
\phi_{j} & =\Psi_{j}+c \Psi_{i} \\
\int \phi_{i}^{*} \phi_{j} d \tau & =\int \Psi_{i}^{*}\left(\Psi_{j}+c \Psi_{i}\right) d \tau \\
& =\int \Psi_{i}^{*} \Psi_{j} d \tau+c
\end{aligned}
$$

With $c=-\int \Psi_{i}^{*} \Psi_{j} d \tau$ the functions become orthogonal, i.e., $\int \phi_{i}^{*} \phi_{j} d \tau=0$

Operators

postulate III and IV

- In any measurement of the observable associated with the operator $\hat{\Omega}$, the only values that will ever be observed are the eigenvalues ω_{i} which satisfy the eigenvalue equation $\hat{\boldsymbol{\Omega}} \Psi_{i}=\omega_{i} \Psi_{i} \quad \Rightarrow \quad \int \Psi_{i}^{*} \hat{\Omega} \Psi_{i} d \tau=\omega_{i}$
- If the state of the system is described by a normalized wave function Ψ, then the average value of the observable corresponding to the operator $\hat{\boldsymbol{\Omega}}$ can be calculated as $\langle\omega\rangle=\int \Psi^{*} \hat{\boldsymbol{\Omega}} \Psi d \tau$

Operators

postulate IV

$$
\begin{aligned}
& \Psi=\sum_{i} c_{i} \Psi_{i} \quad \hat{\boldsymbol{\Omega}} c_{i} \Psi_{i}=c_{i} \omega_{i} \Psi_{i} \\
& \begin{aligned}
\langle\omega\rangle & =\int \Psi^{*} \hat{\Omega} \Psi d \tau=\int \sum_{i} c_{i}^{*} \Psi_{i}^{*} \hat{\Omega} \sum_{i} c_{i} \Psi_{i} d \tau=\int \sum_{i} c_{i}^{*} \Psi_{i}^{*} \sum_{i} c_{i} \omega_{i} \Psi_{i} d \tau \\
& =\int \sum_{i} c_{i}^{*} \Psi_{i}^{*} c_{i} \omega_{i} \Psi_{i} d \tau+\int \sum_{i} \sum_{\substack{j \\
j \neq i}} c_{i}^{*} \Psi_{i}^{*} c_{j} \omega_{j} \Psi_{j} d \tau \\
& =\sum_{i}\left\{\left|c_{i}\right|^{2} \omega_{i} \cdot \int \Psi_{i}^{*} \Psi_{i} d \tau\right\}+\sum_{\substack{i, j \\
j \neq i}} c_{i}^{*} c_{j} \omega_{j} \int \Psi_{i}^{*} \Psi_{j} d \tau \\
& =\sum_{i}\left|c_{i}\right|^{2} \omega_{i}+0
\end{aligned}
\end{aligned}
$$

Operators

postulate IV

$$
\begin{aligned}
& \text { if } \Psi=\sum_{i} c_{i} \Psi_{i}, \hat{\Omega} c_{i} \Psi_{i}=c_{i} \omega_{i} \Psi_{i} \text { and } \int \Psi^{*} \Psi d \tau=1 \Rightarrow \\
& \begin{aligned}
\sum_{i}\left|c_{i}\right|^{2}=1
\end{aligned} \\
& \qquad \begin{aligned}
1 & =\int \Psi^{*} \Psi d \tau=\int \sum_{i} c_{i}^{*} \Psi_{i}^{*} \sum_{i} c_{i} \Psi_{i} d \tau \\
& =\int \sum_{i} c_{i}^{*} \Psi_{i}^{*} c_{i} \Psi_{i} d \tau+\int \sum_{\substack{i, j \\
j \neq i}} c_{i}^{*} \Psi_{i}^{*} c_{j} \Psi_{j} d \tau \\
& =\sum_{i}\left\{\left|c_{i}\right|^{2} \cdot \int \Psi_{i}^{*} \Psi_{i} d \tau\right\}+\sum_{\substack{i, j \\
j \neq i}} c_{i}^{*} c_{j} \int \Psi_{i}^{*} \Psi_{j} d \tau \\
& =\sum_{i}\left|c_{i}\right|^{2}+0
\end{aligned}
\end{aligned}
$$

Operators

$$
\begin{aligned}
& \hat{A} \hat{B} \Psi=\hat{B} \hat{A} \Psi \text { (commutative) } \\
& \hat{A} \hat{B} \Psi \neq \hat{B} \hat{A} \Psi \text { (non commutative) }
\end{aligned}
$$

let's introduce the commutator for two operators $[\hat{\boldsymbol{A}}, \hat{\boldsymbol{B}}]$
$[\hat{\boldsymbol{A}}, \hat{\boldsymbol{B}}]=\hat{\boldsymbol{A}} \hat{\boldsymbol{B}}-\hat{\boldsymbol{B}} \hat{\boldsymbol{A}}$
$[\hat{\boldsymbol{A}}, \hat{\boldsymbol{B}}]=0$ ($\hat{\boldsymbol{A}}$ and $\hat{\boldsymbol{B}}$ commute)
$[\hat{\boldsymbol{A}}, \hat{\boldsymbol{B}}] \neq 0$ ($\hat{\boldsymbol{A}}$ and $\hat{\boldsymbol{B}}$ don't commute)

Operators

if two operators have the same set of eigenfunctions they commute, i.e., $[\hat{\boldsymbol{A}}, \hat{\boldsymbol{B}}]=0$

$$
\begin{aligned}
\hat{\boldsymbol{A}} \Psi & =a \cdot \Psi \quad \text { and } \quad \hat{\boldsymbol{B}} \Psi=b \cdot \Psi \\
{[\hat{\boldsymbol{A}}, \hat{\boldsymbol{B}}] \Psi } & =\hat{\boldsymbol{A}} \hat{\boldsymbol{B}} \Psi-\hat{\boldsymbol{B}} \hat{\boldsymbol{A}} \Psi \\
& =\hat{\boldsymbol{A}}(b \Psi)-\hat{\boldsymbol{B}}(a \Psi) \\
& =b \hat{\boldsymbol{A}} \Psi-a \hat{\boldsymbol{B}} \Psi \\
& =b \cdot a \Psi-a \cdot b \Psi \\
& =(b \cdot a-a \cdot b) \Psi=0 \cdot \Psi \quad \text { (numbers commute) }
\end{aligned}
$$

Operators

commutator

- for compatible observables $[\hat{\boldsymbol{A}}, \hat{\boldsymbol{B}}]=0$
- for incompatible observables $[\hat{\boldsymbol{A}}, \hat{\boldsymbol{B}}] \neq 0$

Heisenberg's uncertainty principle (derivation is not discussed)

$$
\Delta A \cdot \Delta B \geqq \frac{1}{2}\left|\int \Psi^{*}[\hat{\boldsymbol{A}}, \hat{\boldsymbol{B}}] \Psi d \tau\right|
$$

$$
\Delta A \cdot \Delta B=\sigma_{A} \cdot \sigma_{B}
$$

standard deviation:

$$
\sigma_{x}=\sqrt{\langle x-\langle x\rangle\rangle^{2}}=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}
$$

Operators

commutator

- The eigenfunction of momentum is completely delocalized: $\phi_{\mathbf{1}}(x)=\frac{1}{\sqrt{L}} \cdot e^{i k x}$ probability of finding the particle between x and $x+d x$

$$
\phi_{\mathbf{1}}^{*}(x) \cdot \phi_{\mathbf{1}}(x) d x=\frac{1}{L} d x
$$

- The eigenfunction of position operator is completely localized, but has indefinite momentum: $\phi(x)=\delta(x-a)$

A possible representation of the Dirac-delta:

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i k(x-a)} d k
$$

where k is proportional to the momentum: $k=p / \hbar$

$$
\hat{\mathbf{x}} \phi(x)=a \phi(x)
$$

Operators

$$
\begin{aligned}
\hat{\boldsymbol{p}}_{x} & =-i \hbar \frac{d}{d x} \quad \text { and } \quad \hat{\boldsymbol{x}}=x \text { (multiply by } x \text {) } \\
{\left[\hat{\boldsymbol{p}}_{x}, \hat{\boldsymbol{x}}\right] \Psi(x) } & =\hat{\boldsymbol{p}}_{x} \hat{\boldsymbol{x}} \Psi(x)-\hat{\boldsymbol{x}} \hat{\boldsymbol{p}}_{x} \Psi(x) \\
& =-i \hbar \frac{d[x \Psi(x)]}{d x}+x i \hbar \frac{d \Psi(x)}{d x} \\
& =-i \hbar \Psi(x)-i \hbar x \frac{d \Psi(x)}{d x}+i \hbar x \frac{d \Psi(x)}{d x} \\
& =-i \hbar \Psi(x) \\
{\left[\hat{\boldsymbol{p}}_{x}, \hat{\boldsymbol{x}}\right] } & =-i \hbar \hat{\boldsymbol{I}} \quad(\hat{\boldsymbol{l}} \text { is the identity operator) } \\
\Delta p_{x} \cdot \Delta x & \geqq \frac{1}{2}\left|\int \Psi^{*}\left[\hat{\boldsymbol{p}}_{x}, \hat{\boldsymbol{x}}\right] \Psi d \tau\right|=\frac{1}{2}\left|\int \Psi^{*}(-i \hbar \hat{\boldsymbol{I}}) \Psi d \tau\right|=\frac{1}{2} \hbar|-i|\left|\int \Psi^{*} \Psi d \tau\right|=\frac{1}{2} \hbar
\end{aligned}
$$

Heisenberg's uncertainty principle: more precisely the position of some particle is determined, the less precisely its momentum can be known

The quantum harmonic oscillator

Potential energies are frequently approximated around the minimum by a quadratic term: e.g., in most of the cases the vibration motion of two atoms of a diatomic molecule can be well-described by

Potential energy
 a harmonic oscillator,
$V(R) \approx V\left(R_{e}\right)+\left.\frac{1}{2} \frac{\partial^{2} V}{\partial R^{2}}\right|_{R=R_{e}}\left(R-R_{e}\right)^{2}$.
Here R_{e} is the equilibrium distance, $k=\left.\frac{\partial^{2} V}{\partial R^{2}}\right|_{R=R_{e}}$ is the spring constant, and $R-R_{e}=x$

$$
\begin{array}{rlrl}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi(x)}{d x^{2}}+V(x) \Psi(x) & =E \Psi(x) & \lambda & =\frac{2 m E}{\hbar^{2}} \\
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi(x)}{d x^{2}}+ & \frac{1}{2} k x^{2} \Psi(x)=E \Psi(x) & \alpha^{2}=\frac{m k}{\hbar^{2}} \\
\frac{d^{2} \Psi}{d x^{2}}+\frac{2 m E}{\hbar^{2}} \Psi-\frac{m k}{\hbar^{2}} x^{2} \Psi & =0 & \\
\frac{d^{2} \Psi}{d x^{2}}+\left(\lambda-\alpha^{2} x^{2}\right) \Psi & =0 &
\end{array}
$$

Let's try to find an asymptotic solution when $x \rightarrow \infty$

The quantum harmonic oscillator asymptotic solution, $x \rightarrow \infty$

$$
\begin{aligned}
\frac{d^{2} \Psi}{d x^{2}}+\left(\lambda-\alpha^{2} x^{2}\right) \Psi & =0 \\
\lambda & \ll \alpha^{2} x^{2} \\
\frac{d^{2} \Psi_{\infty}}{d x^{2}} & =\alpha^{2} x^{2} \Psi \\
\Psi_{\infty} & =e^{-\frac{\alpha x^{2}}{2}} \\
\frac{d \Psi_{\infty}}{d x} & =-\alpha x \cdot e^{-\frac{\alpha x^{2}}{2}} \\
\frac{d^{2} \Psi_{\infty}}{d x^{2}} & =-\alpha e^{-\frac{\alpha x^{2}}{2}}+(-\alpha x) \cdot\left(-\alpha x e^{-\frac{\alpha x^{2}}{2}}\right) \\
& =e^{-\frac{\alpha x^{2}}{2}}\left(\alpha^{2} x^{2}-\alpha\right) \approx \alpha^{2} x^{2} e^{-\frac{\alpha x^{2}}{2}}
\end{aligned}
$$

The quantum harmonic oscillator
$\Psi_{\infty} \times$（a power series P ），（Sommerfeld＇s polynomial method）

$$
\begin{aligned}
\Psi & =e^{-\frac{\alpha x^{2}}{2}} \sum_{j=0}^{\infty} a_{j} x^{j}=\Psi_{\infty} P \\
\frac{d^{2} \Psi}{d x^{2}} & =\frac{d^{2} \Psi_{\infty}}{d x^{2}} P+2 \frac{d \Psi_{\infty}}{d x} \frac{d P}{d x}+\Psi_{\infty} \frac{d^{2} P}{d x^{2}} \\
\frac{d \Psi_{\infty}}{d x} & =-\alpha x e^{-\frac{\alpha x^{2}}{2}} \\
\frac{d^{2} \Psi_{\infty}}{d x^{2}} & =\alpha^{2} x^{2} e^{-\frac{\alpha x^{2}}{2}}-\alpha e^{-\frac{\alpha x^{2}}{2}} \\
\frac{d^{2} \Psi}{d x^{2}} & =e^{-\frac{\alpha x^{2}}{2}}\left\{e^{2} x^{2} P-\alpha P-2 \alpha x \frac{d P}{d x}+\frac{d^{2} P}{d x^{2}}\right\} \\
\frac{d^{2} \Psi}{d x^{2}} & +\left(\lambda-e^{2} x^{2}\right) \Psi=e^{-\frac{\alpha x^{2}}{2}}\left\{(\lambda-\alpha) P-2 \alpha x \frac{d P}{d x}+\frac{d^{2} P}{d x^{2}}\right\}=0
\end{aligned}
$$

The quantum harmonic oscillator
$\Psi_{\infty} \times($ a power series $P)$

$$
\begin{aligned}
& \frac{d^{2} \Psi}{d x^{2}}+\left(\lambda-\alpha^{2} x^{2}\right) \Psi=\left\{(\lambda-\alpha) P-2 \alpha x \frac{d P}{d x}+\frac{d^{2} P}{d x^{2}}\right\} e^{-\frac{\alpha x^{2}}{2}}=0 \\
& P=\sum_{j=0}^{\infty} a_{j} x^{j} \\
& \frac{d P}{d x}=\sum_{j=0}^{\infty} j a_{j} x^{j-1} \\
& \frac{d^{2} P}{d x^{2}}=\sum_{j=0}^{\infty} j(j-1) a_{j} x^{j-2}=\sum_{j=0}^{\infty}(j+1) j a_{j+1} x^{j-1}=\sum_{j=0}^{\infty}(j+2)(j+1) a_{j+2} x^{j} \\
& \frac{d^{2} \Psi}{d x^{2}}+\left(\lambda-\alpha^{2} x^{2}\right) \Psi= \\
& \sum_{j=0}^{\infty}\left\{(\lambda-\alpha) a_{j}-2 \alpha j a_{j}+(j+1)(j+2) a_{j+2}\right\} x^{j} e^{-\frac{\alpha x^{2}}{2}}=0
\end{aligned}
$$

The quantum harmonic oscillator

$$
0=\sum_{j=0}^{\infty}\left[(j+1)(j+2) a_{j+2}-\alpha(2 j+1) a_{j}+\lambda a_{j}\right] x^{j}
$$

to hold for all values of x , the coefficients must be zero

$$
\begin{aligned}
0 & =(j+1)(j+2) a_{j+2}-\alpha(2 j+1) a_{j}+\lambda a_{j} \\
a_{j+2} & =\frac{\alpha(2 j+1)-\lambda}{(j+1)(j+2)} a_{j}
\end{aligned}
$$

The quantum harmonic oscillator

 the power series solutionBecause $\boldsymbol{\Psi}=e^{-\frac{\alpha x^{2}}{2}} \sum_{j=0}^{\infty} a_{j} x^{j} \rightarrow \infty$ as $x \rightarrow \infty$
one must terminate the power series
let's terminate at $j=v+2$,

$$
\begin{aligned}
& a_{v+2}=0 \\
& \qquad \begin{aligned}
a_{v+2} & =0=\frac{\alpha(2 v+1)-\lambda}{(v+1)(v+2)} a_{v} \\
\lambda & =\alpha(2 v+1)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\lambda & =\frac{2 m E}{\hbar^{2}} \\
\alpha & =\frac{\sqrt{m k}}{\hbar} \\
\frac{2 m E}{\hbar^{2}} & =\frac{\sqrt{m k}}{\hbar}(2 v+1) \\
E & =\frac{1}{2} \sqrt{\frac{k}{m}} \hbar(2 v+1) \\
E & =\hbar \omega\left(v+\frac{1}{2}\right)
\end{aligned}
$$

higher order terms will be zero as well

The quantum harmonic oscillator

Hermite polynomials

$$
\Psi(x)=N_{v} \cdot H_{v}(y) \cdot e^{\frac{-y^{2}}{2}}
$$

- N_{v} is a normalization factor
- $H_{v}(y)$ is a Hermite polynomial
- $y=\sqrt{\alpha} x$
- recursion, $H_{v+1}-2 y H_{v}+2 v H_{v-1}=0$;

\boldsymbol{v}	$H_{v}(y)$
0	1
1	$2 y$
2	$4 y^{2}-2$
3	$8 y^{3}-12 y$
4	$16 y^{4}-48 y^{2}+12$
5	$32 y^{5}-160 y^{3}+120 y$
6	$64 y^{6}-480 y^{4}+720 y^{2}-120$

Particle on the ring problem

de Brogile + classical physics

$$
\begin{aligned}
p & =\frac{h}{\lambda} \quad J_{z}=r \frac{h}{\lambda} \\
2 \pi r & =m_{\ell} \cdot \lambda \quad m_{\ell} \in 0, \pm 1, \pm 2, \ldots \\
J_{z} & =\frac{m_{\ell} \nmid h}{2 \pi X}=m_{\ell} \hbar \\
E_{r o t} & =\frac{m_{\ell}^{2} \hbar^{2}}{2 I}
\end{aligned}
$$

$$
\begin{aligned}
J_{z} & =r p \\
I & =m r^{2} \\
E_{\text {rot }} & =\frac{J_{z}^{2}}{2 I}
\end{aligned}
$$

Particle on the ring problem

Schrödinger equation，$\hat{V}=0$
$\hat{\mathbf{H}} \Psi(x)=E \Psi(x)$

$$
-\frac{\hbar^{2}}{2 m}\left\{\frac{\partial^{2} \Psi}{\partial x^{2}}+\frac{\partial^{2} \Psi}{\partial y^{2}}\right\}=E \Psi
$$

Particle on the ring problem

 polar coordinates; plane, constant radius

$$
\begin{aligned}
x & =r \cdot \cos \varphi \\
y & =r \cdot \sin \varphi \\
r^{2} & =x^{2}+y^{2} \\
\varphi & =\tan ^{-1} \frac{y}{x} \\
\left(\tan ^{-1} x\right)^{\prime} & =\frac{1}{1+x^{2}} \\
f(r, \varphi) & =f(r(x, y), \varphi(x, y))
\end{aligned}
$$

Particle on the ring problem

polar coordinates；plane，constant radius

$$
\begin{aligned}
f(r, \varphi) & =f(r(x, y), \varphi(x, y)) \\
\frac{\partial f}{\partial x} & =\frac{\partial f}{\partial r} \frac{\partial r}{\partial x}+\frac{\partial f}{\partial \varphi} \frac{\partial \varphi}{\partial x} \\
\frac{\partial f}{\partial y} & =\frac{\partial f}{\partial r} \frac{\partial r}{\partial y}+\frac{\partial f}{\partial \varphi} \frac{\partial \varphi}{\partial y}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \varphi}{\partial x}=\frac{1}{1+(y / x)^{2}} \cdot \frac{-y}{x^{2}}=\frac{-y}{r^{2}}=\frac{-\sin \varphi}{r} \\
& \frac{\partial \varphi}{\partial y}=\frac{1}{1+(y / x)^{2}} \cdot \frac{1}{x}=\frac{x}{r^{2}}=\frac{\cos \varphi}{r}
\end{aligned}
$$

if $r=$ const then $\frac{\partial r}{\partial x}=\frac{\partial r}{\partial y}=0$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{\partial f}{\partial \varphi} \frac{\partial \varphi}{\partial x} \\
& \frac{\partial f}{\partial y}=\frac{\partial f}{\partial \varphi} \frac{\partial \varphi}{\partial y}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{\partial f}{\partial \varphi} \frac{-\sin \varphi}{r} \\
& \frac{\partial f}{\partial y}=\frac{\partial f}{\partial \varphi} \frac{\cos \varphi}{r}
\end{aligned}
$$

Particle on the ring problem

polar coordinates; plane, constant radius

$$
\begin{array}{rlrl}
\frac{\partial f}{\partial x} & =\frac{\partial f}{\partial \varphi} \frac{-\sin \varphi}{r}=g(r(x, y), \varphi(x, y)) & \frac{\partial f}{\partial y} & =\frac{\partial f}{\partial \varphi} \frac{\cos \varphi}{r}=h(r(x, y), \varphi(x, y)) \\
\frac{\partial^{2} f}{\partial x^{2}} & =\frac{\partial \frac{\partial f}{\partial x}}{\partial x}=\frac{\partial \frac{\partial f}{\partial x}}{\partial r} \frac{\partial r}{\partial x}+\frac{\partial \frac{\partial f}{\partial x}}{\partial \varphi} \cdot \frac{\partial \varphi}{\partial x} & \frac{\partial^{2} f}{\partial y^{2}} & =\frac{\partial \frac{\partial f}{\partial y}}{\partial y}=\frac{\partial \frac{\partial f}{\partial y}}{\partial r} \frac{\partial r}{\partial y}+\frac{\partial \frac{\partial f}{\partial y}}{\partial \varphi} \cdot \frac{\partial \varphi}{\partial y} \\
& =\frac{\partial \frac{\partial f}{\partial x}}{\partial \varphi} \cdot \frac{\partial \varphi}{\partial x}=\frac{\partial \frac{\partial f}{\partial \varphi} \cdot \frac{-\sin \varphi}{r}}{\partial \varphi} \cdot \frac{\partial \varphi}{\partial x} & & =\frac{\partial \frac{\partial f}{\partial y}}{\partial \varphi} \frac{\partial \varphi}{\partial y}=\frac{\partial \frac{\partial f}{\partial \varphi} \cdot \frac{\cos \varphi}{r}}{\partial \varphi} \cdot \frac{\partial \varphi}{\partial y} \\
& =\left(-\frac{\partial^{2} f}{\partial \varphi^{2}} \cdot \frac{\sin \varphi}{r}+\frac{\partial f}{\partial \varphi} \cdot \frac{-1}{r} \frac{\partial \sin \varphi}{\partial \varphi}\right)\left(-\frac{\sin \varphi}{r}\right) & & =\left(-\frac{\partial^{2} f}{\partial \varphi^{2}} \cdot \frac{\cos \varphi}{r}+\frac{\partial f}{\partial \varphi} \cdot \frac{1}{r} \frac{\partial \cos \varphi}{\partial \varphi}\right)\left(\frac{\cos \varphi}{r}\right) \\
& =\frac{\sin ^{2} \varphi}{r^{2}} \frac{\partial^{2} f}{\partial \varphi^{2}}+\frac{1}{r^{2}} \cos \varphi \sin \varphi \frac{\partial f}{\partial \varphi} & {\cos ^{2} \varphi}_{r^{2}}^{\partial \varphi^{2}}+\frac{\partial^{2} f}{r^{2}}(-\sin \varphi) \cos \varphi \frac{\partial f}{\partial \varphi} \\
\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}=\frac{1}{r^{2}} & \frac{\partial^{2}}{\partial \varphi^{2}}
\end{array}
$$

Particle on the ring problem

 polar coordinates; plane, constant radius$$
\begin{aligned}
-\frac{\hbar^{2}}{2 m}\left\{\frac{\partial^{2} \Psi}{\partial x^{2}}+\frac{\partial^{2} \Psi}{\partial y^{2}}\right\} & =E \Psi & \Psi(\varphi) & =A e^{i m_{\ell} \varphi} \\
\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} & =\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}} & \frac{d^{2} \Psi(\varphi)}{d \varphi^{2}} & =-m_{\ell}^{2} A e^{i m_{\ell} \varphi}=-\frac{2 I E}{\hbar^{2}} A A e^{i m_{\ell} \varphi} \\
-\frac{\hbar^{2}}{2 m r^{2}} \frac{d^{2} \Psi(\varphi)}{d \varphi^{2}} & =E \Psi(\varphi) & m_{\ell}^{2} & =\frac{2 I E}{\hbar^{2}} \\
\frac{d^{2} \Psi(\varphi)}{d \varphi^{2}} & =-\frac{2 I E}{\hbar^{2}} \Psi(\varphi) & E & =\frac{m_{\ell}^{2} \hbar^{2}}{2 I}
\end{aligned}
$$

Particle on the ring problem

 polar coordinates; plane, constant radius$$
\Psi(\varphi)=A e^{i m_{\ell} \varphi}
$$

$$
\begin{array}{rlrl}
\Psi(\varphi) & =A e^{i m_{\ell} \varphi} & \text { cyclic boundary condition: } \\
& \begin{aligned}
& \\
\text { Born's interpretation } & \\
\Psi(\varphi+2 \pi) & =\Psi(\varphi) \\
\int_{-\infty}^{\infty} \Psi^{*}(\varphi) \Psi(\varphi) d \varphi & =1 \\
& =\frac{1}{\sqrt{2 \pi}} e^{i m_{\ell}(\varphi)} e^{(i \pi) 2 m_{\ell}} \\
\int_{0}^{2 \pi} A e^{-i m_{\ell} \varphi} A e^{i m_{\ell} \varphi} d \varphi & =A^{2} 2 \pi=1 \\
& =\Psi(\varphi)(-1)^{2 m_{\ell}} \\
\Psi(\varphi) & =\frac{1}{\sqrt{2 \pi}} e^{i m_{\ell} \varphi}
\end{aligned} & 1 & =(-1)^{2 m_{\ell}} \Leftrightarrow m_{\ell}=0, \pm 1, \pm 2, \ldots \\
E & =\frac{m_{\ell}^{2} \hbar^{2}}{2 l}
\end{array}
$$

Spherical coordinates

$$
\begin{array}{ll}
x=r \sin \vartheta \cos \varphi & r=\sqrt{x^{2}+y^{2}+z^{2}} \\
y=r \sin \vartheta \sin \varphi & \vartheta=\cos ^{-1} \frac{z}{r} \\
z=r \cos \vartheta & \varphi=\tan ^{-1} \frac{y}{x}
\end{array}
$$

Spherical coordinates

$$
\begin{aligned}
\hat{\mathbf{H}} & =-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)+\hat{V} \\
\nabla^{2} & =\nabla \cdot \nabla=\Delta \quad \text { laplacian } \\
\nabla & =\mathbf{e}_{x} \frac{\partial}{\partial x}+\mathbf{e}_{y} \frac{\partial}{\partial y}+\mathbf{e}_{z} \frac{\partial}{\partial z} \\
\nabla^{2} & =\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} \\
\hat{\mathbf{H}} & =-\frac{\hbar^{2}}{2 m}\left(\nabla^{2}\right)+\hat{V}
\end{aligned}
$$

Particle on a sphere

 the Hamiltonian in spherical coordinates, $r=$ constantwithout derivation:

$$
\nabla^{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2} \sin \vartheta} \frac{\partial}{\partial \vartheta}\left(\sin \vartheta \frac{\partial}{\partial \vartheta}\right)+\frac{1}{r^{2} \sin ^{2} \vartheta} \frac{\partial^{2}}{\partial \varphi^{2}}
$$

Supposing that $r=$ constant

$$
\begin{aligned}
-\frac{\hbar^{2}}{2 m} \frac{1}{r^{2}} \hat{\Lambda}^{2} \Psi(\vartheta, \varphi) & =E \Psi(\vartheta, \varphi) \\
\text { where } \hat{\Lambda}^{2} & =\frac{1}{\sin \vartheta} \frac{\partial}{\partial \vartheta}\left(\sin \vartheta \frac{\partial}{\partial \vartheta}\right)+\frac{1}{\sin ^{2} \vartheta} \frac{\partial^{2}}{\partial \varphi^{2}} \\
-\frac{\hbar^{2}}{2 l} \hat{\Lambda}^{2} \Psi(\vartheta, \varphi) & =E \Psi(\vartheta, \varphi)
\end{aligned}
$$

separation of variables: $\Psi(\vartheta, \varphi)=\Theta(\vartheta) \cdot \Phi(\varphi)$

Particle on a sphere

$$
\begin{aligned}
& \frac{1}{\sin \vartheta} \frac{\partial}{\partial \vartheta}\left(\sin \vartheta \frac{\partial \Theta \Phi}{\partial \vartheta}\right)+\frac{1}{\sin ^{2} \vartheta} \frac{\partial^{2} \Theta \Phi}{\partial \varphi^{2}}=-\frac{2 I E}{\hbar^{2}} \Theta \Phi \\
& \frac{\Phi}{\sin \vartheta} \frac{\partial}{\partial \vartheta}\left(\sin \vartheta \frac{\partial \Theta}{\partial \vartheta}\right)+\frac{\Theta}{\sin ^{2} \vartheta} \frac{\partial^{2} \Phi}{\partial \varphi^{2}}+\frac{2 I E}{\hbar^{2}} \Theta \Phi=0 \\
& \quad \text { multiply by } \frac{\sin ^{2} \vartheta}{\Theta \Phi} \\
& \frac{\sin \vartheta}{\Theta} \frac{\partial}{\partial \vartheta}\left(\sin \vartheta \frac{\partial \Theta}{\partial \vartheta}\right)+\frac{1}{\Phi} \frac{\partial^{2} \Phi}{\partial \varphi^{2}}+\frac{2 I E}{\hbar^{2}} \sin ^{2} \vartheta=0 \\
& \text { Here } \frac{1}{\Phi} \frac{\partial^{2} \Phi}{\partial \varphi^{2}} \text { must be a constant! }
\end{aligned}
$$

It is supposed to be negative to obtain a periodic solution.

$$
\frac{1}{\Phi} \frac{\partial^{2} \Phi}{\partial \varphi^{2}}=-m_{\ell}^{2} \Longrightarrow \Phi=e^{i m_{\ell} \varphi}
$$

Particle on a sphere

$$
\begin{array}{r}
\frac{\sin \vartheta}{\Theta} \frac{\partial}{\partial \vartheta}\left(\sin \vartheta \frac{\partial \Theta}{\partial \vartheta}\right)+\frac{1}{\Phi} \frac{\partial^{2} \Phi}{\partial \varphi^{2}}+\frac{2 I E}{\hbar^{2}} \sin ^{2} \vartheta=0 \\
\frac{1}{\Phi} \frac{\partial^{2} \Phi}{\partial \varphi^{2}}=-m_{\ell}^{2} \\
\sin \vartheta \frac{\partial}{\partial \vartheta}\left(\sin \vartheta \frac{\partial \Theta}{\partial \vartheta}\right)-m_{\ell}^{2} \Theta+\frac{2 I E}{\hbar^{2}} \sin ^{2} \vartheta \Theta=0 \\
\text { introduce } \zeta=\cos \vartheta \Rightarrow \frac{\partial}{\partial \vartheta}=\frac{\partial \zeta}{\partial \vartheta} \frac{\partial}{\partial \zeta}=-\sin \vartheta \frac{\partial}{\partial \zeta}
\end{array}
$$

$$
\text { please, note that } \sin ^{2} \vartheta=1-\zeta^{2}
$$

$$
\left(1-\zeta^{2}\right) \frac{\partial}{\partial \zeta}\left(\left(1-\zeta^{2}\right) \frac{\partial \Theta}{\partial \zeta}\right)-m_{\ell}^{2} \Theta+\frac{2 I E}{\hbar^{2}}\left(1-\zeta^{2}\right) \Theta=0
$$

Particle on a sphere

$$
\left(1-\zeta^{2}\right)\left[\frac{\partial^{2} \Theta}{\partial \zeta^{2}}-2 \zeta \frac{\partial \Theta}{\partial \zeta}+\left\{\frac{2 I E}{\hbar^{2}}-\frac{m_{\ell}^{2}}{1-\zeta^{2}}\right\} \Theta\right]=0
$$

This equation can be solved using the

$$
\Theta(\zeta)=\left(1-\zeta^{2}\right)^{|m| / 2} \sum_{r=0}^{\infty} c_{r} \zeta^{r} \text { Ansatz }
$$

To obtain non-singular solutions $\frac{2 I E}{\hbar^{2}}=\ell(\ell+1)$,
where ℓ is an integer $\ell=-m_{\ell}, \ldots, m_{\ell}$

$$
\left(1-\zeta^{2}\right)\left[\frac{\partial^{2} \Theta}{\partial \zeta^{2}}-2 \zeta \frac{\partial \Theta}{\partial \zeta}+\left\{\ell(\ell+1)-\frac{m_{\ell}^{2}}{1-\zeta^{2}}\right\} \Theta\right]=0
$$

associated Legendre differential equation
spherical harmonics $Y_{\ell, m_{\ell}}(\vartheta, \varphi)=\Theta_{\ell m_{\ell}}(\cos (\vartheta)) e^{i m_{\ell} \phi}$

Particle on a sphere

$$
\begin{aligned}
& \quad-\frac{\hbar^{2}}{2 m} \frac{1}{r^{2}} \hat{\Lambda}^{2} Y_{\ell, m_{\ell}}(\vartheta, \varphi)=E Y_{\ell, m_{\ell}}(\vartheta, \varphi), \\
& E=\ell(\ell+1) \frac{\hbar^{2}}{2 I} \quad \ell=0,1,2, \ldots \\
& m_{\ell}=-\ell,-(\ell-1), \ldots, 0, \ldots, \ell-1, \ell \\
& \text { every energy level is }(2 \ell+1) \text {-fold degenerate }
\end{aligned}
$$

ℓ - orbital angular momentum quantum number m_{ℓ} - magnetic quantum number

$$
-\hbar^{2} \hat{\Lambda}^{2} Y_{\ell, m_{\ell}}(\vartheta, \varphi)=\hbar^{2} \ell(\ell+1) Y_{\ell, m_{\ell}}(\vartheta, \varphi)
$$

Angular momentum in QM

$$
\begin{aligned}
& \mathbf{L}=\mathbf{r} \times \mathbf{p} \Leftrightarrow \hat{\mathbf{L}}=\frac{\hbar}{i} \hat{\mathbf{r}} \times \nabla \\
& \hat{L}_{z}=\hat{x} \hat{p}_{y}-\hat{y} \hat{p}_{x}=\frac{\hbar}{i} \frac{\partial}{\partial \phi} \\
& \hat{L}_{z} \Phi(\phi)=\frac{\hbar}{i} \frac{\partial \Phi}{\partial \phi}=\hbar m \Phi(\phi) \Rightarrow \Phi(\phi)=e^{i m \phi}
\end{aligned}
$$

From the periodic boundary condition:

$$
\begin{aligned}
& \Phi(\phi+2 \pi)=\Phi(\phi), m=0, \pm 1 \pm 2, \pm 3, \ldots \\
& \hat{L}^{2}=\hat{L}_{x}^{2}+\hat{L}_{y}^{2}+\hat{L}_{z}^{2}=-\hbar^{2}\left\{\frac{1}{\sin \vartheta} \frac{\partial}{\partial \vartheta}\left(\sin \vartheta \frac{\partial}{\partial \vartheta}\right)+\frac{1}{\sin ^{2} \vartheta} \frac{\partial^{2}}{\partial \varphi^{2}}\right\}=-\hbar^{2} \hat{\Lambda}^{2} \\
& \hat{L}^{2} Y_{\ell, m_{\ell}}(\vartheta, \phi)=\hbar^{2} \ell(\ell+1) Y_{\ell, m_{\ell}}(\vartheta, \varphi) \Rightarrow \begin{array}{l}
\ell=0,1,2, \ldots \\
m=-\ell,-\ell+1, \ldots,(\ell-1), \ell
\end{array}
\end{aligned}
$$

Spherical harmonics

wavefunctions

ℓ	m_{ℓ}	$Y_{\ell, m_{\ell}}(\vartheta, \varphi)$
0	0	$\left(\frac{1}{4 \pi}\right)^{\frac{1}{2}}$
1	0	$\left(\frac{3}{4 \pi}\right)^{\frac{1}{2}} \cos \vartheta$
	± 1	$\mp\left(\frac{3}{8 \pi}\right)^{\frac{1}{2}} \sin \vartheta e^{ \pm i \varphi}$
2	0	$\left(\frac{5}{16 \pi}\right)^{\frac{1}{2}}\left(3 \cos ^{2} \vartheta-1\right)$
	± 1	$\mp\left(\frac{15}{8 \pi}\right)^{\frac{1}{2}} \cos \vartheta \sin \vartheta e^{ \pm i \varphi}$
	± 2	$\mp\left(\frac{15}{32 \pi}\right)^{\frac{1}{2}} \sin ^{2} \vartheta e^{ \pm 2 i \varphi}$

real combinations: $p_{x}=\frac{Y_{1,-1}-Y_{1,1}}{\sqrt{2}}, \quad p_{y}=\frac{Y_{1,-1}+Y_{1,1}}{i \sqrt{2}}$

Spherical harmonics

$$
\begin{aligned}
&\left\{-\frac{\hbar^{2}}{2 \mu} \nabla^{2}-\frac{e^{2}}{4 \pi \epsilon_{0} r}\right\} \Psi(r, \vartheta, \varphi)=E \Psi(r, \vartheta, \varphi) \\
& \nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \vartheta} \frac{\partial}{\partial \vartheta}\left(\sin \vartheta \frac{\partial}{\partial \vartheta}\right)+\frac{1}{r^{2} \sin ^{2} \vartheta} \frac{\partial^{2}}{\partial \varphi^{2}} \\
& \nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{\Lambda^{2}}{r^{2}}
\end{aligned}
$$

Hydrogen atom

Separation of variables: $\Psi(r, \vartheta, \varphi)=R(r) Y_{\ell, m_{\ell}}(\vartheta, \varphi)$

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 \mu r^{2}}\left\{Y_{\ell, m_{\ell}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial R}{\partial r}\right)+R(r) \Lambda^{2} Y_{\ell, m_{\ell}}\right\}-\frac{e^{2}}{4 \pi \epsilon_{0} r} R Y_{\ell, m_{\ell}}=E R Y_{\ell, m_{\ell}} \\
& -\frac{\hbar^{2}}{2 \mu r^{2}}\left\{Y_{\ell, m_{\ell}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial R}{\partial r}\right)+R(r) \ell(\ell+1) Y_{\ell, m_{\ell}}\right\}-\frac{e^{2}}{4 \pi \epsilon_{0} r} R Y_{\ell, m_{\ell}}=E R Y_{\ell, m_{\ell}} \\
& -\frac{\hbar^{2}}{2 \mu r^{2}}\left\{\frac{\partial}{\partial r}\left(r^{2} \frac{\partial R}{\partial r}\right)+R(r) \ell(\ell+1)\right\}-\frac{e^{2}}{4 \pi \epsilon_{0} r} R=E R
\end{aligned}
$$

The solution can be obtained using the Sommerfeld's polynomial method.

Hydrogen atom

The results:

$$
R_{n}^{\ell}(r)=\frac{1}{r} e^{-r / r_{0}} P_{n}^{\ell}\left(\frac{2 r}{r_{0}}\right), \text { where } r_{0}=n \frac{4 \pi \epsilon_{0} \hbar^{2}}{\mu e^{2}}, 0 \leq I<n,
$$

$n=1,2, \ldots$ and $P_{n}^{\prime}(x)$ are the so-called Laguerre polynomials.

Schrödinger: $E_{n}=-\frac{m_{e} e^{4}}{8 \epsilon_{0}^{2} h^{2} n^{2}}$

Bohr: $E_{n}=-\frac{m_{e} e^{4}}{8 \epsilon_{0}^{2} h^{2} n^{2}}$

Hydrogen atom

radial wavefunctions, Laguerre polynomials

$$
\Psi(r, \vartheta, \varphi)=R_{n, \ell}(r) Y_{\ell, m_{\ell}}(\vartheta, \varphi)
$$

n	ℓ	$R_{n, \ell}$
1	0	$2\left(\frac{z}{a}\right)^{\frac{3}{2}} e^{-\varrho / 2}$
2	0	$\frac{1}{\sqrt{8}}\left(\frac{z}{a}\right)^{\frac{3}{2}}(2-\varrho) e^{-\varrho / 2}$
2	1	$\frac{1}{\sqrt{24}}\left(\frac{Z}{a}\right)^{\frac{3}{2}} \varrho e^{-\varrho / 2}$
3	0	$\frac{1}{\sqrt{243}}\left(\frac{z}{a}\right)^{\frac{3}{2}}\left(6-6 \varrho+\varrho^{2}\right) e^{-\varrho / 2}$
3	1	$\frac{1}{\sqrt{486}}\left(\frac{Z}{a}\right)^{\frac{3}{2}}\left(4 \varrho-\varrho^{2}\right) e^{-\varrho / 2}$
3	2	$\frac{1}{\sqrt{2430}}\left(\frac{z}{a}\right)^{\frac{3}{2}} \varrho^{2} e^{-\varrho / 2}$
$\varrho=\frac{2 Z \mu e^{2} r}{4 \pi \varepsilon_{0} \hbar^{2} n}=\frac{2 Z r}{n a}$, where $a=\frac{4 \pi \varepsilon \varepsilon^{2} \hbar^{2}}{\mu e^{2}}$ is the Bohr radius		

Hydrogen atom

atomic units, fixed nucleus

$$
\begin{array}{r}
\left\{-\frac{\hbar^{2}}{2 m_{e}} \nabla_{e}^{2}-\frac{e^{2}}{4 \pi \epsilon_{0} r}\right\} \Psi=E \Psi \\
x \rightarrow \lambda x^{\prime}, y \rightarrow \lambda y^{\prime}, z \rightarrow \lambda z^{\prime} \\
\frac{\partial^{2}}{\partial x^{2}}=\frac{1}{\lambda^{2}} \frac{\partial^{2}}{\partial x^{\prime 2}} \\
r=\sqrt{x^{2}+y^{2}+z^{2}} \Rightarrow r \rightarrow \sqrt{\left(\lambda x^{\prime}\right)^{2}+\left(\lambda y^{\prime}\right)^{2}+\left(\lambda z^{\prime}\right)^{2}}=\lambda r^{\prime}
\end{array}
$$

Hydrogen atom

atomic units, fixed nucleus

$$
\begin{array}{r}
\left\{-\frac{\hbar^{2}}{2 m_{e}} \nabla_{e}^{2}-\frac{e^{2}}{4 \pi \epsilon_{0} r}\right\} \Psi=E \Psi \quad E_{a}\left\{-\frac{1}{2}\left(\nabla_{e}^{\prime}\right)^{2}-\frac{1}{r^{\prime}}\right\} \Psi^{\prime}=\mathcal{E} \Psi^{\prime} \\
\left\{-\frac{\hbar^{2}}{2 m_{e} \lambda^{2}}\left(\nabla_{e}^{\prime}\right)^{2}-\frac{e^{2}}{4 \pi \epsilon_{0} r^{\prime} \lambda}\right\} \Psi^{\prime}=E \Psi^{\prime} \quad\left\{-\frac{1}{2}\left(\nabla_{e}^{\prime}\right)^{2}-\frac{1}{r^{\prime}}\right\} \Psi^{\prime}=\mathcal{E}^{\prime} \Psi^{\prime} \\
\text { select } \lambda \text { to fulfill } \\
\mathcal{E}^{\prime}=\frac{\mathcal{E}}{E_{a}} \\
\frac{\hbar^{2}}{m_{e} \lambda^{2}}=\frac{e^{2}}{4 \pi \epsilon_{0} \lambda}=E_{a} \text { atomic units for distance and energy: } \\
\Downarrow \quad \lambda=\frac{4 \pi \epsilon_{0} \hbar^{2}}{m_{e} e^{2}}=a_{0}, \text { Bohr radius } \\
E_{a}=\frac{\hbar^{2}}{m_{e} a_{0}^{2}}, \text { hartree }
\end{array}
$$

Atomic orbitals

hydrogenlike atomic wavefunctions: $\Psi_{n, \ell, m_{\ell}}(r, \vartheta, \varphi)=R_{n, \ell}(r) Y_{\ell, m_{\ell}}(\vartheta, \varphi)$				
n	ℓ	m_{ℓ}	$R_{n, \ell}$	$Y_{\ell, m_{\ell}}$
1	0	0	$2\left(\frac{z}{a}\right)^{\frac{3}{2}} e^{-\varrho / 2}$	$\left(\frac{1}{4 \pi}\right)^{\frac{1}{2}}$
2	0	0	$\frac{1}{\sqrt{8}}\left(\frac{z}{a}\right)^{\frac{3}{2}}(2-\varrho) e^{-\varrho / 2}$	$\left(\frac{1}{4 \pi}\right)^{\frac{1}{2}}$
2	1	0	$\frac{1}{\sqrt{24}}\left(\frac{z}{a}\right)^{\frac{3}{2}} \varrho e^{-\varrho / 2}$	$\left(\frac{3}{4 \pi}\right)^{\frac{1}{2}} \cos \vartheta$
2	1	+1	$\frac{1}{\sqrt{24}}\left(\frac{z}{a}\right)^{\frac{3}{2}} \varrho e^{-\varrho / 2}$	$\left(\frac{3}{8 \pi}\right)^{\frac{1}{2}} \sin \vartheta e^{i \varphi}$
2	0	-1	$\frac{1}{\sqrt{24}}\left(\frac{z}{a}\right)^{\frac{3}{2}} \varrho e^{-\varrho / 2}$	$\left(\frac{3}{8 \pi}\right)^{\frac{1}{2}} \sin \vartheta e^{-i \varphi}$
3	0	$\frac{1}{\sqrt{243}}\left(\frac{z}{a}\right)^{\frac{3}{2}}\left(6-6 \varrho+\varrho^{2}\right) e^{-\varrho / 2}$	$\left(\frac{1}{4 \pi}\right)^{\frac{1}{2}}$	
$\varrho=\frac{2 Z \mu e^{2} r}{4 \pi \varepsilon_{0} \hbar^{2} n}$				

Spherical harmonics

Atomic orbitals

shells and subshells
atomic orbital (AO) - one electron wavefunction $\left(\Psi_{n, \ell, m_{\ell}}\right)$ quantum numbers:

- n - principal
- ℓ - azimuthal (orbital angular momentum)
- m_{ℓ} - magnetic

Atomic orbitals

shells and subshells
－a shell consists of AOs with the same principal quantum number $n(\mathrm{~K}, \mathrm{~L}, \mathrm{M}, \mathrm{N}, \ldots)$
－subshell same n different ℓ（s，p，d，f，g，．．．subshells）
for example：$n=1,2$ ，and 3

Atomic orbitals

s orbitals, $\ell=0, m_{\ell}=0$

- $\Psi_{s}=c \cdot\left(\frac{z}{a}\right)^{\frac{3}{2}} P_{n}(\varrho) e^{-\varrho / 2} \cdot\left(\frac{1}{4 \pi}\right)^{\frac{1}{2}}$
- the angular wavefunction is constant, $Y_{0,0}(\vartheta, \varphi)=\left(\frac{1}{4 \pi}\right)^{\frac{1}{2}}$
- spherical symmetry
- the $P_{n}(\varrho)$ s are Laguerre polynomials, and their roots give the number of nodal surfaces

Atomic orbitals

p orbitals, $\ell=1, m_{\ell}=0, \pm 1$

$$
\begin{aligned}
\Psi_{p_{0}} & =\frac{1}{\sqrt{24}}\left(\frac{Z}{a}\right)^{\frac{3}{2}} \varrho e^{-\varrho / 2} \cdot\left(\frac{3}{4 \pi}\right)^{\frac{1}{2}} \cos \vartheta=\varrho \cos \vartheta f(\varrho)=z f(\varrho)=\psi_{p_{z}} \\
\Psi_{p_{+1}} & =\frac{1}{\sqrt{24}}\left(\frac{Z}{a}\right)^{\frac{3}{2}} \varrho e^{-\varrho / 2} \cdot\left(\frac{3}{8 \pi}\right)^{\frac{1}{2}} \sin \vartheta e^{i \varphi} \\
\Psi_{p_{-1}} & =\frac{1}{\sqrt{24}}\left(\frac{Z}{a}\right)^{\frac{3}{2}} \varrho e^{-\varrho / 2} \cdot\left(\frac{3}{8 \pi}\right)^{\frac{1}{2}} \sin \vartheta e^{-i \varphi}
\end{aligned}
$$

Atomic orbitals

p orbitals, $\ell=1, m_{\ell}=0, \pm 1$
to get rid of the complex variable we take linear combinations of $\Psi_{p_{+1}}$ and $\Psi_{p_{-1}}$

$$
\begin{gathered}
\Psi_{p_{x}}=\Psi_{p_{+1}}+\Psi_{p_{-1}}=\frac{1}{\sqrt{24}}\left(\frac{Z}{a}\right)^{\frac{3}{2}} \varrho e^{-\varrho / 2} \cdot\left(\frac{3}{8 \pi}\right)^{\frac{1}{2}} \sin \vartheta \cdot\left(e^{i \varphi}+e^{-i \varphi}\right) \\
\Psi_{p_{y}}=\Psi_{p_{+1}}-\Psi_{p_{-1}}=\frac{1}{\sqrt{24}}\left(\frac{Z}{a}\right)^{\frac{3}{2}} \varrho e^{-\varrho / 2} \cdot\left(\frac{3}{8 \pi}\right)^{\frac{1}{2}} \sin \vartheta \cdot\left(e^{i \varphi}-e^{-i \varphi}\right) \\
\varrho \sin \vartheta \cdot\left(e^{i \varphi}+e^{-i \varphi}\right)=\varrho \sin \vartheta \cdot 2 \cos \varphi \Rightarrow \Psi_{p_{x}}=x f(\varrho) \\
\varrho \sin \vartheta \cdot\left(e^{i \varphi}-e^{-i \varphi}\right)=\varrho \sin \vartheta \cdot 2 i \sin \varphi \Rightarrow \Psi_{p_{y}}=y f(\varrho)
\end{gathered}
$$

Atomic orbitals
p orbitals, $\ell=1$

Atomic orbitals

d orbitals, $\ell=2$
similarly to p orbitals we make linear combinations of complex WFs to get real functions

$$
\begin{aligned}
& d_{x y}=x y f(r) d_{x^{2}-y^{2}} \\
&=\frac{1}{2}\left(x^{2}-y^{2}\right) f(r) \\
& d_{y z}=y z f(r) d_{z^{2}}=\frac{\sqrt{3}}{2}\left(3 z^{2}-r^{2}\right) f(r) \\
& d_{z x}=z x f(r)
\end{aligned}
$$

Atomic orbitals d orbitals, $\ell=2$

$\mathrm{d}_{x y}$

Atomic orbitals

shells and subshells
atomic orbital（AO）－one electron wavefunction（ $\Psi_{n, \ell, m_{\ell}}$ ）
quantum numbers：
－n－principal
－ℓ－azimuthal（orbital angular momentum）
－m_{ℓ}－magnetic
－m_{s}－spin

spin

an intrinsic angular momentum of a particle

Stern - Gerlach experiment(1922)

Inhomogeneous magnetic field!

Classical description
$\mathbf{m}=S / \mathbf{n}$, where I is the current in an electric current loop, S is the surface of the loop, and vector \mathbf{n} perpendicular to the loop.

If the current is produced by a single charged particle $I=e / T$, where T is the periodic time of the motion.
$I=\frac{2 m_{e} \pi r e}{2 m_{e} \pi r T}=\frac{p e}{2 m_{e} \pi r}=\frac{e r p}{2 m_{e} \pi r^{2}}=\frac{e \ell}{2 m_{e} \pi r^{2}}$
$m=\frac{r^{2} \pi e \ell}{2 m_{e} \pi r^{2}}=\frac{e \ell}{2 m_{e}}$
Force on a moment : $\mathbf{F}=\nabla(\mathbf{m B})$

Stern－Gerlach experiment
－to confirm the Bohr－Sommerfeld theory
－Ag atoms are in $\ell=0$ state \Rightarrow no splitting
－the spatial orientation is quantized

Stern - Gerlach experiment(1922)

- Uhlenbeck and Goudsmit - spin(1925): An internal angular momentum of the electron (\hat{S}) produces on additional magnetic moment: $\hat{\mathbf{m}}_{z}=-\frac{g \mu_{B}}{\hbar} \hat{\mathbf{S}}_{z}$, where g is the g-factor, and $\mu_{B}=\frac{e \hbar}{2 m}$ is the Bohr magneton, e is the positive unit charge.
- no spin in non-relativistic quantum mechanics
- ad hoc introduction by Pauli
- it occurs naturally in Dirac's relativistic $\mathrm{QM}(1928)(g=2)$
- correction from quantum electrodynamics (1948):

$$
g=2.002319
$$

spin

an intrinsic angular momentum of a particle

The intrinsic angular momentum (S) can be characterized by the eigenvalues of the \hat{S}_{z} and \hat{S}^{2} operators, where $\hat{S}^{2}=\hat{S}_{x}^{2}+\hat{S}_{y}^{2}+\hat{S}_{z}^{2}$.
$\hat{S}_{z} \sigma=\hbar s_{z} \sigma$
$\hat{S}^{2} \sigma=\hbar^{2} s(s+1) \sigma$
The possible values of s are $0, \frac{1}{2}, 1, \frac{3}{2}, 2, \ldots$, while $m_{s}=-s,-s+1, \ldots, s$

- fermions like electron, proton, neutron (half-integer spin, $\left.s=\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots\right)$
- bosons like photon, W bosons, ${ }^{4} \mathrm{He}$ (integer spin,

$$
s=0,1,2, \ldots)
$$

The eigenvalues of spin for an electron:
$\hat{S}_{z} \sigma= \pm \frac{\hbar}{2} \sigma$, frequently used notation: $\hat{S}_{z} \alpha=\frac{\hbar}{2} \alpha, \hat{S}_{z} \beta=-\frac{\hbar}{2} \beta$

spin

Wave function of the particle and the spin

The wave function of the electron must be extended by the spin：E．g．，the wave function of the electron in the H atom：$\Psi_{n, \ell, m_{\ell}, m_{s}=\frac{1}{2}}(r, \theta, \phi)=\Psi_{n, \ell, m_{\ell}}(r, \theta, \phi) \alpha$ Wave functions with different spins are orthogonal to each other． Vector representation：$\Psi_{n, \ell, m_{\ell}} \alpha=\binom{\Psi_{n, \ell, m_{\ell}}}{0}, \Psi_{n, \ell, m_{\ell}} \beta=\binom{0}{\Psi_{n, \ell, m_{\ell}}}$

The x, y, z component of the total angular momentum of a particle is the sum of the orbital and spin angular momentums:
$\hat{J}_{i}=\hat{L}_{i}+\hat{S}_{i}, i=x, y, z$
In the non-relativistic case (the speed of the particles are negligible with respect to the speed of light) the $\hat{J}^{2}, \hat{J}_{z}, \hat{S}^{2}, \hat{S}_{z}, \hat{L}^{2}, \hat{L}_{z}$ operators commute with each other and with the Hamilton operator, i.e., we can find a common set of eigenfunctions for all these operators. These operators belong to the compatible measurable physical quantities.
In the relativistic case: only \hat{J}^{2}, \hat{J}_{z} and \hat{H} commute with each other.

spin

Magnetic dipole moment in QM

In general $\hat{\mathbf{m}}_{z}=-g \frac{e}{2 m} \hat{\boldsymbol{J}}_{z}$

- for the orbital angular momentum of the electron: $\hat{\mathbf{m}}=-\frac{e}{2 m_{e}} \hat{\mathbf{L}}=-\frac{\mu_{E}}{\hbar} \hat{\mathbf{L}}$, i.e., $g_{\llcorner }=1$
- for an electron without orbital angular momentum: $\hat{\mathbf{m}}=-\frac{2 \mu_{B}}{\hbar} \hat{\mathbf{S}}$, i.e.,

$$
g_{s}=2
$$

- in general the Landé g_{J} factor should be used: $\hat{\mathbf{m}}=-\frac{g J \mu_{B}}{\hbar} \hat{\jmath}$, where

$$
g_{J}=g_{L} \frac{j(j+1)-s(s+1)+\ell(\ell+1)}{2 j(j+1)}+g_{S} \frac{j(j+1)+s(s+1)-\ell \ell(\ell+1)}{2 j(j+1)}
$$

- abs. value of magnetic moment: $M=g_{J} \sqrt{j(j+1)} \mu_{B}$

spin

－In magnetic field the Hamiltonian contains an additional term： $\hat{V}_{\text {mag }}=-\hat{\mathbf{m}} \mathbf{B}$ ，where \mathbf{B} is the magnetic induction vector．
－Supposing that the magnetic field is oriented along the z axis，

$$
\hat{V}_{\text {mag }}=-\hat{\mathbf{m}}_{\mathbf{z}} \mathbf{B}_{\mathbf{z}}=\frac{g_{J} \mu_{B}}{\hbar} \hat{J}_{z} B_{z}
$$

－Due to this term the energy levels depend on the j_{z} quantum numbers．

Corrections from the Dirac equation (hydrogen atom

- total angular momentum quantum number: $j=|\ell \pm s|$, e.g., $\ell=0, \mathrm{~s}$ orbital, $j=\frac{1}{2}$
$\ell=1, \mathrm{p}$ orbital, $j=\frac{1}{2}, \frac{3}{2}$
$\ell=2, \mathrm{~d}$ orbital, $j=\frac{3}{2}, \frac{5}{2}$
- The energy is slightly j -dependent (fine structure of the H atom: splitting of the spectral lines of atoms due to electron spin)
$E_{j n} \approx-\frac{\mu c^{2} \alpha^{2}}{2 n^{2}}\left[1+\frac{\alpha^{2}}{n^{2}}\left(\frac{n}{j+\frac{1}{2}}-\frac{3}{4}\right)\right]$,
where $\alpha=\frac{e^{2}}{4 \pi \varepsilon_{0} \hbar c}=\frac{1}{137}$ is the fine-structure constant

Corrections from the Dirac equation (hydrogen atom

- j-dependent relativistic correction: spin-orbit splitting
- With respect the resting frame of the electron the proton is orbiting around the electron and producing a magnetic field \mathbf{B},

$$
\mathbf{B}=-\frac{1}{c^{2}} \mathbf{v} \times \mathbf{E}
$$

- From a brief derivation the magnetic field is:

$$
\mathbf{B}=\frac{1}{m_{\mathrm{e}} e c^{2}} \frac{1}{r} \frac{\partial U(r)}{\partial r} \mathbf{L}
$$

- As the energy shift is $\Delta E_{\text {mag }}=-m_{z} B_{z}$ and $\hat{m}_{z}=-\frac{2 \mu_{B}}{\hbar} \hat{S}_{z}$ than $\Delta \hat{H}_{\text {mag }}=\frac{1}{2} \frac{2 \mu_{\mathrm{B}}}{\hbar m_{e} e c^{2}} \frac{1}{r} \frac{\partial U(r)}{\partial r} \hat{\mathbf{L}} \cdot \hat{\mathbf{S}}$, where the 'Thomas-half' is also included (Llewellyn Thomas, 1926).

The Zeeman effect splits the energy levels of the H atom．As the value of g_{J} depends on the j, ℓ, s values the extent of the splitting is different for the energy levels．

vector model for angular momentum

cyclic permutations

$$
\begin{aligned}
& {\left[\hat{\ell}_{z}, \hat{\ell}_{x}\right]=i \hbar \hat{\ell}_{y}} \\
& {\left[\hat{\ell}_{y}, \hat{\ell}_{z}\right]=i \hbar \hat{\ell}_{x}} \\
& {\left[\hat{\ell}^{2}, \hat{\ell}_{z}\right]=0,\left[\hat{\ell}_{x}, \hat{\ell}_{y}\right]=i \hbar \hat{\ell}_{z}}
\end{aligned}
$$

(a)

The angular momentum can be visualized as a vector with length
(b)

$\hbar \sqrt{\ell(\ell+1)}$ rotating around the z axis.
cyclic permutations

$$
\begin{aligned}
{\left[\hat{s}_{x}, \hat{s}_{y}\right] } & =i \hbar \hat{s}_{z} \\
{\left[\hat{s}_{z}, \hat{s}_{x}\right] } & =i \hbar \hat{s}_{y} \\
{\left[\hat{s}_{y}, \hat{s}_{z}\right] } & =i \hbar \hat{s}_{x} \\
{\left[\hat{s}^{2}, \hat{s}_{z}\right] } & =0
\end{aligned}
$$

$$
m_{s}=+\frac{1}{2}
$$

$$
m_{s}=-\frac{1}{2}
$$

Singlet and triplet states

singlet combination:
$\frac{1}{\sqrt{2}}(\alpha(1) \beta(2)-\alpha(2) \beta(1))$
multiplicity: 1

triplet combinations:
$\alpha(1) \alpha(2)$
$\frac{1}{\sqrt{2}}(\alpha(1) \beta(2)+\alpha(2) \beta(1))$
$\beta(1) \beta(2)$
multiplicity: 3
vector model for the total angular momentum

$$
\begin{aligned}
j & =3 / 2 \\
m_{j} & =3 / 2,1 / 2,-1 / 2,-3 / 2
\end{aligned}
$$

$$
\vec{J}=\overrightarrow{\mathrm{L}}+\overrightarrow{\mathrm{S}}
$$

$j=1 / 2$
$m_{j}=1 / 2,-1 / 2$

In general, if $\hat{\mathbf{\jmath}}=\hat{\mathbf{\jmath}}_{1}+\hat{\mathbf{\jmath}}_{2} \rightarrow$

$$
j=\left|j_{1}-j_{2}\right|,\left|j_{1}-j_{2}\right|+1, \ldots,\left|j_{1}+j_{2}\right|
$$

Selection rules

Time dependent perturbation
－Let＇s suppose that the stationary system is effected by a small time－dependent external force（perturbation，$K \hat{(} t)$ ）：
$\frac{\hbar}{i} \frac{\partial \Psi}{\partial t}+\left(\hat{H}_{0}+\hat{K}(t)\right) \Psi=0$
－The eigenfunctions of the unperturbed Hamiltonian are Ψ_{r} ， $\hat{H}_{0} \Psi_{r}=E_{r} \Psi_{r}$ ．At $t=0$ the system is in state Ψ_{i} ．
－Due to the perturbation at t the wave function is the lin．comb．of the eigenstates of $\hat{H}_{0}: \psi=\sum_{r} c_{r}(t) \Psi_{r} e^{-\frac{i}{\hbar} E_{r} t}$ ，where $c_{r}(t=0)=\delta_{i r}$ ，i．e．， $c_{i}(t=0)=1$ and $c_{r}(t=0)=0$ if $r \neq i$.

Selection rules

Time dependent perturbation
－One can easily show that $\frac{d c_{k}}{d t}=-\frac{i}{\hbar} \sum_{r} K_{k r} c_{r} e^{i \omega_{k r} t}$ ，where $\omega_{k r}=\frac{E_{k}-E_{r}}{\hbar}$ and $K_{k r}=\int \psi_{k}^{*} \hat{K}(t) \psi_{r} d \tau$ ．
－As a＂first order＂approximation at the rhs of the $\frac{d c_{k}}{d t}=-\frac{i}{\hbar} \sum_{r} K_{k r} c_{r} e^{i \omega_{k r} t}$ equation c_{r} is set to zero except c_{i} which is one．
－Integrating the $\frac{d c_{k}}{d t}=-\frac{i}{\hbar} K_{k i} e^{i \omega_{k i} t}$ equations with respect to time，the new $c_{k}^{(1)}(t)=\delta_{k i}-\frac{i}{\hbar} \int_{0}^{t} K_{k i}(\tau) e^{i \omega_{k i} \tau} d \tau$ defines the transition probability： $W(i \rightarrow k)=\left|c_{k}(t)\right|^{2}=\frac{1}{\hbar^{2}}\left|\int_{0}^{t} K_{k i}(\tau) e^{i \omega_{k i} \tau} d \tau\right|^{2}$ ，if $i \neq k$ ．

Selection rules

Electric dipole transition

H atom in visible light. E field is homogeneous in the scale of the H atom.
Potential energy in the electric field: $E_{p o t}=e \Phi=\int \rho(\mathbf{r}) \Phi(\mathbf{r}) d^{3} r$, where ρ is the density of electric charge $E_{p o t}=\int \rho(\mathbf{r}) \Phi(\mathbf{r}) d^{3} r=$
$\int \rho(\mathbf{r})\left(\Phi(0)+\left.\nabla \Phi\right|_{\mathbf{r}=\mathbf{0}} \cdot \mathbf{r}+\left.\frac{1}{2} \sum_{i, j}^{i, j=x, y, z} \frac{\partial^{2} \Phi}{\partial x_{i} \partial x_{j}}\right|_{\mathbf{r}=\mathbf{0}} x_{i} x_{j}+\ldots\right) d^{3} r$. As the total charge is zero and derivatives of \mathbf{E} is supposed to be small,
$E_{p o t}=-\left.\mathbf{E}\right|_{\mathbf{r}=\mathbf{0}} \int \rho(\mathbf{r}) \mathbf{r} \mathbf{d}^{3} r=-\mathbf{E d}$, where \mathbf{d} is the electric dipole moment.

Selection rules

Electric dipole transition

- Transitions induced by a light beam, perturbation operator:

$$
\hat{K}=e E_{x} \hat{x} \sin (\omega t) \rightarrow K_{k r}=e E_{x} x_{k r} \sin (\omega t)
$$

- $W(i \rightarrow k)=\frac{e^{2} E_{x}^{2}}{\hbar^{2}}\left|x_{k i}\right|^{2}\left|\int_{0}^{t} \sin (\omega t) e^{i \omega_{k i} \tau} d \tau\right|^{2}$, where $\sin (\omega t)$ can be replaced by $\frac{1}{2 i}\left(e^{i \omega t}-e^{-i \omega t}\right)$
$W(i \rightarrow k)=\frac{e^{2} E_{x}^{2}}{4 \hbar^{2}}\left|x_{k i}\right|^{2}\left|\int_{0}^{t} e^{i\left(\left(\omega_{k i}+\omega\right) \tau\right.} d \tau-\int_{0}^{t} e^{i\left(\left(\omega_{k i}-\omega\right) \tau\right.} d \tau\right|^{2}$
- The above transition probability large if $\omega \approx \omega_{k i}$ or $\omega \approx-\omega_{k i}$: absorption and induced emission of a photon.
- The transition probability is proportional to the square of the transition dipole moment: $e x_{k i}=\int \psi_{k}^{*} e x \psi_{r} d \tau$

Selection rules

Electric dipole transition

- if a $x_{k i}$ is zero the $\mathrm{k} \Rightarrow \mathrm{i}$ transition is called forbidden.
- As an example, investigate the $\Psi_{n=1, \ell=0, m_{\ell}=0, m_{s}=\frac{1}{2}} \Rightarrow \Psi_{n=2, \ell=0, m_{\ell}=0, m_{s}=\frac{1}{2}}$ transition! $x_{1,0,0, \frac{1}{2} \Rightarrow 2,0,0, \frac{1}{2}}=\int \Psi_{2,0,0, \frac{1}{2}} \times \Psi_{1,0,0, \frac{1}{2}} d \tau$. The value of this integral is zero because of the symmetry. $\Psi_{2,0,0, \frac{1}{2}}$ and $\Psi_{1,0,0, \frac{1}{2}}$ are symmetric functions, e.g., $\Psi_{2,0,0, \frac{1}{2}}(r)=\Psi_{2,0,0, \frac{1}{2}}(-r)$, on the other hand x is anti-symmetric.
- Similarly, $s \Rightarrow s, p \Rightarrow p, d \Rightarrow d, \ldots$ transitions are all forbidden.
- The selection rules for the hydrogen atom:
$\ell^{\prime}=\ell \pm 1, m_{\ell}^{\prime}=m_{\ell}, m_{\ell} \pm 1$, and $m_{s}^{\prime}=m_{s}$

Many-electron systems

Pauli exclusion principle

Pauli exclusion principle (postulate VI of quantum mechanics):

- No more than two electrons may occupy any given orbital, and if they do so, their spins must be paired
- There cannot exist two electrons having the same set of quantum numbers
- The total wavefunction must be antisymmetric with respect to the interchange of all coordinates of two electrons (fermions)

Many－electron systems

Pauli exclusion principle
$\Psi\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{j}, \ldots\right)=-\Psi\left(x_{1}, x_{2}, \ldots, x_{j}, \ldots, x_{i}, \ldots\right)$,
where x_{i} is a composite notation for the spatial coordinates and the $\operatorname{spin}, x_{i}=\left(\mathbf{r}_{i}, \sigma\right)$.

Many-electron systems

He ground state: $1 s^{2}$ (fixed nucleus, independent particle approximation)

$$
\begin{aligned}
& \hat{\boldsymbol{H}}_{H}=-\frac{1}{2} \nabla^{2}-\frac{1}{r} \\
& \hat{\boldsymbol{H}}_{H e}=-\frac{1}{2} \nabla_{1}^{2}-\frac{1}{2} \nabla_{2}^{2}-\frac{2}{r_{1}}-\frac{2}{r_{2}}+\frac{1}{r_{12}}=\hat{\boldsymbol{h}}_{1}+\hat{\boldsymbol{h}}_{2}+\frac{1}{r_{12}}
\end{aligned}
$$

For the sake of simplicity the $e^{-}-e^{-}$interac. is neglected:

$$
\begin{gathered}
\hat{\boldsymbol{H}}_{H e}^{\text {approx }}=\hat{\boldsymbol{h}}_{1}+\hat{\boldsymbol{h}}_{2} \\
\Psi(1,2)=\boldsymbol{\Psi}\left(r_{1}, r_{2}\right)=\phi_{1}\left(r_{1}\right) \cdot \phi_{2}\left(r_{2}\right)=\phi_{1}(1) \phi_{2}(2),
\end{gathered}
$$

these are H atom-like wavefunctions (see page 126)

$$
\hat{\boldsymbol{h}}_{i} \phi_{i}=E_{i} \phi_{i}
$$

$E^{\text {approx }}=E_{1}+E_{2}$, here E_{1} and E_{2} are the H atom-like energies $(Z=2)$

Many-electron systems

He ground state: $1 s^{2}$ (fixed nucleus, independent particle approximation)
let's label the electrons $\phi_{a}(1)=1 s(1) \alpha(1)$ and $\phi_{b}(2)=1 s(2) \beta(2)$

$$
\Psi_{\text {ground }}(1,2)=1 s(1) \alpha(1) \cdot 1 s(2) \beta(2)
$$

It is not anti-symmetric!
$\Psi_{\text {ground }}^{1}(1,2)=\frac{1}{\sqrt{2}}(1 s(1) \alpha(1) \cdot 1 s(2) \beta(2)-1 s(2) \alpha(2) \cdot 1 s(1) \beta(1))=$ $1 s(1) 1 s(2) \frac{1}{\sqrt{2}}(\alpha(1) \beta(2)-\alpha(2) \beta(1))$.

It is the only possible anti-symmetric wave function. $\Psi_{\text {ground }}^{1}$ is the eigenfunction of the $\hat{S}_{z}=\hat{S}_{z}(1)+\hat{S}_{z}(2)$ and \hat{S}^{2} spin operators with $m_{s}=0$ and $s=1$ quantum numbers.

Many-electron systems

He excited states

ϕ_{a} and ϕ_{b} are the occupied atomic orbitals
Degenerate product states (e-e interaction is not considered):
$\phi_{1}(1,2)=\phi_{a}\left(\mathbf{r}_{1}\right) \phi_{b}\left(\mathbf{r}_{2}\right), \quad \Phi_{2}(1,2)=\phi_{a}\left(\mathbf{r}_{2}\right) \phi_{b}\left(\mathbf{r}_{1}\right)$
These are orthogonal to each other, $\int d r_{1}^{3} \int d r_{2}^{3} \Phi_{1}(1,2) \Phi_{2}(1,2)=0$, and degenerate with $E^{\text {approx. }}=E_{a}+E_{b}$ energy:
$\left(\hat{h}_{1}+\hat{h}_{2}\right) \Phi_{1}=\left(\hat{h}_{1} \phi_{a}\left(\mathbf{r}_{1}\right) \phi_{b}\left(\mathbf{r}_{2}\right)+\phi_{a}\left(\mathbf{r}_{1}\right) \hat{h}_{2} \phi_{b}\left(\mathbf{r}_{2}\right)\right)=$
$E_{a} \phi_{a}\left(\mathbf{r}_{1}\right) \phi_{b}\left(\mathbf{r}_{2}\right)+\phi_{a}\left(\mathbf{r}_{1}\right) E_{b} \phi_{b}\left(\mathbf{r}_{2}\right)=\left(E_{a}+E_{b}\right) \Phi_{1}$
To include the e-e interaction the wave function can be approximated by a linear combination: $\Psi=b_{1} \Phi_{1}+b_{2} \Phi_{2}$
$\left(\hat{h}_{1}+\hat{h}_{2}\right) \Psi=\left(E_{a}+E_{b}\right) \Psi \Longrightarrow\left(\hat{h}_{1}+\hat{h}_{2}+\hat{V}\right) \Psi=\left(E_{a}+E_{b}+\hat{V}\right) \Psi$

Many-electron systems

He excited states

Introducing some shorthand notations:

$$
\begin{aligned}
& \hat{V}=\frac{1}{r_{12}} \\
& C=\left\langle\Phi_{1}\right| \hat{V}\left|\Phi_{1}\right\rangle=\left\langle\Phi_{2}\right| \hat{V}\left|\Phi_{2}\right\rangle=\int d^{3} \mathbf{r}_{1} \int d^{3} \mathbf{r}_{2} \frac{\left|\phi_{a}\left(\mathbf{r}_{1}\right)\right|^{2}\left|\phi_{b}\left(\mathbf{r}_{2}\right)\right|^{2}}{r_{12}} \\
& K=\left\langle\Phi_{1}\right| \hat{V}\left|\Phi_{2}\right\rangle=\left\langle\Phi_{2}\right| \hat{V}\left|\Phi_{1}\right\rangle^{*}=\int d^{3} \mathbf{r}_{1} \int d^{3} \mathbf{r}_{2} \frac{\phi_{a}^{*}\left(\mathbf{r}_{1}\right) \phi_{b}^{*}\left(\mathbf{r}_{2}\right) \phi_{b}\left(\mathbf{r}_{\mathbf{1}}\right) \phi_{a}\left(\mathbf{r}_{2}\right)}{r_{12}}, \\
& \Delta E=\left(E-E_{a}-E_{b}\right) \\
& \left(E_{a}+E_{b}+\hat{V}\right) \Psi=E \Psi \Rightarrow(-\Delta E+\hat{V}) \Psi=0 \\
& b_{1}(-\Delta E+\hat{V}) \Phi_{1}+b_{2}(-\Delta E+\hat{V}) \Phi_{2}=0
\end{aligned}
$$

Many-electron systems

$$
\begin{aligned}
& \left\langle\Phi_{1}\right| / \Rightarrow b_{1}(-\Delta E+\hat{V}) \Phi_{1}+b_{2}(-\Delta E+\hat{V}) \Phi_{2}=0 \\
& \left\langle\Phi_{2}\right| / \Rightarrow b_{1}(-\Delta E+\hat{V}) \Phi_{1}+b_{2}(-\Delta E+\hat{V}) \Phi_{2}=0 \\
& b_{1}\left(\left\langle\Phi_{1}\right| \hat{V}\left|\Phi_{1}\right\rangle-\Delta E\right)+b_{2}\left\langle\Phi_{1}\right| \hat{V}\left|\Phi_{2}\right\rangle=0 \\
& b_{1}\left\langle\Phi_{2}\right| \hat{V}\left|\Phi_{1}\right\rangle+b_{2}\left(\left\langle\Phi_{2}\right| \hat{V}\left|\Phi_{2}\right\rangle-\Delta E\right)=0
\end{aligned}
$$

The result is a simple homogeneous linear equation:
$b_{1}(C-\Delta E)+b_{2} K=0$
$b_{1} K^{*}+b_{2}(C-\Delta E)=0$
To have a non-trivial solution the determinant of the coefficient matrix should be zero: $(C-\Delta E)^{2}-|K|^{2}=0$

Many-electron systems

He excited states

We obtained two solutions for the energy: $\Delta E=C \pm|K|$ or $E=E_{a}+E_{b}+C \pm|K|$

If $\Delta E=C+|K|$ than $b_{1}=b_{2}=\frac{1}{\sqrt{2}} \Rightarrow$ singlet state.
If $\Delta E=C-|K|$ than $b_{1}=-b_{2}=\frac{1}{\sqrt{2}} \Rightarrow$ triplet state.

Pauli exclusion principle \Rightarrow

$$
\begin{aligned}
& \Psi^{1}=\frac{1}{\sqrt{2}}\left(\phi_{a}\left(\mathbf{r}_{1}\right) \phi_{b}\left(\mathbf{r}_{2}\right)+\phi_{a}\left(\mathbf{r}_{2}\right) \phi_{b}\left(\mathbf{r}_{1}\right)\right)(\alpha(1) \beta(2)-\alpha(2) \beta(1)) \\
& \Psi^{3}=\frac{1}{\sqrt{2}}\left(\phi_{a}\left(\mathbf{r}_{1}\right) \phi_{b}\left(\mathbf{r}_{2}\right)-\phi_{a}\left(\mathbf{r}_{2}\right) \phi_{b}\left(\mathbf{r}_{1}\right)\right)(\alpha(1) \beta(2)+\alpha(2) \beta(1))
\end{aligned}
$$

Many-electron systems

He excited states

What are the meaning of the C and K coefficients?
$C=\int d^{3} \mathbf{r}_{1} \int d^{3} \mathbf{r}_{2} \frac{\left|\phi_{a}\left(\mathbf{r}_{1}\right)\right|^{\mathbf{2}}\left|\phi_{b}\left(\mathbf{r}_{2}\right)\right|^{\mathbf{2}}}{r_{12}}$ is the classical coulomb interaction of two charged particle. It is always a positive quantity.
$K=\int d^{3} \mathbf{r}_{1} \int d^{3} \mathbf{r}_{2} \frac{\phi_{a}^{*}\left(\mathbf{r}_{\mathbf{1}}\right) \phi_{b}^{*}\left(\mathbf{r}_{\mathbf{r}}\right) \phi_{\phi}\left(\mathbf{r}_{\mathbf{1}}\right) \phi_{\mathbf{a}}\left(\mathbf{r}_{\mathbf{2}}\right)}{r_{\mathbf{1 2}}}$ is the so-called exchange interaction, no classical analog.

In the ground state, $\phi_{a}=\phi_{b}=\phi_{n=0, \ell=0, m_{\ell}=0}$, only the singlet combination, Ψ^{1} can appear.

In the first excited state $\phi_{a}=\phi_{n=0, \ell=0, m_{\ell}=0}$ and $\phi_{b}=\phi_{n=1, \ell=0, m_{\ell}=0}$.

Many－electron systems

For states arising from the same configuration，the triplet state generally lies lower than the singlet state（see Hund＇s rule）．Qualitative explanation： $\Psi^{3}\left(\mathbf{r}_{1}, \mathbf{r}_{1}\right)=0$ ，i．e．，the two electrons can not be at the same place．\leftrightarrow $\Psi^{1}\left(r_{1}, r_{1}\right) \neq 0$ ，i．e．，large repulsive coulomb force increases the energy．

Atomic term symbols

parahelium, orthohelium

Excitation of both of the electrons

requires an energy larger than the ionization energy: only $1 s^{1} n^{1}$ excitations appear in the spectra No radiative transitions between singlet and triplet states

Spectroscopically, He behaves like two distinct species, parahelium and orthohelium

the Slater determinant

$$
\begin{aligned}
\Psi_{\text {ground }} & =1 s 1 s[\alpha(1) \beta(2)-\beta(1) \alpha(2)] \\
\left|\begin{array}{ll}
1 s(1) \alpha(1) & 1 s(1) \beta(1) \\
1 s(2) \alpha(2) & 1 s(2) \beta(2)
\end{array}\right| & =1 s(1) \alpha(1) 1 s(2) \beta(2)-1 s(1) \beta(1) 1 s(2) \alpha(2) \\
& =1 s(1) 1 s(2)[\alpha(1) \beta(2)-\beta(1) \alpha(2)]
\end{aligned}
$$

rows \rightarrow electrons
columns \rightarrow spinorbitals

the Slater determinant

Determinant

A homogeneous system of linear equations:

$$
\begin{array}{cr}
c_{11} x_{1}+c_{12} x_{2}+c_{13} x_{3}+\ldots & c_{1 n} x_{n}=0 \\
c_{21} x_{1}+c_{22} x_{2}+c_{23} x_{3}+\ldots & c_{2 n} x_{n}=0 \\
\vdots & \vdots \\
c_{n 1} x_{1}+c_{n 2} x_{2}+c_{n 3} x_{3}+\ldots & c_{n n} x_{n}=0
\end{array}
$$

Matrix notation: $\mathbf{C} \cdot \mathbf{x}=0$, where

$$
\mathbf{C}=\left(\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 n} \\
c_{21} & c_{22} & \ldots & c_{2 n} \\
\vdots & \vdots & & \vdots \\
c_{n 1} & c_{n 2} & \ldots & c_{n n}
\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

the Slater determinant

Determinant

- Formal solution of a inhomogeneous system of linear equation, $\mathbf{C} \cdot \mathbf{x}=\mathbf{b}$, needs the inverse of matrix $\mathbf{C}: \mathbf{x}=\mathbf{C}^{-\mathbf{1}} \cdot \mathbf{b}$
- $\mathbf{C}^{-1}=\operatorname{adj}(\mathbf{C}) / \operatorname{det}(\mathbf{C})$ (see wikipedia page: Invertible matrix)
- To have a non-trivial solution of the homogeneous system of linear equation, the matrix \mathbf{C}^{-1} should not exist. $\rightarrow \operatorname{det}(\mathbf{C})=0$
- $\operatorname{det}(\mathbf{C})=\sum_{\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}}(-1)^{p} c_{1 p_{1}} c_{2 p_{2}} c_{3 p_{3}} \ldots c_{n p_{n}}$, where the sum runs on the whole set of permutations of numbers $1,2,3, \ldots, n$ and p is the parity (number of exchange of indices requiered to obtain the given permutation) of the given permutation.

Determinant

Some properties of determinants:

- $\operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})$
- $\operatorname{det}\left(\mathbf{A}^{T}\right)=\operatorname{det}(\mathbf{A})$, where \mathbf{A}^{T} denotes the transpose of \mathbf{A}.
- If matrix \mathbf{A} is composed from column vectors,
$\mathbf{A}=\left(\left[\mathbf{a}_{1}\right],\left[\mathbf{a}_{2}\right],\left[\mathbf{a}_{3}\right], \ldots,\left[\mathbf{a}_{n}\right]\right)$, and vectors $\left[\mathbf{a}_{i}\right]$ are linearly dependent than $\operatorname{det}(\mathbf{A})=0$.
- $\operatorname{det}\left(\left[\mathbf{a}_{1}\right],\left[\mathbf{a}_{2}\right], \ldots,\left[\mathbf{a}_{i}\right], \ldots,\left[\mathbf{a}_{j}\right], \ldots,\left[\mathbf{a}_{n}\right]\right)=$

$$
-\operatorname{det}\left(\left[\mathbf{a}_{1}\right],\left[a_{2}\right], \ldots,\left[a_{j}\right], \ldots,\left[a_{i}\right], \ldots,\left[a_{n}\right]\right)
$$

the Slater determinant

Determinant

- Expansion of a determinant along a column (or a row):

$$
\begin{aligned}
& \left|\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{\mathbf{2 1}} & a_{22} & a_{23} & \cdots & a_{2 n} \\
a_{\mathbf{3 1}} & a_{\mathbf{3 2}} & a_{\mathbf{3 3}} & \cdots & a_{\mathbf{3 n}} \\
\vdots & \vdots & & & \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n n}
\end{array}\right|=(-\mathbf{1})^{\mathbf{1}+\mathbf{2}} a_{\mathbf{1 2}} \cdot\left|\begin{array}{ccc}
a_{\mathbf{2 1}} & a_{\mathbf{2 3}} & \cdots \\
a_{\mathbf{3 1}} & a_{\mathbf{2 3}} \\
\vdots & \cdots & a_{\mathbf{3} n} \\
\vdots & & \\
a_{n \mathbf{1}} & a_{n 3} & \cdots \\
a_{n n}
\end{array}\right| \\
& +(-\mathbf{1})^{\mathbf{2 + 2}} a_{22} \cdot\left|\begin{array}{cccc}
a_{11} & a_{13} & \cdots & a_{1 n} \\
a_{31} & a_{33} & \cdots & a_{3 n} \\
\vdots & & & \\
\vdots & & & \\
a_{n 1} & a_{n 3} & \cdots & a_{n n}
\end{array}\right|+(-1)^{\mathbf{3 + 2}} a_{32} \cdot\left|\begin{array}{ccc}
a_{11} & a_{13} & \cdots \\
a_{21} & a_{\mathbf{1 2}} \\
\vdots & \cdots & a_{2 n} \\
\vdots & \vdots & \\
a_{n \mathbf{1}} & a_{n 3} & \cdots \\
a_{n n}
\end{array}\right|+(-\mathbf{1})^{\mathbf{4}+\mathbf{2}} a_{42} \cdot \ldots
\end{aligned}
$$

the Slater determinant

Li atom

$$
\Phi_{\mathrm{Li}}=\frac{1}{\sqrt{3!}}\left|\begin{array}{lll}
1 s(1) \alpha(1) & 1 s(1) \beta(1) & 2 s(1) \alpha(1) \\
1 s(2) \alpha(2) & 1 s(2) \beta(2) & 2 s(2) \alpha(2) \\
1 s(3) \alpha(3) & 1 s(3) \beta(3) & 2 s(3) \alpha(3)
\end{array}\right|
$$

rows \rightarrow electrons
columns \rightarrow spinorbitals

the Slater determinant

Li atom

if two columns are equal - three electrons are on one spatial orbital the Pauli exclusion principle is not fulfilled

$$
\begin{aligned}
\Phi_{\mathrm{Li}} & =\frac{1}{\sqrt{3!}}\left|\begin{array}{lll}
1 s(1) \alpha(1) & 1 s(1) \beta(1) & 1 s(1) \beta(1) \\
1 s(2) \alpha(2) & 1 s(2) \beta(2) & 1 s(2) \beta(2) \\
1 s(3) \alpha(3) & 1 s(3) \beta(3) & 1 s(3) \beta(3)
\end{array}\right| \\
& =1 s(1) \alpha(1)\left|\begin{array}{ll}
1 s(2) \beta(2) & 1 s(2) \beta(2) \\
1 s(3) \beta(3) & 1 s(3) \beta(3)
\end{array}\right| \\
& -1 s(1) \beta(1)\left|\begin{array}{ll}
1 s(2) \alpha(2) & 1 s(2) \beta(2) \\
1 s(3) \alpha(3) & 1 s(3) \beta(3)
\end{array}\right| \\
& +1 s(1) \beta(1)\left|\begin{array}{ll}
1 s(2) \alpha(2) & 1 s(2) \beta(2) \\
1 s(3) \alpha(3) & 1 s(3) \beta(3)
\end{array}\right| \\
& =0
\end{aligned}
$$

the Slater determinant

Li atom

if two rows are interchanged - the determinant changes sign antisymmetric wavefunction

1st row expansion

$$
\begin{aligned}
\Phi_{\mathrm{Li}} & =\left|\begin{array}{lll}
1 s(1) \alpha(1) & 1 s(1) \beta(1) & 2 s(1) \alpha(1) \\
1 s(2) \alpha(2) & 1 s(2) \beta(2) & 2 s(2) \alpha(2) \\
1 s(3) \alpha(3) & 1 s(3) \beta(3) & 2 s(3) \alpha(3)
\end{array}\right| \\
& =1 s(1) \alpha(1)\left|\begin{array}{ll}
1 s(2) \beta(2) & 2 s(2) \alpha(2) \\
1 s(3) \beta(3) & 2 s(3) \alpha(3)
\end{array}\right| \\
& -1 s(1) \beta(1)\left|\begin{array}{ll}
1 s(2) \alpha(2) & 2 s(2) \alpha(2) \\
1 s(3) \alpha(3) & 2 s(3) \alpha(3)
\end{array}\right| \\
& +2 s(1) \alpha(1)\left|\begin{array}{ll}
1 s(2) \alpha(2) & 1 s(2) \beta(2) \\
1 s(3) \alpha(3) & 1 s(3) \beta(3)
\end{array}\right|
\end{aligned}
$$

2nd row expansion

$$
\begin{aligned}
\Phi_{\mathrm{Li}}^{1 \rightarrow 2} & =\left|\begin{array}{lll}
1 s(2) \alpha(2) & 1 s(2) \beta(2) & 2 s(2) \alpha(2) \\
1 s(1) \alpha(1) & 1 s(1) \beta(1) & 2 s(1) \alpha(1) \\
1 s(3) \alpha(3) & 1 s(3) \beta(3) & 2 s(3) \alpha(3)
\end{array}\right| \\
& =-1 s(1) \alpha(1)\left|\begin{array}{ll}
1 s(2) \beta(2) & 2 s(2) \alpha(2) \\
1 s(3) \beta(3) & 2 s(3) \alpha(3)
\end{array}\right| \\
& +1 s(1) \beta(1)\left|\begin{array}{ll}
1 s(2) \alpha(2) & 2 s(2) \alpha(2) \\
1 s(3) \alpha(3) & 2 s(3) \alpha(3)
\end{array}\right| \\
& -2 s(1) \alpha(1)\left|\begin{array}{ll}
1 s(2) \alpha(2) & 1 s(2) \beta(2) \\
1 s(3) \alpha(3) & 1 s(3) \beta(3)
\end{array}\right|
\end{aligned}
$$

the Slater determinant
 General properties

－The electrons are indistinguishable．．．
－The individual one－particle orbitals have no physical meaning： the Slater determinant is invariant with respect to any orthogonality and scalar product keeping linear combination of the original orbitals．

Electronic structure of atoms

Hamiltonian

$\hat{\mathrm{H}}=-\sum_{i}^{N} \frac{1}{2} \nabla_{i}^{2}-\sum_{i}^{N} \frac{Z_{A}}{R_{i A}}+\sum_{i}^{N} \sum_{j>i}^{N} \frac{1}{r_{i j}}+\Delta H_{s o}$

- Energy of atoms is basically n dependent, moderate dependents on L, S values and slightly dependents on J value (light atoms).
- Spherical symmetry $\Longrightarrow \hat{\jmath}^{2}$ and $\hat{\jmath}_{z}$ commute with the Hamiltonian: J and M_{J} are good quantum numbers.
- Without $\Delta H_{s o}$ the L, M_{L}, S, M_{S} are also good quantum numbers

Electronic structure of atoms

Aufbau/building-up principle, diagonal rule

- orbitals with a lower $n+\ell$ value are filled before those with higher $n+\ell$ values
- in the case of equal $n+\ell$ values, the orbital with a lower n value is filled first

Examples: $\mathrm{He}, \mathrm{Li}, \mathrm{C}, \mathrm{N}, \mathrm{O}$
 In most of the cases the $\left\langle r_{3 d}\right\rangle<\left\langle r_{4 s}\right\rangle \Longrightarrow$ on the 3d orbitals $656 \mathrm{p} 6 \mathrm{~d} . .$. the e-e repulsion is stronger: Sc, [Ar$] 3 d^{1} 4 s^{2}$
There are exceptions too: $\mathrm{Cu}, 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{9}$ is predicted instead of $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{10}$

Due to the e-e interaction the shell-, sub-shell configuration can not describe the atomic spectra (see He atom)

Electronic structure of atoms

Atomic term symbols, vector and scalar,z-projection, additions

- total orbital angular quantum number

$$
\begin{aligned}
& \hat{\mathrm{L}}=\sum \hat{\ell}_{i} \text { or } M_{L}=\sum m_{\ell i}, M_{L}=0, \pm 1, \pm 2, \ldots, \pm L \\
& \mathrm{~L}=\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 \\
\mathrm{~S} & \mathrm{P} & \mathrm{D} & \mathrm{~F} & \mathrm{G}
\end{array}
\end{aligned}
$$

- total spin angular momentum quantum number

$$
\hat{\mathbf{s}}=\sum \hat{\mathbf{s}}_{i} \text { or } M_{S}=\sum m_{s_{i}}, M_{S}=0, \pm 1, \pm 2, \ldots, \pm S
$$

- total angular quantum number

$$
\hat{\mathbf{J}}=\hat{\mathbf{L}}+\hat{\mathbf{S}}, M_{J}=0, \pm 1, \pm 2, \ldots, \pm J
$$

- $\max \left\{M_{L}\right\}=L$ and $\max \left\{M_{S}\right\}=S ;(2 L+1)(2 S+1)=\sum J 2 J+1$

Electronic structure of atoms

Atomic term symbols, Clebsch-Gordan series

- total orbital angular quantum number

$$
L=\ell_{1}+\ell_{2}, \ell_{1}+\ell_{2}-1, \ldots,\left|\ell_{1}-\ell_{2}\right|
$$

- total spin angular momentum quantum number

$$
S=s_{1}+s_{2}, s_{1}+s_{2}-1, \ldots,\left|s_{1}-s_{2}\right|
$$

- total angular quantum number

$$
J=L+S, L+S-1, \ldots,|L-S|
$$

Electronic structure of atoms

Atomic term symbols

- atomic term symbol: ${ }^{2 S+1} L_{J}$
- term: ${ }^{2 S+1} L$
- microstate: a unique configuration of quantum numbers
- $n=$ num of spin orbitals; $k=$ num. of electrons
- number of microstates: $\binom{n}{k}$
- multiplicity: $2 S+1$

$2 S+1=$| $S=$ | 0 | $1 / 2$ | 1 | $3 / 2$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | |
| singlet | doublet | triplet | quartet | |

Electronic structure of atoms

H electronic transitions，${ }^{2} S_{1 / 2},{ }^{2} P_{1 / 2},{ }^{2} P_{3 / 2},{ }^{2} D_{5 / 2},{ }^{2} D_{3 / 2}$ ，etc．

Electronic structure of atoms

Atomic term symbols, helium atom

Electronic structure of atoms

Atomic term symbols, ${ }^{2 S+1} L_{J}$

- $1 s^{2}:{ }^{1} S_{0}$
- $2 p^{6}:{ }^{1} S_{0}$
- $3 d^{10}:{ }^{1} S_{0}$
- $1 s^{1}:{ }^{2} S_{1 / 2}$
- $1 s^{2} 2 s^{2} 2 p^{1}$, i.e. $[\mathrm{Ne}] 2 p^{1}:{ }^{2} P_{3 / 2}$, ${ }^{2} P_{1 / 2}$
- atoms with closed subshells are in the ${ }^{1} S_{0}$ state
- atoms with one e^{-}in an open subshell $n \ell$ are in the ${ }^{2} L$ state
- In general, the open subshells define the atomic term

Electronic structure of atoms

Atomic term symbols, non-relativistic case, LS / Russel-Saunders coupling

- In the non-relativistic case ${ }^{2 S+1} L$ defines the energy.
- The relativistic effects (e.g., spin-orbit coupling) are small perturbations.

The spin-orbit coupling for the individual electrons is small. An average can be calculated using the total \hat{L} and \hat{S} operators: $\Delta \hat{H}_{s o}=A(L, S) \mathbb{C} \cdot \mathbf{S}$.

- The energy leveles are splitted according to the various values of J :

$$
\Delta E_{s o}=\frac{1}{2} A(L, S)(J(J+1)-L(L+1)-S(S+1))
$$

- As in a given term the L and S are constant (and $\Delta J=1$) the observable splitting is $E(J)-E(J-1)=A(L, S) J$.
- \Longrightarrow Fine or multiplett structure of the spectra

Electronic structure of atoms

Atomic term symbols, ${ }^{2 S+1} L_{J}$, spin-orbit coupling

Electronic structure of atoms

Relativistic case, jj-coupling

- In the relativistic case $(Z » 1)$ the spin-orbit effect dominates over the $e^{-}-e^{-}$repulsion, thus $\sum_{i<j} \frac{1}{r_{i j}}$ can be considered as a perturbation.
- $\hat{H}_{s o}=\sum_{i} \alpha_{i} \hat{\ell}_{i} \hat{S}_{i}=\sum_{i} \frac{\alpha_{i}}{2}\left(\hat{j}_{i}^{2}-\ell_{i}^{2}-s_{i}^{2}\right)$.
- Spin and orbital momenta of the electrons coupled into \hat{j}_{i} eigenfunctions. The anti-symmetrized products of these functions are the eigenfunctions of the zero-order Hamiltionian
(\hat{H} without the $e^{-}-e^{-}$repulsion).
- $\Delta E_{s o}=\sum_{i} \frac{\alpha_{i}}{2}\left(j_{i}\left(j_{i}+1\right)-\ell_{i}\left(\ell_{i}+1\right)-s_{i}\left(s_{i}+1\right)\right)$.
- The good quantum numbers are J, j_{1}, j_{2}, etc.

Electronic structure of atoms

LS－and jj－coupling

Coupling of $\ell=1$ and $\mathrm{s}=1 / 2$ results in either a $j=1 / 2$ or $a j=3 / 2$ state． Possible J values：

j_{1}	j_{2}	J
$1 / 2$	$1 / 2$	0,1
$1 / 2$	$3 / 2$	1,2
$3 / 2$	$3 / 2$	$0,1,2,3$

Electronic structure of atoms

Hund's rules
an atom in its ground state adopts a configuration with the greatest number of unpaired electrons

Electronic structure of atoms

Hund＇s rules

Rules to determine the lowest state for a given electron configuration
－the term of highest S（maximum multiplicity， $2 S+1$ ）will lie lowest in energy
－if more than one term exist with maximum multiplicity then the term having the highest L will lie lowest in energy
－for terms having a spin－orbit splitting，if the outermost subshell is half－full or less than half－full the states will be ordered with the lowest J values lying lowest；if the outermost subshell is more than half－filled，the level with the highest value of J ，is lowest in energy

Electronic structure of atoms

Selection rules for electronic transitions
transition dipole moment:

$$
\begin{aligned}
\hat{\mu} & =-e \sum_{\text {electrons }} \hat{\mathbf{r}} \\
\mu_{f i} & =\int \psi_{f} \hat{\mu} \psi_{i} d \tau
\end{aligned}
$$

one electron

- $\Delta s=0$
- $\Delta \ell= \pm 1 ; \Delta m_{\ell}=0, \pm 1$
- $\Delta L=0, \pm 1$
- $\Delta J= \pm 1,0, J=0 \leftrightarrow J=0$
${ }^{2 S+1} L_{J}$
- any atomic state can be specified
- any spectroscopic transition can be described

Atomic spectroscopy

Purpose：analysis of the elementary composition．
Sample preparation：heating to high temperature．
Atomic absorption spectroscopy and atomic emission spectroscopy
Concentration of atoms can be measured（Beer－Lambert law［see later］／intensities）

Atomic spectroscopy

Composition of stars
Relative speed and temperature of stars and galaxies．

Born-Oppenheimer approximation

argument: elephant herd and the flies

- electrons
- light particles
- fast
- nuclei
- heavy particles
- slow

Born-Oppenheimer approximation

Hamiltonians, $\hat{H} \Psi=E \Psi$
$\hat{\mathrm{H}}=-\frac{1}{2} \nabla_{e}^{2}-\frac{1}{r}$, fixed nucleus, one electron atom
$\hat{\mathrm{H}}=-\frac{1}{2} \nabla_{e}^{2}-\frac{1}{2 M_{p}} \nabla_{\rho}^{2}-\frac{1}{R_{e p}}$, one electron atom
$\hat{\mathrm{H}}=-\sum_{i}^{N} \frac{1}{2} \nabla_{i}^{2}-\frac{1}{2 M_{A}} \nabla_{A}^{2}-\sum_{i}^{N} \frac{Z_{A}}{R_{i A}}+\sum_{i}^{N} \sum_{j>i}^{N} \frac{1}{r_{i j}}$, multielectron atom
polyatomic molecule, general case:

$$
\begin{aligned}
\hat{\mathrm{H}} & =-\sum_{i}^{N} \frac{1}{2} \nabla_{i}^{2}-\sum_{A}^{M} \frac{1}{2 M_{A}} \nabla_{A}^{2}-\sum_{i}^{N} \sum_{A}^{M} \frac{Z_{A}}{R_{i A}}+\sum_{i}^{N} \sum_{j>i}^{N} \frac{1}{r_{i j}}+\sum_{A}^{M} \sum_{B>A}^{M} \frac{Z_{A} Z_{B}}{R_{A B}} \\
& E_{\text {kin }}(\text { electrons })+E_{\text {kin }}(\text { nuclei })+E_{\mathrm{pot}}(\text { el., nuc. })+E_{\mathrm{pot}}(\mathrm{el}, \text { el })+E_{\mathrm{pot}}(\text { nuc }, \text { nuc })^{\prime}
\end{aligned}
$$

Born－Oppenheimer approximation

Hamiltonians，$\hat{\mathrm{H}}=\hat{\mathrm{H}}_{\mathrm{e}}+\hat{\mathrm{H}}_{N}$

$$
\begin{aligned}
\hat{\mathrm{H}} & =-\sum_{i}^{N} \frac{1}{2} \nabla_{i}^{2}-\sum_{A}^{M} \frac{1}{2 M_{A}} \nabla_{A}^{2}-\sum_{i}^{N} \sum_{A}^{M} \frac{Z_{A}}{R_{i A}}+\sum_{i}^{N} \sum_{j>i}^{N} \frac{1}{r_{i j}}+\sum_{A}^{M} \sum_{B>A}^{M} \frac{Z_{A} Z_{B}}{R_{A B}} \\
\hat{\mathrm{H}}_{e} & =-\sum_{i}^{N} \frac{1}{2} \nabla_{i}^{2}-\sum_{i}^{N} \sum_{A}^{M} \frac{Z_{A}}{R_{i A}}+\sum_{i}^{N} \sum_{j>i}^{N} \frac{1}{r_{i j}}
\end{aligned}
$$

The electronic Hamiltonian \hat{H}_{e} can be approximated by an average， $\left\langle\Psi_{e}\right| \hat{\mathrm{H}}_{e}\left|\Psi_{e}\right\rangle=E_{e}\left(\left\{R_{A}\right\}\right)$ ，where Ψ_{e} is the eigenfunction of the electronic Hamiltonian．

$$
\begin{aligned}
\hat{\mathrm{H}}_{N} & =-\sum_{A}^{M} \frac{1}{2 M_{A}} \nabla_{A}^{2}+\left\langle\Psi_{e}\right| \hat{\mathrm{H}}_{e}\left|\Psi_{e}\right\rangle+\sum_{A}^{M} \sum_{B>A}^{M} \frac{Z_{A} Z_{B}}{R_{A B}} \\
& =-\sum_{A}^{M} \frac{1}{2 M_{A}} \nabla_{A}^{2}+E_{\mathrm{TOT}}
\end{aligned}
$$

Born－Oppenheimer approximation

Hamiltonians，$\hat{\mathrm{H}}=\hat{\mathrm{H}}_{e}+\hat{\mathrm{H}}_{N}$

$$
\begin{aligned}
E_{\mathrm{TOT}} & =E_{e}\left(\left\{R_{A}\right\}\right)+\sum_{A}^{M} \sum_{B>A}^{M} \frac{z_{A} Z_{B}}{R_{A B}} \\
\hat{\mathrm{H}}_{N} \Psi_{N} & =E \Psi_{N}
\end{aligned}
$$

E_{TOT} is the potential energy surface governing the motion of the nuclei．
E is the Born－Oppenheimer approximation to the total energy including the translational，rotational，vibrational，and electronic energy．
When solving for the electronic WF，$\hat{\mathrm{H}}_{e} \Psi_{e}\left(\left\{r_{i}\right\},\left\{R_{A}\right\}\right)=E \Psi_{e}\left(\left\{r_{i}\right\},\left\{R_{A}\right\}\right)$ ：
kinetic energy of the nuclei is zero，$-\sum_{A}^{M} \frac{1}{2 M_{A}} \nabla_{A}^{2}=0$ ，and
nuclei－nuclei potential energy is constant，$\sum_{A}^{M} \sum_{B>A}^{M} \frac{Z_{A} Z_{B}}{R_{A B}}=$ const

The variational principle

assumptions

- ground state: $\Psi_{0}, E_{0}=\int \Psi_{0}^{*} \hat{\boldsymbol{H}} \Psi_{0} d \tau$
- set of orthonormal eigenfunctions is available, $\hat{\boldsymbol{H}} \psi_{i}=\varepsilon_{i} \psi_{i}$ and $\int \psi_{i}^{*} \psi_{j}=\delta_{i j}$
- $\varepsilon_{i} \geq E_{0}$
- the trial wavefunction is constructed as $\psi=\sum_{i} c_{i} \psi_{i}$

variational principle

the energy obtained with the trial wavefunction, Ψ, is always an upper bound to the ground state energy, E_{0}, i.e., $E=\frac{\int \Psi^{*} \hat{H} \Psi d \tau}{\int \Psi^{*} \Psi d \tau} \geq E_{0}$

The variational principle

$$
\begin{aligned}
E & =\frac{\int \Psi^{*} \hat{\boldsymbol{H}} \Psi d \tau}{\int \Psi^{*} \Psi d \tau}=\frac{\int \sum_{i} c_{i}^{*} \psi_{i}^{*} \hat{\boldsymbol{H}} \sum_{j} c_{j} \psi_{j} d \tau}{\int \sum_{i} c_{i}^{*} \psi_{i}^{*} \sum_{j} c_{j} \psi_{j} d \tau} \\
& =\frac{\sum_{i j} c_{i}^{*} c_{j} \int \psi_{i}^{*} \hat{\boldsymbol{H}} \psi_{j} d \tau}{\sum_{i j} c_{i}^{*} c_{j} \int \psi_{i}^{*} \psi_{j} d \tau}=\frac{\sum_{i j} c_{i}^{*} c_{j} \int \psi_{i}^{*} \varepsilon_{j} \psi_{j} d \tau}{\sum_{i j} c_{i}^{*} c_{j} \int \psi_{i}^{*} \psi_{j} d \tau} \\
& =\frac{\sum_{i} c_{i}^{2} \varepsilon_{i}}{\sum_{i} c_{i}^{2}} \geq \frac{\sum_{i} c_{i}^{2} E_{0}}{\sum_{i} c_{i}^{2}}=E_{0}
\end{aligned}
$$

The variational principle

The variational method

Supposing to have an anzats for the wavefunction with some parameters $c_{1}, c_{2}, \ldots, \Psi=\Psi\left(c_{1}, c_{2}, c_{3}, \ldots\right)$, than the energy can be approximated by the 'expectation value':

$$
\begin{gathered}
E\left(c_{1}, c_{2}, \ldots\right)=\frac{\left\langle\Psi\left(c_{1}, c_{2}, \ldots\right)\right| \hat{H}\left|\Psi\left(c_{1}, c_{2}, \ldots\right)\right\rangle}{\left\langle\Psi\left(c_{1}, c_{2}, \ldots\right) \mid \Psi\left(c_{1}, c_{2}, \ldots\right)\right\rangle}= \\
\frac{\int \Psi^{*}\left(c_{1}, c_{2}, \ldots\right) \hat{H} \Psi\left(c_{1}, c_{2}, \ldots\right) d \tau}{\int \Psi^{*}\left(c_{1}, c_{2}, \ldots\right) \Psi\left(c_{1}, c_{2}, \ldots\right) d \tau}
\end{gathered}
$$

One can think that the parameter set minimizing the energy
$E\left(c_{1}, c_{2}, \ldots\right)$ is the optimal choice. \Longrightarrow

$$
\frac{\partial E\left(c_{1}, c_{2}, \ldots\right)}{\partial c_{i}}=0, \quad \forall i
$$

The variational principle

The variational method, linear parametrization

For the sake of simplicity it is assumed that functions $\phi_{i}, i=1, \ldots$ are orthogonal to each other.

The optimal wavefunction can be approximated in a linear form, $\Psi=\sum_{i} c_{i} \psi_{i}$.

$$
\begin{aligned}
E & =\frac{\int \Psi^{*} \hat{\boldsymbol{H}} \Psi d \tau}{\int \Psi^{*} \Psi d \tau} \\
& =\frac{\sum_{i} \sum_{j} c_{i}^{*} c_{j} \int \psi_{i}^{*} \hat{\boldsymbol{H}} \psi_{j} d \tau}{\sum_{i} \sum_{j} c_{i}^{*} c_{j} \int \psi_{i}^{*} \psi_{j} d \tau}=\frac{\sum_{i} \sum_{j} c_{i}^{*} c_{j}\left\langle\psi_{i}\right| \hat{\boldsymbol{H}}\left|\psi_{j}\right\rangle}{\sum_{i} c_{i}^{2}}
\end{aligned}
$$

Using the condition of the minima, $\frac{\partial E}{\partial c_{k}}=0$, an eigenvalue equation can be derived:

$$
\sum_{l}\left\langle\psi_{k}\right| \hat{\boldsymbol{H}}\left|\psi_{l}\right\rangle c_{l}=E c_{k}
$$

In vector notation: $\mathbf{H c}=E \mathbf{c}$

The variational principle

- In the theoretical calculations the one-electron molecular orbitals, ϕ_{k} are chosen as the linear combination of atomic orbitals (LCAO), $\chi_{\mu}: \phi_{k}=\sum_{\mu} c_{k \mu} \chi_{\mu}$.
- In the simplest approximation the wavefunction is a Slater determinant composed from a set of LCAO's:
$\Psi_{\text {det }}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{\mathrm{N}}\right)=\frac{1}{N!} \hat{A}\left(\phi_{1}\left(\mathbf{r}_{1}\right) \phi_{2}\left(\mathbf{r}_{2}\right) \ldots \phi_{\mathrm{N}}\left(\mathbf{r}_{\mathrm{N}}\right)\right)$
- The optimal $c_{k \mu}$ molecular orbital coefficients are obtained from the variational principle. \Longrightarrow
- Hartree-Fock equations: $\hat{F} \phi_{i}=\varepsilon_{i} \phi_{i}$, where \hat{F} is a one-electron operator, $\hat{F}=\hat{h}+V_{\text {eff }}\left(\phi_{\mathbf{1}}, \phi_{2}, \ldots \phi_{N}\right)$ and ε_{i} is (some kind of) energy of the molecular orbital. Mean field approximation: the e-e interaction is described by a single averaged effective potential, $V_{\text {eff }}$, which depends on the molecular orbitals $\phi_{1}, \phi_{2}, \ldots \phi_{N}$.
- Pseudo-eigenvalue problem (\hat{F} depends on the molecular orbitals ϕ_{i}), \Longrightarrow iterative solution.

The variational principle
 The variational method，Configuration interaction

－The determinant wavefunction is not exact．
－Better approximation：linear combination of determinants．
－Hartree－Fock calculation \Longrightarrow occupied and virtual orbitals \Longrightarrow ground state， $\Psi_{\text {det }}^{0}$ ，and excited determinants，$\Psi_{d e t}^{1}, \Psi_{d e t}^{2}, \ldots$
－Configuration interaction wavefunction：$\Psi_{C I}=\sum_{i=0} c_{i} \Psi_{d e t}^{i}$
－c_{i} coefficients can be calcuated from the variational principle．
－Corrections with respect to the mean field approximation，electron correlation．

Condition of the extrama at $\mathbf{x}_{\mathbf{0}}$ of $f(\mathbf{x})=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ ：
$\left.\frac{\partial f}{\partial x_{1}}\right|_{\mathrm{x}=\mathrm{x}_{0}}=0,\left.\frac{\partial f}{\partial x_{2}}\right|_{\mathrm{x}=\mathrm{x}_{0}}=0, \ldots,\left.\frac{\partial f}{\partial x_{n}}\right|_{\mathrm{x}=\mathrm{x}_{0}}=0$
Where are the extrama of $f(\mathbf{x})$ if x_{1}, x_{2}, \ldots are not independent， but connected by the $g_{1}(\mathbf{x})=0, g_{2}(\mathbf{x})=0, \ldots, g_{m}(\mathbf{x})=0$ conditions？

Example：$f(x, y)=x+y$ and $g(x, y)=x^{2}+y^{2}-1=0$

The effect of temperature, Boltzmann distribution

 Mathematical background, conditional extremumLagrange multiplication method: a new function is introduced:

$$
\Lambda\left(\mathbf{x}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)=f(\mathbf{x})-\lambda_{1} g_{1}(\mathbf{x})-\lambda_{2} g_{2}(\mathbf{x}) \cdots-\lambda_{m} g_{m}(\mathbf{x})
$$

The necessary condition of the conditional extremum at $\mathrm{x}_{\mathbf{0}}$:

$$
\left.\frac{\partial \Lambda}{\partial x_{1}}\right|_{\mathbf{x}=\mathbf{x}_{0}, \lambda=\lambda_{\mathbf{0}}}=0,\left.\frac{\partial \Lambda}{\partial x_{2}}\right|_{\mathbf{x}=\mathbf{x}_{\mathbf{0}}, \lambda=\lambda_{\mathbf{0}}}=0, \ldots,\left.\frac{\partial \Lambda}{\partial x_{n}}\right|_{\mathbf{x}=\mathbf{x}_{0}, \lambda=\lambda_{\mathbf{0}}}=0
$$

and

$$
\left.\frac{\partial \Lambda}{\partial \lambda_{1}}\right|_{\mathbf{x}=\mathbf{x}_{0}, \lambda=\lambda_{\mathbf{0}}}=0,\left.\frac{\partial \Lambda}{\partial \lambda_{2}}\right|_{\mathbf{x}=\mathbf{x}_{\mathbf{0}}, \lambda=\lambda_{\mathbf{0}}}=0, \ldots,\left.\frac{\partial \Lambda}{\partial \lambda_{m}}\right|_{\mathbf{x}=\mathbf{x}_{\mathbf{0}}, \lambda=\lambda_{\mathbf{0}}}=0
$$

Equations in the above line are identical with the constains:

$$
g_{i}(\mathbf{x})=0 \text { for } \forall i \Longrightarrow f\left(\mathbf{x}_{\mathbf{0}}\right)=\Lambda\left(\mathbf{x}_{\mathbf{0}}, \lambda_{\mathbf{0}}\right) .
$$

In our example：$\Lambda(x, y, \lambda)=x+y-\lambda\left(x^{2}+y^{2}-1\right)$
$\frac{\partial \Lambda}{\partial x}=1+2 \lambda x=0, \frac{\partial \Lambda}{\partial y}=1+2 \lambda y=0 \Rightarrow x=-\frac{1}{2 \lambda}, y=-\frac{1}{2 \lambda}$
Substituting these into the condition：
$1=x^{2}+y^{2}=2 \frac{1}{4 \lambda^{2}} \Rightarrow x=y= \pm \frac{1}{\sqrt{2}}$

The effect of temperature, Boltzmann distribution
Mathematical background, Stirling's formula

Let's suppose that N is a large integer.

$$
\ln (N!)=\sum_{i=1}^{N} \ln (i) \approx \int_{1}^{N} \ln (x) d x=[x \ln (x)-x]_{1}^{N}
$$

$$
\ln (N!) \approx N \ln N-N
$$

The effect of temperature, Boltzmann distribution

Energy levels and populations

We will suppose that our system contains N particles distributed on energy levels $\varepsilon_{0}=0, \varepsilon_{1}, \varepsilon_{2}, \ldots$ with populations $n_{0}, n_{1}, n_{2}, n_{3}, \ldots$.

Internal energy:

$$
U=U_{0}+\sum_{i=0} n_{i} \varepsilon_{i}
$$

The effect of temperature, Boltzmann distribution

 Thermodynamic probabilityThe number of individual distributions belonging to the given $n_{0}, n_{1}, n_{2}, n_{3}, \ldots$ popluations are called the thermodynamic probability,

$$
W=\frac{N!}{n_{0}!n_{1}!n_{2}!n_{3}!\ldots} .
$$

Number of combinations with repetition.

Hypothesis: If N and n_{i} numbers are large (thermodynamic limit), the observed macroscopic state is defined by the W with the maximal value.

The effect of temperature, Boltzmann distribution

Extremum of the thermodynamic probability

As the $\ln (x)$ function is a monotonically increasing function, the extremum of W and $\ln (W)$ defines the same set of populations.

We have two constrains to take into account: $\sum_{i} n_{i}=N=$ const. and $\sum_{i} \varepsilon_{i} n_{i}=E=$ const. (isolated system)

Using the Lagrange multiplication method:
$\Lambda\left(n_{0}, n_{1}, n_{2}, \ldots, \alpha, \beta\right)=$
$\ln \left(W\left(n_{0}, n_{1}, n_{2}, \ldots\right)\right)-\beta\left(\sum_{i=0} \varepsilon_{i} n_{i}-E\right)+\alpha\left(\sum_{i=0} n_{i}-N\right)$

The effect of temperature, Boltzmann distribution

Extremum of the thermodynamic probability

Necessary condition for the maximum: $\frac{\partial \Lambda}{\partial n_{i}}=0$ for each n_{i}.
$\frac{\partial \ln (W)}{\partial n_{i}}-\beta \varepsilon_{i}+\alpha=0$
$\ln (W)=\ln (N!)-\sum_{i=0} \ln \left(n_{i}!\right) \approx$
$N \ln (N)-N-\sum_{i}\left(n_{i} \ln \left(n_{i}\right)-n_{i}\right)=N \ln (N)-\sum_{i} n_{i} \ln \left(n_{i}\right)$
$\frac{\partial \ln (W)}{\partial n_{i}} \approx-\ln \left(n_{i}\right)$, where $n_{i} \gg 1$
$n_{i}=e^{\alpha-\beta \varepsilon_{i}}$
$\sum_{i} n_{i}=e^{\alpha} \sum_{i} e^{-\beta \varepsilon_{i}}=N \Longrightarrow e^{\alpha}=\frac{N}{\sum_{i} e^{-\beta \varepsilon_{i}}}=\frac{N}{q}$
q is the partition function: $q=\sum_{i} e^{-\beta \varepsilon_{i}}$

The effect of temperature, Boltzmann distribution

Thermodynamic average

Boltzmann distribution:

$$
\begin{gathered}
n_{i}=\frac{N e^{-\beta \varepsilon_{i}}}{q} \\
E=\sum_{i} \varepsilon_{i} n_{i}=N \frac{\sum_{i} \varepsilon_{i} e^{-\beta \varepsilon_{i}}}{q}
\end{gathered}
$$

To find the β parameter these results should be applied to the ideal gas (see Atkins, ...) : $E=\frac{N}{\beta}, p=\frac{N}{V \beta} \Longrightarrow \beta=\frac{1}{k T}$
where p is the pressure. Compering this results with the equation of states for the ideal gas, we can see that $\beta=\frac{1}{k T}$.

Partition function

－$T \rightarrow 0 K, \beta \rightarrow \infty,\left(\varepsilon_{0}=0\right) \Longrightarrow q=\sum_{i} e^{-\beta \varepsilon_{i}}=1$ ，

$$
\begin{aligned}
& n_{0}=N \frac{e^{-\varepsilon_{0} \beta}}{1}=N \\
& n_{i}=N \frac{e^{-\varepsilon_{i} \beta}}{1}=0, \text { where } i \neq 0
\end{aligned}
$$

－$T \rightarrow \infty K, \beta \rightarrow 0$ ，supposing that the system has only two states，$q=\sum_{i} e^{-\beta \varepsilon_{i}}=2$ ， $\varepsilon_{0}=0$ and $\varepsilon_{1}>0 \Longrightarrow n_{0}=n_{1}=N / 2$.
－In general，the value of the partition function gives the number of states available for the system．

The effect of temperature, Boltzmann distribution

Partition function, separation of the degrees of freedom

- The energy of a molecule can be approximetly divided into more or less independent contributions: translation, rotation, vibration, electronic excitation, etc.,
$\varepsilon_{K}=\varepsilon_{i}^{t r}+\varepsilon_{j}^{r o t}+\varepsilon_{k}^{v i b}+\varepsilon_{l}^{e l}$.
- Partition function:

$$
q=\sum_{K} e^{-\beta \varepsilon_{K}}=\sum_{i, j, k, l} e^{-\beta\left(\varepsilon_{i}+\varepsilon_{j}+\varepsilon_{k}+\varepsilon_{l}\right)}=q^{t r} q^{r o t} q^{v i b} q^{e l}
$$

- Typical values for the partition functions (room temeperature, 1 mol gas): $q^{e l}=1, q^{v i b}=1.001, q^{\text {rot }}=10, q^{\text {tr }}=10^{6}$

Molecular symmetry

molecular symmetry operation：the initial and final states are indistinguishable
－physical properties are invariant with respect to symmetry operations
－for every operation there exists a corresponding element

Molecular symmetry

molecular symmetry operation：the initial and final states are indistinguishable
symmetry operations
－reflection
－rotation
－inversion
symmetry elements
－plane
－axis
－center

one symmetry element can generate more than one operation

for example：clockwise，anticlockwise rotation

Molecular symmetry

group

set of elements (e.g., a, b, c, \ldots) together with a binary operation (multiplication)
properties: identity $(a l=a)$, associativity $(a(b c)=(a b) c$), inverse(for any a there is a b for which $a b=I$), closure(if a and b are elements of the set than $a b$ is also in the set)
examples:

- the set of integers with addition (identity element?)
- the set $\{1, i,-1,-i\}$ with ordinary multiplication
- the set of matrices $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right),\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)\right\}$ with matrix multiplication

Molecular symmetry

group

set of elements together with a binary operation
the set $\{1, i,-1,-i\}$ with ordinary multiplication

- identity element, E, is the number 1
- associativity: $a(b c)=(a b) c$
- inverse and closure \rightarrow Cayley/group table

	1	i	-1	-i			1	i	-1	-i	
1	1	i	-1	-i		1	1	i	-1	-i	
i	i	-1	-i	1	\leftrightarrow	-i	-i	1	i	-1	\leftrightarrow
-1	-1	-i	1	i		-1	-1	-i	1	i	
-i	-i	1	i	-1		i	i	-1	-i	1	

	E	A	B	C
E	E	A	B	C
C	C	E	A	B
B	B	C	E	A
A	A	B	C	E

Molecular symmetry

group

set of elements together with a binary operation
the set of matrices $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right),\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)\right\}$ with matrix multiplication

- identity element, $E=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
- associativity: $A(B C)=(A B) C$
- inverse and closure \rightarrow Cayley/group table, $A=\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right), B=\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right), C=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$

	E	A	B	C
E	E	A	B	C
C	C	E	A	B
B	B	C	E	A
A	A	B	C	E

$$
C A=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Molecular symmetry

group

set of elements together with a binary operation
the sets $\{1, i,-1,-i\}$ and $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right),\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)\right\}$ are different representations of the same group

	E	A	B	C
E	E	A	B	C
C	C	E	A	B
B	B	C	E	A
A	A	B	C	E

Molecular symmetry

group

set of elements together with a binary operation
point group
the center of mass is invariant for the operations，i．e．，the symmetry elements have a common point
elements of the point group are the symmetry operations（not the symmerty elements）
binary operation is the successive application of two symmetry operations； $P Q \rightarrow$ first Q then P

Molecular symmetry

symmetry operations

（1）identity
（2）rotation
（3）reflection
（4）inversion
（5）improper rotation
symmetry tutorial website

Molecular symmetry

C_{n} denotes the n－fold axis of symmetry
the rotational angle，α ，is $360^{\circ} / n$ or $n=360^{\circ} / \alpha$
more than one rotational axis \Rightarrow greatest C_{n} is called the principal
axis

Molecular symmetry

reflection
σ denotes the mirror plane
－vertical，σ_{v} ，parallel to the principal axis（vertical planes bisects as many atoms as possible）
－horizontal，σ_{h} ，perpendicular to the principal axis
－dihedral，σ_{d} ，vertical and bisects two C_{2} axes（dihedral planes are such planes，which bisects as many bonds as possible）

Molecular symmetry
$\mathrm{H}_{2} \mathrm{O}, \sigma_{v}$

Molecular symmetry

benzene，σ_{v}, σ_{h} ，and σ_{d}
$\sigma_{h}:$ red
$\sigma_{v}:$ brown
$\sigma_{d}:$ yellow

Molecular symmetry

i denotes the center of symmetry
S_{n} denotes the n－fold improper axis of symmetry
S_{n}－two successive transformation：
－rotation by $360^{\circ} / n$
－reflection through a perpendicular plane
note that $\mathrm{S}_{2}=i$ and $\mathrm{S}_{1}=\sigma$

Molecular symmetry

hydrogen peroxide，$S_{2}=i$

Molecular symmetry

Staggered ethane，S_{6}

Molecular symmetry
flowchart

Molecular symmetry

applications

chiral molecules: S_{n} is absent (non-superimposable on its mirror image)
polar molecules: $C_{n}, C_{n v}$, and C_{s} (dipole moment)

Molecular symmetry

	E	C_{2}	σ_{v}	σ_{v}^{\prime}
E	E	C_{2}	σ_{v}	σ_{v}^{\prime}
C_{2}	C_{2}	E	σ_{v}^{\prime}	σ_{v}
σ_{v}	σ_{v}	σ_{v}^{\prime}	E	C_{2}
σ_{v}^{\prime}	σ_{v}^{\prime}	σ_{v}	C_{2}	E

Molecular symmetry

matrix representation of the $C_{2 v}$ group

$$
\begin{aligned}
& \boldsymbol{C}_{2}\left(\begin{array}{c}
p_{x}^{O} \\
p_{x}^{H_{1}} \\
p_{x}^{H_{2}}
\end{array}\right)=\left(\begin{array}{rrr}
-\mathbf{1} & 0 & 0 \\
\mathbf{0} & 0 & -\mathbf{1} \\
0 & -\mathbf{1} & 0
\end{array}\right)\left(\begin{array}{c}
p_{x}^{O} \\
p_{x}^{H_{1}} \\
p_{x}^{H_{2}}
\end{array}\right)=\left(\begin{array}{r}
-p_{x}^{O} \\
-p_{x}^{H_{2}} \\
-p_{x}^{H_{1}}
\end{array}\right) \\
& \sigma_{v}\left(\begin{array}{c}
p_{x}^{O} \\
p_{x}^{H_{1}} \\
p_{x}^{H_{2}}
\end{array}\right)=\left(\begin{array}{ccc}
\mathbf{1} & 0 & 0 \\
0 & 0 & \mathbf{1} \\
\mathbf{0} & \mathbf{1} & 0
\end{array}\right)\left(\begin{array}{c}
p_{x}^{O} \\
p_{x}^{H_{1}} \\
p_{x}^{H_{2}}
\end{array}\right)=\left(\begin{array}{c}
p_{x}^{O} \\
p_{x}^{H_{2}} \\
p_{x}^{H_{1}}
\end{array}\right) \\
& \sigma_{v}^{\prime}\left(\begin{array}{c}
p_{x}^{O} \\
p_{x}^{H_{1}} \\
p_{x}^{H_{2}}
\end{array}\right)=\left(\begin{array}{rrr}
-\mathbf{1} & 0 & 0 \\
0 & -\mathbf{1} & 0 \\
0 & 0 & -\mathbf{1}
\end{array}\right)\left(\begin{array}{c}
p_{x}^{O} \\
p_{x}^{H_{1}} \\
p_{x}^{H_{2}}
\end{array}\right)=\left(\begin{array}{c}
-p_{x}^{O} \\
-p_{x}^{H_{1}} \\
-p_{x}^{H_{2}}
\end{array}\right)
\end{aligned}
$$

The $p_{x}^{O}, p_{x}^{H_{1}}$, and $p_{x}^{\mathrm{H}_{2}}$ orbitals define a representation
$\boldsymbol{E}\left(\begin{array}{c}p_{x}^{O} \\ p_{x}^{H_{1}} \\ p_{x}^{H_{2}}\end{array}\right)=\left(\begin{array}{lll}\mathbf{1} & 0 & 0 \\ 0 & \mathbf{1} & 0 \\ 0 & 0 & \mathbf{1}\end{array}\right)\left(\begin{array}{c}p_{x}^{O} \\ p_{x}^{H_{1}} \\ p_{x}^{H_{2}}\end{array}\right)=\left(\begin{array}{c}p_{x}^{O} \\ p_{x}^{H_{1}} \\ p_{x}^{H_{2}}\end{array}\right)$
of the $C_{2 v}$ group.

Molecular symmetry

matrix representation of the $C_{2 v}$ group

Molecular symmetry

$$
\begin{aligned}
\boldsymbol{E}=\left(\begin{array}{l|ll}
1 & 0 & 0 \\
\hline 0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & \boldsymbol{C}_{2}=\left(\begin{array}{r|rr}
-1 & 0 & 0 \\
\hline 0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right) \\
\boldsymbol{\sigma}_{v}=\left(\begin{array}{l|ll}
1 & 0 & 0 \\
\hline 0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) & \sigma_{v}^{\prime}=\left(\begin{array}{r|rr}
-1 & 0 & 0 \\
\hline 0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \\
\mathbf{B D}=\left(\begin{array}{ll}
\bullet & \\
\hline & \bullet \\
\hline & \bullet \\
\hline
\end{array}\right) & \text { block diagonal matrix }
\end{aligned}
$$

p_{x}^{O} does not mix with $p_{x}^{H_{1}}$ or $p_{x}^{H_{2}}$

Molecular symmetry

reducible representations

$$
\begin{array}{ll}
\Gamma^{(3)}=\left(\begin{array}{l|ll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & \left(\begin{array}{r|rr}
-1 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right)
\end{array} \begin{array}{ll}
\Gamma^{(1)} & \left(\begin{array}{l|ll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
\end{array}\left(\begin{array}{ll}
-1 & 0 \\
0 & 0 \\
0 & -1
\end{array} 0\right.
$$

$$
\Gamma^{(3)}=\Gamma^{(1)} \oplus \Gamma^{(2)}
$$

- $\boldsymbol{\Gamma}^{(3)}$ - a 3-dimensional reducible representation
- $\Gamma^{(1)}$ - a 1-dimensional irreducible representation
- $\Gamma^{(2)}$ - a 2-dimensional (reducible) representation

Molecular symmetry

how to reduce $\Gamma^{(2)}$ further

$p_{x}^{H_{1}}$ and $p_{x}^{H_{2}}$ are degenerate orbitals let's try their linear combinations

$$
\begin{aligned}
& p_{+}=p_{x}^{H_{1}}+p_{x}^{H_{2}} \\
& p_{-}=p_{x}^{H_{1}}-p_{x}^{H_{2}}
\end{aligned}
$$

$$
\begin{array}{cc}
\boldsymbol{E}\binom{p_{+}}{p_{-}}=\left(\begin{array}{ll}
\mathbf{1} & 0 \\
0 & 1
\end{array}\right)\binom{p_{+}}{p_{-}}=\binom{p_{+}}{p_{-}} \quad \boldsymbol{C}_{2}\binom{p_{+}}{p_{-}}=\left(\begin{array}{rr}
-\mathbf{1} & 0 \\
0 & 1
\end{array}\right)\binom{p_{+}}{p_{-}}=\binom{-p_{+}}{p_{-}} \\
\boldsymbol{\sigma}_{\nu}\binom{p_{+}}{p_{-}}=\left(\begin{array}{cc}
\mathbf{1} & 0 \\
\mathbf{0} & -\mathbf{1}
\end{array}\right)\binom{p_{+}}{p_{-}}=\binom{p_{+}}{-p_{-}} \quad \boldsymbol{\sigma}_{\nu}^{\prime}\binom{p_{+}}{p_{-}}=\left(\begin{array}{rr}
-\mathbf{1} & 0 \\
0 & -\mathbf{1}
\end{array}\right)\binom{p_{+}}{p_{-}}=\binom{-p_{+}}{-p_{-}}
\end{array}
$$

Molecular symmetry

reducible representations

$$
\begin{aligned}
& \left.\begin{array}{llcc}
\Gamma^{(2)} & = & \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \\
\Gamma^{(1)} & = & 1 & -1
\end{array} \begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \quad\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

[^0]
Molecular symmetry

irreducible and reducible representations

$$
\left(\begin{array}{ccccc}
a_{11} & a_{12} & \ldots & a_{1 n-1} & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n-1} & a_{2 n} \\
& \ddots & & & \\
\vdots & & a_{i i} & & \vdots \\
& & & \ddots & \\
a_{n-11} & a_{n-12} & \ldots & a_{n-1 n-1} & a_{n-1 n} \\
a_{n 1} & a_{n 2} & \ldots & a_{n n-1} & a_{n n}
\end{array}\right) \begin{aligned}
& \text { • character: } \\
& \text { trace of the matrix, } \\
& \text { tra }=\sum_{i} a_{i i} \\
& \text { • characters do not depend on } \\
& \text { the form of representation: } \\
& \text { the matrices defined by } p_{x}^{H_{1}} \\
& \text { and } p_{X}^{H_{2}} \text { have the same } \\
& \text { characters than the ones } \\
& \\
&
\end{aligned}
$$

Molecular symmetry

character tables, irreducible representations, symmetry operations

Character tables: collection of the possible transformation properties of wave functions under symmetry operations

$C_{2 v}$	E	C_{2}	σ_{v}	σ_{v}^{\prime}	lin., rot.	quad.
A_{1}	1	1	1	1	z	x^{2}, y^{2}, z^{2}
A_{2}	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	x, R_{y}	xz
B_{2}	1	-1	-1	1	y, R_{x}	yz
$\Gamma^{(3)}$	3	-1	1	-3		

$$
\begin{aligned}
E & =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
C_{2} & =\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right) \\
\sigma_{v} & =\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
\sigma_{v}^{\prime} & =\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
\end{aligned}
$$

A_{1} is the so-called totally symmetric representation.

Molecular symmetry

Class
－Symmetry operations fall into the same class if they are of the same type（for example，rotations）and can be transformed into one another by a symmetry operation of the group：a and b are in the same class if there is a group element c for which $c a{ }^{-1}=b$.
－Number of irreducible representations $=$ number of classes
－The value of character is uniform in a class．

Molecular symmetry

irreducible and reducible representations, reduction formula

$$
n_{i}=\frac{1}{h} \sum_{\text {classes }} g_{c} \chi_{i r r} \chi_{r e d}
$$

- n_{i} number of times the irreducible representation occurs
- h order of the group
- g_{c} number of operations in the class
- $\chi_{i r r}$ character of the irreducible representation
- $\chi_{\text {red }}$ character of the reducible representation

Molecular symmetry

the $C_{2 v}$ group character table

$C_{2 v}$	E		
C_{2}	σ_{v}		
A_{1}	1		
1	1		
σ_{v}^{\prime}	1		
lin., rot.	z quad.	\quad	x^{2}, y^{2}, z^{2}
:---	$\quad \Rightarrow \Gamma^{(3)}=A_{2} \oplus 2 B_{1}$		

Molecular symmetry

Two molecular orbitals of formaldehyde

(b)

(c)

	E	C_{2}	$\sigma_{x z}$	$\sigma_{y z}$	irrep.
(b)	+1	+1	+1	+1	A_{1}
(c)	+1	-1	+1	-1	B_{1}

Molecular symmetry

Assignment of translations and rotations

	E	C_{2}	$\sigma_{x z}$	$\sigma_{y z}$	irrep．
T_{z}	+1	+1	+1	+1	A_{1}
T_{y}	+1	-1	-1	+1	B_{2}
T_{x}	+1	-1	+1	-1	B_{1}

Rotations can be assigned similarly：

	E	C_{2}	$\sigma_{x z}$	$\sigma_{y z}$	irrep．
R_{x}	+1	-1	-1	+1	B_{2}
R_{y}	+1	-1	+1	-1	B_{1}
R_{z}	+1	+1	-1	-1	A_{2}

Molecular symmetry

 character tablesTable 12.2* The $C_{2 v}$ character table

$C_{2 \mathrm{v}}, 2 m m$	E	C_{2}	σ_{v}	$\sigma_{\mathrm{v}}^{\prime}$	$h=4$	
$\mathrm{~A}_{1}$	1	1	1	1	z	z^{2}, y^{2}, x^{2}
$\mathrm{~A}_{2}$	1	1	-1	-1		$x y$
$\mathrm{~B}_{1}$	1	-1	1	-1	x	$z x$
$\mathrm{~B}_{2}$	1	-1	-1	1	y	$y z$

Table 12.3* The $C_{3 v}$ character table

$C_{3 \mathrm{v}}, 3 m$	E	$2 C_{3}$	$3 \sigma_{\mathrm{v}}$	$h=6$	
$\mathrm{~A}_{1}$	1	1	1	z	$z^{2}, x^{2}+y^{2}$
$\mathrm{~A}_{2}$	1	1	-1		
E	2	-1	0	(x, y)	$\left(x y, x^{2}-y^{2}\right),(y z, z x)$

Molecular symmetry

irreducible and reducible representations

$D_{3 \mathrm{~h}}, \overline{6} 2 m$	E	σ_{h}	$2 C_{3}$	$2 S_{3}$	$3 C_{2}^{\prime}$	$3 \sigma_{\mathrm{v}}$	$h=12$	
$\mathrm{~A}_{1}^{\prime}$	1	1	1	1	1	1	$z^{2}, x^{2}+y^{2}$	R_{z}
$\mathrm{~A}_{2}^{\prime}$	1	1	1	1	-1	-1		
$\mathrm{~A}_{1}^{\prime \prime}$	1	-1	1	-1	1	-1		
$\mathrm{~A}_{2}^{\prime \prime}$	1	-1	1	-1	-1	1	z	
E^{\prime}	2	2	-1	-1	0	0	$(x, y),\left(x y, x^{2}-y^{2}\right)$	
$\mathrm{E}^{\prime \prime}$	2	-2	-1	1	0	0	$(x z, y z)$	$\left(R_{x}, R_{y}\right)$

E.g., eclipsed ethane.

Molecular symmetry

Vanishing integrals

Let＇s suppose we have two functions describing some properties of a molecule，f_{1} and f_{2}（e．g．，two molecular orbitals）．The value of integral $I=\int f_{1} f_{2} d \tau$ can be non－zero only if integrand $f_{1} f_{2}$ must have symmetry species A_{1} ．＂If the integrand changed sign under a symmetry operation，the integral would be the sum of equal and opposite contributions，and hence would be zero．（Atkins book）＂

E．g．，$f_{1}=\psi_{(b)}$ and $f_{2}=\psi_{(c)}$（see page 249）．

	E	C_{2}	$\sigma_{x z}$	$\sigma_{y z}$	irrep．
$\psi_{(b)}$	+1	+1	+1	+1	A_{1}
$\psi_{(c)}$	+1	-1	+1	-1	B_{1}
$\psi_{(b)} \psi_{(c)}$	+1	-1	+1	-1	B_{1}

As the $\psi_{(b)} \psi_{(c)}$ transforms as B_{1} than the $I=\int \psi_{(b)} \psi_{(c)} d \tau=0$ ．

Molecular symmetry

Vanishing integrals，dipol moment

$$
\mu=\int \rho(\mathbf{r}) \mathbf{r} d \mathbf{r}^{3}
$$

Here $\rho(\mathbf{r})$ is the charge density of the molecule．It is a totally symmetric quantity（transforms as A_{1} ）．To have a non－vanishing integral， $\mathbf{r}(x, y, z)$ must contain a component which also transforms as A_{1} ．（See the character tables！）

Optical spectroscopy

general remarks

Optical spectroscopy：from microwave to ultraviolet

Optical spectroscopy

general remarks
－Theoretical background：molecular Schrödinger equation
－Separate treatment of the electonic and nuclei motions：
Born－Oppenheimer approximation
－Molecular degrees of freedom：electronic（UV－visible sp．）， vibrational（IR sp．），rotational（microwave sp．），and translational

Optical spectroscopy

general remarks
the origin of spectral lines is the interaction of electromagnetic wave and matter

photon

－absorption（ $h \nu$ absorbed by the molecule：low \rightarrow high）
－emission（ $h \nu$ emitted by the（molecule：high \rightarrow low）
－scattering elastic（Rayleigh），inelastic（Stokes，anti－Stokes）

Optical spectroscopy

general remarks

- atomic spectroscopy - electronic transitions
- rotation
- vibration (accompanied by rotational lines)
- electronic (accompanied by rotational and vibrational lines)

Optical spectroscopy

Units for the absorbed light
－UV－visible spectra：
the wavelength of the absorbed light（ λ ，in nm［typical range：
$200 \mathrm{~nm}-1000 \mathrm{~nm}]$ ）
－Infrared spectra：
the wavenumber of the absorbed light
（ ν^{*} ，in cm^{-1}［in the order of $100-1000 \mathrm{~cm}^{-1}$ ］）
－Microwave spectra：
frequency of the absorbed light
（ $\nu=\frac{c}{\lambda}$ ，in MHz or GHz ）

Optical spectroscopy

general remarks

The observed spectra do not consist of discrete lines rather are continuous functions, $I(\lambda)$, where I is the intensity as a function of wavelength.

Optical spectroscopy

Quantities characterizing the intensity

$$
\begin{aligned}
& d l=-\kappa c l d x, \text { where } \kappa \text { is proportional to the molar } \\
& \text { absorption(see later) and } c \text { is the molar concentartion. } \\
& \frac{d I}{l}=-\kappa c d x \\
& \int_{l_{0}}^{l} \frac{d l}{l}=-\kappa c \int_{0}^{L} d x \\
& \ln \left(\frac{l}{l_{0}}\right)=-\kappa c L, \text { where } \kappa=\epsilon \ln 10
\end{aligned}
$$

line intensities

- transmittance: $T=I / I_{0}$ transmitted/incident intensity
- Beer-Lambert law: $I=I_{0} 10^{-\epsilon c L}$ (ϵ - molar absorption coefficient)
- absorbance: $A=\log _{10}\left(I_{0} / I\right)\left(A=-\log _{10} T\right)$
- Beer-Lambert law with absorbance: $A=\epsilon c L$

The absorbance is proportional to the concentration!

Optical spectroscopy

Quantities characterizing the spectral bands

- The properties of the maximum are given as:
$\lambda_{\text {max }}, \nu_{\max }$, or $\nu_{\text {max }}^{*}$ and the corresponding $A_{\text {max }}$, or $\epsilon_{\text {max }}$.
$\epsilon_{\max }$ is independent of the concentration!
- The intensity of a spectral band is defined by the area under the band: $\int_{\nu_{1}}^{\nu_{2}} \epsilon(\nu) d \nu$
- The width of a band is characterized by its full width at half maximum (FWHM):
$\Delta \lambda_{\max }, \Delta \nu_{\max }$, or $\Delta \nu_{\text {max }}^{*}$ is the distance between the spectral points corresponding to $\frac{A_{\text {max }}}{2}$

Optical spectroscopy

UV-visible spectrum of the "Nile Blue A" dye
solvent: acetonitrile, high absorbtion \Longrightarrow dilute solution ($c=10^{-5} \mathrm{~mol} / \mathrm{l}$)

Optical spectroscopy

Interpretation of optical spectra

Schrödinger equation: $\hat{H} \Psi(\tau)=E \Psi(\tau)$
Solutions: $\Psi_{0}(\tau), \Psi_{1}(\tau), \Psi_{2}(\tau), \ldots$ wave functions and the corresponding $E_{0}, E_{1}, E_{2}, \ldots$

The positions of the maxima correspond to the differences of eigenvalues derived from the Schrödinger equation.

Optical spectroscopy

Interpretation of optical spectra

The band intensity reflects the probability of absorption of a photon.

The collision of a photon and a molecule in state m
Bimolecular reaction: $M_{m}+h \nu \rightarrow M_{n}$

Optical spectroscopy

Bimolecular reaction，rate equation

$$
-\frac{d N_{m}}{d t}=A_{m n} N_{m} \rho_{\nu}
$$

－N_{m} ：concentration of molecules in state m
－ρ_{ν} ：concentration of photons
－$A_{m n}$ ：rate constant for the absorption
$A_{m n}$ interrelates the observed band intensities to wave functions Ψ obtained from the Schrödinger equation
Relation to the intensity： $\int_{\nu_{1}}^{\nu_{2}} \epsilon(\nu) d \nu=\frac{8 \pi N_{A} h^{2} c^{4} \nu_{m n}^{4}}{\ln 10} A_{m n}$
－c：speed of light

Optical spectroscopy

transition moment

Relation to the wave functions: ${ }^{2}$
$A_{m n} \propto\left|R_{m n}\right|^{2}$,
where $\left|R_{m n}\right|^{2}$ is the square of the transition moment.
$\mathbf{R}_{m n}=\int \Psi_{m}^{*}(\tau) \hat{\mu} \Psi_{n}(\tau) d \tau$, where the elementes of vector $\hat{\mu}$ has componenets $\mu_{x}=\sum_{i} e_{i} x_{i}, \mu_{y}=\sum_{i} e_{i} y_{i}$, and $\mu_{z}=\sum_{i} e_{i} z_{i}$.

$$
{ }^{2} A_{m n}=\frac{2(2 \pi)^{3} c^{4} \nu^{4}}{\left(4 \pi \epsilon_{0}\right) 3 h}\left|R_{m n}\right|^{2}
$$

Optical spectroscopy

Linewidth

In our model the following assumptions have been made：
－the molecule is isolated from the other ones，
－the coordinate system is fixed to the molecule，that is，the motion of the molecule with respect to the environment is not considered，
－the lifetimes of the states are infinite（＂stationary states＂）．

Optical spectroscopy

Linewidth

The broadening of spectral lines can be traced back to the following reasons:

1. Interaction of the molecules. The energy levels of molecules are perturbed by other molecules located closely, thus the energy levels broaden. This effect is not quantized. The linewidth is determined by this effect in solids, liquids, and high-pressure gases.

Optical spectroscopy

Linewidth

2. Doppler effect: the molecules are traveling with various velocities and in various directions. The absorption frequency is modified by their velocity relative to the detector

$$
\nu^{\prime}=\nu\left(1 \pm \frac{v}{c}\right)
$$

The shape of the band reflects the (non-quantized) velocity distribution of the molecules.

Equipartition theorem:
$\left\langle E_{k i n}\right\rangle=\frac{1}{2} m\left\langle v^{2}\right\rangle=\frac{3}{2} k_{B} T \Longrightarrow v \propto \sqrt{k_{B} T} \Longrightarrow \delta \nu \propto \frac{\nu}{c} \sqrt{k_{B} T} \Longrightarrow$
low temperature (FWHM decreases)

Optical spectroscopy

Linewidth

3. Natural line broadening (Fourier-limit)

The finite lifetime of the molecular states limits the accuracy of the observed energy levels.

Broadening of the initial state: $\tau_{m} \Delta E_{m} \geq h$
Broadening of the final state: $\tau_{n} \Delta E_{n} \geq h$
Similar to the Heisenberg uncertainty principle.
low pressure \Longrightarrow deactivation decreases $\Longrightarrow \tau$ increases
It determines the minimal achievable linewidth!

Rotational spectroscopy

Model：rigid rotor

It consists of point masses（the nuclei）and it is
－a rotor（it rotates about its center of mass）
－rigid（it is not deformed by centrifugal forces，that is，bond distances and angles are constant）

Rotational spectroscopy

Moment of inertia
moment of inertia: $I=\sum_{i} m_{i} r_{i}^{2}$
r_{i} is the distance to the rotation axis. (Not to the center of mass!)

Rotational spectroscopy

Principal axes of inertia

a, b, c-Cartesian coordinate system
axis a : the moment of inertia has its minimum value about it
axis c : the moment of inertia has its maximum value about it axis b : the third perpendicular axis

$$
I_{a} \leq I_{b} \leq I_{c}
$$

Rotational spectroscopy

Classification of rotors

principal axes of inertia: $I_{a}<I_{b}<I_{c}$
(1) linear $I_{a}=0, I_{b}=I_{c}=I$
(2) spherical top $I_{a}=I_{b}=I_{c}=I$
(3) symmetric top

- prolate $I_{a}=I_{\|}, I_{b}=I_{c}=I_{\perp}$
- oblate $I_{a}=I_{b}=I_{\perp}, I_{c}=I_{\|}$

(1) asymmetric top $I_{a} \neq I_{b} \neq I_{c}$

Rotational spectroscopy

Linear rotor: HCN

Rotational spectroscopy

Prolate symmetric rotor：methyl iodide

（b）

Rotational spectroscopy

Oblate symmetric rotor：benzene

Rotational spectroscopy

Spherical rotor: methane

Rotational spectroscopy

Spherical rotor：sulfur hexafluoride

三 \quad 〇Qの

Rotational spectroscopy

Asymmetric rotor：formaldehyde

Rotational spectroscopy

Asymmetric rotor: acrolein

(9)

Rotational spectroscopy

Asymmetric rotor: pyrazine

(h)

Rotational spectroscopy

rotational spectroscopy, energy levels
recall the particle on the sphere problem:

$$
\begin{aligned}
\text { classical } \rightarrow E & =\frac{1}{2} m v^{2}=\frac{1}{2} \frac{(m r v)^{2}}{m r^{2}}=\frac{\ell^{2}}{2 l} \\
\text { quantum } \rightarrow E_{\ell} & =\ell(\ell+1) \frac{\hbar^{2}}{2 I}, \ell=0,1,2, \ldots, m_{\ell} \in[-\ell, \ell]
\end{aligned}
$$

$$
\begin{aligned}
E_{i} & =\frac{1}{2} I_{i} \omega_{i}^{2}=\frac{J_{i}^{2}}{2 I_{i}}, i \in(a, b, c) \\
E & =\sum_{i} \frac{J_{i}^{2}}{2 I_{i}}, i \in(a, b, c)
\end{aligned}
$$

Rotational spectroscopy

rotational spectroscopy, energy levels

spherical tops: $I_{a}=I_{b}=I_{c}=I$

$$
\begin{aligned}
\text { classical } \rightarrow E & =\frac{J_{a}^{2}+J_{b}^{2}+J_{c}^{2}}{2 I}=\frac{J^{2}}{2 I} \\
\text { quantum } \rightarrow E_{J} & =J(J+1) \frac{\hbar^{2}}{2 I}, J=0,1,2, \ldots
\end{aligned}
$$

rotational constant: $B=\frac{1}{h c} \times \frac{\hbar^{2}}{2 l}$

$$
\begin{aligned}
F(J)=\frac{E_{J}}{h c} & =B J(J+1), J=0,1,2, \ldots \\
\tilde{\nu} & =F(J+1)-F(J)=2 B(J+1)
\end{aligned}
$$

Rotational spectroscopy

rotational spectroscopy, energy levels

symmetric tops: $I_{a}=I_{\|}, I_{b}=I_{c}=I_{\perp}, I_{\|}$is called the principal axis

$$
\begin{aligned}
\text { classical } \rightarrow E & =\frac{J_{a}^{2}}{2 I_{\|}}+\frac{J_{b}^{2}+J_{c}^{2}}{2 I_{\perp}} \\
J^{2} & =J_{a}^{2}+J_{b}^{2}+J_{c}^{2} \\
E & =\frac{J_{a}^{2}}{2 I_{\|}}+\frac{J^{2}-J_{a}^{2}}{2 I_{\perp}}=\frac{J^{2}}{2 I_{\perp}}+\left\{\frac{1}{2 I_{\|}}-\frac{1}{2 I_{\perp}}\right\} J_{a}^{2} \text { (prolate) } \\
\text { quantum } \rightarrow E_{J, K} & =J(J+1) \frac{\hbar^{2}}{2 I_{\perp}}+\left\{\frac{\hbar^{2}}{2 I_{\|}}-\frac{\hbar^{2}}{2 I_{\perp}}\right\} K^{2} \\
J & =0,1,2, \ldots K=0, \pm 1, \pm 2, \ldots, \pm J \\
F(J, K) & =B J(J+1)+(A-B) K^{2} \text { with } B=\frac{\hbar}{4 \pi c I_{\perp}} \text { and } A=\frac{\hbar}{4 \pi c l_{\|}}
\end{aligned}
$$

Rotational spectroscopy

rotational spectroscopy, energy levels

$$
\begin{aligned}
F(J, K) & =B J(J+1)+(A-B) K^{2} \\
B & =\frac{\hbar}{4 \pi c l_{\perp}} \text { and } A=\frac{\hbar}{4 \pi c l_{\|}}
\end{aligned}
$$

Rotational spectroscopy

rotation in the laboratory-fixed frame

In general, the total angular momentum (J) can be oriented in
$2 J+1$ directions,
$M_{J}=-J,-J+1, \ldots, J-1, J$.
M_{J} : magnetic quantum number.

The wave function depends on quantum numbers: J, K, and M_{J}
(a)

(b)

Rotational spectroscopy

rotational spectroscopy, energy levels

symmetric tops:

$$
\begin{aligned}
F(J, K) & =B J(J+1)+(A-B) K^{2} \\
J & =0,1,2, \ldots K=0, \pm 1, \pm 2, \ldots, \pm J
\end{aligned}
$$

linear rotors: $K=0$ (classical: $E=\frac{J_{b}^{2}}{2 I_{b}}+\frac{J_{c}^{2}}{2 I_{c}}=\frac{J^{2}}{2 I}$, where $I=I_{b}=I_{c}$)

$$
\begin{aligned}
F(J) & =B J(J+1), J=0,1,2, \ldots \\
B & =\frac{\hbar}{4 \pi c l}
\end{aligned}
$$

spherical tops: $A=B$

$$
\begin{aligned}
F(J) & =B J(J+1), J=0,1,2, \ldots \\
B & =\frac{\hbar}{4 \pi c l}
\end{aligned}
$$

Rotational spectroscopy

rotational spectroscopy, energy levels

degeneracy of the levels

- symmetric tops: $2(2 J+1)$, for $K \neq 0$, otherwise $2 J+1$

$$
F(J, K)=B J(J+1)+(A-B) K^{2}
$$

- linear rotor: $2 J+1$

$$
F(J)=B J(J+1), K=0
$$

- spherical tops: $(2 J+1)(2 J+1)$

$$
F(J)=B J(J+1), A=B
$$

Rotational spectroscopy

Linear rotor, selection rules

- The molecule must have a permanent dipole moment ${ }^{3}\left(C_{n}\right.$,
$\left.C_{n v}, C_{s}\right), \mu_{\text {perm }} \neq 0$. E.g., there is no observable rotation spectra of the $\mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{Cl}_{2}$ moleculs, but $\mathrm{CO}, \mathrm{HCl}, \mathrm{HCN}$ moleculs have rotational spectra.
- $\Delta J= \pm 1$

$$
\begin{aligned}
& \Delta E(J \rightarrow J+1)=h \nu=\frac{\hbar^{2}}{2 I}((J+1)(J+2)-J(J+1))= \\
& \frac{\hbar^{2}}{J}(J+1)=2 B(J+1)
\end{aligned}
$$

[^1] orientations of the molecule wrt the photon: $\left|\mu_{J_{J} J+1}\right|^{2}=\left|\frac{J+1}{2 J+1}\right|^{2} \mu_{\text {parm }}$

Rotational spectroscopy

Linear rotor, spectra

Smoothly increasing distances between the energy levels.
The spectrum is composed of equidistant lines.

		Energy levels	
J	$\mathrm{J}(\mathrm{J}+1)$		4
0	0 2	8	
1			3
2			
	6	6	
3			2
4		4	
		2	

Rotational spectroscopy

Linear rotor, spectra

Absorption frequencies: equidistant lines.
Intensity: first increases, then decreases.

Rotational spectroscopy

Linear rotor, spectra

- Two opposing effects.
- Boltzman's distribution: The most populated state is the ground state, the population of the states decreases with increasing J, thus peaks of various intensities are expected.
- M_{J} quantum number: The number of degenerate states increases with increasing J. (The statistical weight increases.)
- The sum of the two contributions results in the maximum of intensities (Temperature-dependent!)

Rotational spectroscopy

rotational spectroscopy, population

intensities depend on the population of the lower state

$$
\text { Boltzmann: } \begin{aligned}
\frac{N_{J}}{N} & =\frac{e^{-\epsilon_{J} / k T}}{q} \\
\frac{N_{J}}{N} & =g_{J} \frac{e^{-h c B J(J+1) / k T}}{q}\left(\text { the level of degeneracy can be also considered: } g_{J}\right. \text {) } \\
\frac{N_{J}}{N} & =(2 J+1) \frac{e^{-h c B J(J+1) / k T}}{q} \\
\frac{d N_{J} / N}{d J} & =0 \text { at the maximum }
\end{aligned}
$$

$$
\frac{d}{d J}\left\{(2 J+1) e^{-h c B J(J+1) / k T}\right\}=0
$$

$$
2 e^{-h c B J(J+1) / k T}+(2 J+1) \frac{-h c B}{k T}(2 J+1) e^{-h c B J(J+1) / k T}=0
$$

$$
\begin{aligned}
(2 J+1)^{2} & =\frac{2 k T}{h c B} \\
J_{\max } & \approx \sqrt{\frac{k T}{2 h c B}}-\frac{1}{2}
\end{aligned}
$$

Rotational spectroscopy

rotational spectroscopy，CO molecule

$$
\begin{aligned}
F(J) & =B J(J+1), J=0,1,2, \ldots \\
\tilde{\nu}(J+1 \leftarrow J) & =F(J+1)-F(J)=2 B(J+1), \text { and } B=\frac{\hbar}{4 \pi c l}
\end{aligned}
$$

Isotope effects：${ }^{13} \mathrm{C},{ }^{18} \mathrm{O}$

Figure 5．3 Far－infrared spectrum of CO showing transitions with $J^{\prime \prime}=3$ to 9．（Reproduced，with permission，from Fleming，J．W．and Chamberlain，J．，Infrared Phys．，14，277，1974．Copyright 1974 Pergamon Press）

Rotational spectroscopy

rotational spectroscopy, population

Rotational spectroscopy

rotational spectroscopy，population

Frequency／GHz

Figure 5．4 Part of the microwave spectrum of cyanodiacetylene．（The many＇satellite＇transitions in each group are due to the molecule being in not only the zero－point vibrational state but also a multitude of excited vibrational states．）（Reproduced，with permission，from Alexander，A．J．，Kroto， H．W．and Walton，D．R．M．，J．Mol．Spectrosc．，62，175，1967）

Rotational spectroscopy

Spherical rotor，selection rules
－The molecule must have a permanent dipole moment，

$$
\mu_{\text {perm }} \neq 0
$$

－\Longrightarrow For each spherical rotor $\mu_{\text {perm }}=0$ ，hence there is no rotational spectrum．

Rotational spectroscopy

- The molecule must have a permanent dipole moment, $\mu_{\text {perm }} \neq 0$.
- $\Delta J= \pm 1$
- $\Delta K=0$

Because of the last rule, equidistant lines are expected:
$F(J+1)-F(J)=2 B(J+1)$
In practice a slight splitting wrt K is observed. $(\mathrm{K}=0 \rightarrow 0$, $\mathrm{K}=1 \rightarrow 1, \mathrm{~K}=2 \rightarrow 2$)

Rotational spectroscopy

Symmetric rotor, selection rules
Rotational energy levels of prolate (a) and oblate (b) symmetric rotors

Rotational spectroscopy

Symmetric rotor, selection rules

Splitting wrt $\mathrm{K}(\mathrm{K}=0 \rightarrow 0, \mathrm{~K}=1 \rightarrow 1, \mathrm{~K}=2 \rightarrow 2)$

Splitting of the $\mathrm{J}=7 \rightarrow \mathrm{~J}=8$ transition wrt K in the rotational spectrum of $\mathrm{SiH}_{3} \mathrm{NCS}$

Rotational spectroscopy

Asymmetric rotor

Transition between the prolate and oblate symmetric rotors.
Asymmetry parameter:

$$
\kappa=\frac{2 I_{a} I_{c}-I_{b}\left(I_{c}+I_{a}\right)}{I_{b}\left(I_{c}-I_{a}\right)}
$$

Prolate symmetric
$I_{a}<I_{b}=I_{c}$
$\kappa=\frac{2 l_{a} I_{b}-I_{b}\left(l_{b}+l_{a}\right)}{I_{b}\left(l_{b}-I_{a}\right)}=-1$

Oblate symmetric
$I_{a}=I_{b}<I_{c}$
$\kappa=\frac{2 I_{a} I_{c}-I_{a}\left(I_{c}+I_{a}\right)}{I_{a}\left(I_{c}-I_{a}\right)}=1$

Rotational spectroscopy

Energy levels of the asymmetric rotor
（a）prolate symmetric rotor，（b）oblate symmetric rotor，κ asymmetry parameter

Rotational spectroscopy

Determination of molecular geometries from rotational spectra

Rotational transitions are located in the microwave（ $1 \mathrm{~mm}-1 \mathrm{~cm}$ ）and far infrared（ $0.03-1 \mathrm{~mm}$ ）regions．

On the abscissa，instead of λ ：
－frequency (ν) in MHz or GHz in the microwave region
－wavenumbers $\left(\nu^{*}\right)$ in cm^{-1} in the far IR region

Rotational spectroscopy

Determination of molecular geometries from rotational spectra

Molecular geometry

- coordinates of nuclei (In rotational spectroscopy the coordinates are given wrt the principal axes of inertia a, b, and c.)
or:
- bond lengths and bond angles calculated from the coordinates of the nuclei

Rotational spectroscopy

Determination of molecular geometries from rotational spectra

Rotational spectroscopy

Determination of molecular geometries from rotational spectra

How many independent bond lengths and angles does a $\mathrm{H}_{2} \mathrm{O}$ molecule have？

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{H}_{1}-\mathrm{O}\right) \\
& \theta\left(\mathrm{H}_{1}-\mathrm{O}-\mathrm{H}_{2}\right)
\end{aligned}
$$

The other parameters can be calculated from these ones if the molecule is regarded as an isosceles triangle．
$\mathrm{Pl} . \mathrm{d}\left(\mathrm{H}_{2}-\mathrm{O}\right)=\mathrm{d}\left(\mathrm{H}_{1}-\mathrm{O}\right)$
$\mathrm{d}\left(\mathrm{H}_{1}-\mathrm{H}_{2}\right)=2 \mathrm{~d}\left(\mathrm{H}_{1}-\mathrm{O}\right) \cos \left[\theta\left(\mathrm{H}_{1}-\mathrm{O}-\mathrm{H}_{2}\right) / 2\right]$

Rotational spectroscopy

Determination of molecular geometries from rotational spectra

How many independent bond lengths and angles does a $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ molecule have?

$\mathrm{d}\left(\mathrm{C}_{1}-\mathrm{Cl}\right)$,
$d\left(C_{1}-C_{2}\right), d\left(C_{2}-C_{3}\right), d\left(C_{3}-C_{4}\right)$,
$\mathrm{d}\left(\mathrm{C}_{2}-\mathrm{H}_{2}\right), \mathrm{d}\left(\mathrm{C}_{3}-\mathrm{H}_{3}\right), \mathrm{d}\left(\mathrm{C}_{3}-\mathrm{H}_{3}\right)$,
$\left.\theta \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}\right), \theta\left(\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{4}\right), \theta\left(\mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{5}\right), \theta\left(\mathrm{ClC}_{1} \mathrm{C}_{2}\right)$,
$\theta\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{C}_{3}\right), \theta\left(\mathrm{H}_{3} \mathrm{C}_{3} \mathrm{C}_{4}\right), \theta\left(\mathrm{H}_{4} \mathrm{C}_{4} \mathrm{C}_{5}\right)$

Rotational spectroscopy

Determination of molecular geometries from rotational spectra

How many equations do we have for the calculation？

Three！！！

$$
\begin{aligned}
& \mathrm{I}_{a}=\mathrm{f}_{a}\left(\mathrm{~d}_{1}, \mathrm{~d}_{2}, \ldots, \theta_{1}, \theta_{2}, \ldots\right) \\
& \mathrm{I}_{b}=\mathrm{f}_{b}\left(\mathrm{~d}_{1}, \mathrm{~d}_{2}, \ldots, \theta_{1}, \theta_{2}, \ldots\right) \\
& \mathrm{I}_{c}=\mathrm{f}_{c}\left(\mathrm{~d}_{1}, \mathrm{~d}_{2}, \ldots, \theta_{1}, \theta_{2}, \ldots\right)
\end{aligned}
$$

Rotational spectroscopy

Determination of molecular geometries from rotational spectra

Solution：synthesis of isotopically substituted compounds and measurement of their microwave spectra．

It can be assumed that upon substitution，
－the changes in bond lengths and angles are negligible
－the changes in moments of inertia are significant．
Thus we can derive enough equations for the determination of the structure．

Rotational spectroscopy

Determination of molecular geometries from rotational spectra

Example：determination of the molecular structure of carbamide

P．D．Godfrey，R．D．Brown，A．N．Hunter，J．Mol．Struct．
413－414， 405 （1997）

Rotational spectroscopy

Determination of molecular geometries from rotational spectra

Isotopomers

$\mathrm{H}_{2} \mathrm{~N}-\mathrm{CO}-\mathrm{NH}_{2}$
$\mathrm{H}_{2} \mathrm{~N}$-CO-NHD
$\mathrm{H}_{2}{ }^{15} \mathrm{~N}-\mathrm{CO}-{ }^{15} \mathrm{NH}_{2}$
$\mathrm{H}_{2} \mathrm{~N}-\mathrm{C}^{18} \mathrm{O}-\mathrm{NH}_{2}$

Rotational spectroscopy

Determination of molecular geometries from rotational spectra

Results

\[

\]

Rotational spectroscopy

Centrifugal distortion

rigid rotor so far（rotation has nothing to do with other internal coordinates）

centrifugal distortion

－$F(J)=B J(J+1)-D_{J} J^{2}(J+1)^{2}$
－D－centrifugal distortion constant $\left(\frac{4 B^{3}}{\hat{\nu}^{2}}\right), \hat{\nu}$ ：vibrational wavenumber

Rotational spectroscopy

Centrifugal distortion，Stark effect
－J and M_{J} dependent centrifugal distortion \Longleftrightarrow change of permanent electric dipol moment，μ
－The electric field interacts with the permanent electric dipol moment．
－\Longrightarrow The energy shift is quadratic in $\mu: \Delta E=\alpha\left(J, M_{J}\right) \mu^{2} \mathbf{E}^{2}$ ， where \mathbf{E} is the electric field．

Rotational spectroscopy

Centrifugal distortion, spectra of T_{d} molecules

- T_{d} molecules are spherical rotors, $\mu_{\text {perm }}=0$.
- centrifugal distortion \Longrightarrow small permanent electric dipol moment \Longrightarrow weak rot. spectra. Transition wavenumbers: $\tilde{\nu}=2 B(J+1)$
- No dipole moment is produced for O_{h} (e.g., SF_{6}) \Longrightarrow no rotatialal spectra

Figure 5.10 Part of the far-infrared spectrum of silane. (Reproduced, with permission, from Rosenberg, A. and Ozier, I., Can. J. Phys., 52, 575, 1974)

Vibrational spectroscopy (diatomic molecules)

Energy levels

the harmonic oscillator problem:

$$
\begin{gathered}
V(x)=V(0)+\left\{\frac{d V}{d x}\right\} x+\frac{1}{2}\left\{\frac{d^{2} V}{d x 2}\right\} x^{2}+\ldots \\
-\frac{\hbar^{2}}{2 \mu} \frac{d^{2} \Psi}{d x^{2}}+\frac{1}{2} k x^{2} \Psi=E \Psi \\
\frac{1}{\mu}=\frac{1}{m_{1}}+\frac{1}{m_{2}} \text { effective/reduced mass } \\
E_{v}=\left(v+\frac{1}{2}\right) \hbar \omega, v=0,1,2, \ldots ; \omega=\sqrt{\frac{k}{\mu}}
\end{gathered}
$$

Internuclear separation

Vibrational spectroscopy (diatomic molecules)

Energy levels energies in wavenumbers (vibrational terms)

$$
\begin{aligned}
E_{v} & =\left(v+\frac{1}{2}\right) \hbar \omega, v=0,1,2, \ldots \text { divide by } h c \\
G(v) & =\left(v+\frac{1}{2}\right) \tilde{\nu}, v=0,1,2, \ldots ; \tilde{\nu}=\frac{\omega}{2 \pi c}
\end{aligned}
$$

selection rule

- the electric dipole moment must change during vibration
- $\Delta v= \pm 1$
- infrared active/inactive vibrations
- $\Delta G_{\left(v+\frac{1}{2}\right)}=G(v+1)-G(v)=\tilde{\nu}$ for all adjacent transitions
- The absorption frequency is independent of the state from which the transition takes place. It equals the eigenfrequency of the oscillator.

Vibrational spectroscopy (diatomic molecules)

Energy levels

Boltzmann population of the first vibrational excited state

$$
\begin{aligned}
1 & \leftarrow 0 \text { fundamental transition } \\
h c \Delta G_{\frac{1}{2}} & =h c \tilde{\nu}=\Delta E \text { in wavenumbers } \\
\frac{N_{1}}{N_{0}} & =e^{-\Delta E / k T}=e^{-h c \tilde{\nu} / k T} \\
\tilde{\nu} \gg 600 \mathrm{~cm}^{-1} & \Rightarrow \frac{N_{1}}{N_{0}+N_{1}} \times 100 \% \ll 5 \%
\end{aligned}
$$

at room temperature practically only the ground state is occupied

Vibrational spectroscopy (diatomic molecules)

Anharmonicity

Shortcomings of the Morse potential: the vibration of diatomics is not fully harmonic.

$$
\begin{aligned}
V(r) & =h c D_{e}\left\{1-e^{-a\left(r-r_{e}\right)}\right\}^{2} \\
x_{e} & =\frac{\tilde{\nu}}{4 D_{e}}, a=\sqrt{\frac{k}{2 h c D_{e}}}
\end{aligned}
$$

where x_{e} is the anharmonicity constant

$$
G(v)=\left(v+\frac{1}{2}\right) \tilde{\nu}-\left(v+\frac{1}{2}\right)^{2} x_{e} \tilde{\nu}
$$

Internuclear Separation (r)

$$
\begin{aligned}
\Delta G_{\left(v+\frac{1}{2}\right)} & =G(v+1)-G(v) \\
& =\tilde{\nu}-2(v+1) x_{e} \tilde{\nu}
\end{aligned}
$$

Vibrational spectroscopy (diatomic molecules)

Anharmonicity

$$
\text { harmonic: } G(v)=\left(v+\frac{1}{2}\right) \tilde{\nu}, v=0,1,2, \ldots
$$

$$
\Delta G_{\left(v+\frac{1}{2}\right)}=G(v+1)-G(v)=\tilde{\nu}
$$

anharmonic: $G(v)=\left(v+\frac{1}{2}\right) \tilde{\nu}-\left(v+\frac{1}{2}\right)^{2} x_{e} \tilde{\nu}+\left(v+\frac{1}{2}\right)^{3} y_{e} \tilde{\nu}, v=0,1,2, \ldots$

$$
\Delta G_{\left(v+\frac{1}{2}\right)}=G(v+1)-G(v)=\tilde{\nu}-2(v+1) x_{e} \tilde{\nu}+\ldots
$$

Selection rule is derived for the harmonic oscillator: additional weak absorption lines corresponding to the 'forbidden' transitions $0 \rightarrow 2,0 \rightarrow 3$.

Vibrational spectroscopy (diatomic molecules)

Birge-Sponer extrapolation, approximation of the dissociation energy

$$
D_{0}=\Delta G_{\frac{1}{2}}+\Delta G_{\frac{3}{2}}+\Delta G_{\frac{5}{2}}+\cdots=\sum_{v} \Delta G_{\left(v+\frac{1}{2}\right)}
$$

Vibrational spectroscopy (diatomic molecules) Vibration-rotation (rovibrational) spectroscopy

The rotation and vibration cannot be entirely separated.
Both the vibrational and the rotational energy can change when absorbing a photon.
Rotational transitions accompany vibrational ones \rightarrow band spectra
(close-spaced lines, $1-10 \mathrm{~cm}^{-1}$, around the vibrational lines, $1000-4000 \mathrm{~cm}^{\mathbf{- 1}}$)

rotation-vibration terms

- rigid rotor - harmonic oscillator approximation
- $S(v, J)=G(v)+F(J)=\left(v+\frac{1}{2}\right) \tilde{\nu}+B J(J+1)$
- $\Delta v= \pm 1, \Delta J= \pm 1, \mu_{\text {perm }} \neq 0$ (selection rules)
- $\Delta J=0$ is also allowed for NO molecule which have an angular momentum about its axis (an unpaired electron)

Vibrational spectroscopy（diatomic molecules）

Rovibration spectroscopy，branches

$$
S(v, J)=\left(v+\frac{1}{2}\right) \tilde{\nu}+B J(J+1)
$$

in practice $\Delta v=+1$（excited states are not populated）
three combinations with J
－P branch：$\Delta J=-1, \tilde{\nu}_{P}(J)=S(v+1, J-1)-S(v, J)=\tilde{\nu}-2 B J$
－Q branch：$\Delta J=0, \tilde{\nu}_{Q}(J)=S(v+1, J)-S(v, J)=\tilde{\nu}$
－R branch：$\Delta J=+1, \tilde{\nu}_{R}(J)=S(v+1, J+1)-S(v, J)=\tilde{\nu}+2 B(J+1)$

Vibrational spectroscopy (diatomic molecules)

Rovibration spectroscopy, branches

Vibrational spectroscopy (diatomic molecules)

Vibration-rotation spectrum of the HCl gas

Isotope effect: ${ }^{35} \mathrm{Cl}(75,77 \%),{ }^{37} \mathrm{Cl}(24,23 \%)$

P-branch: $\Delta J=-1, Q$-branch: $\Delta J=0$, R-branch: $\Delta J=+1$

Vibrational spectroscopy

Rovibrational spectroscopy, combination differences

$$
S(v, J)=\left(v+\frac{1}{2}\right) \tilde{\nu}+B J(J+1)
$$

Method to determine the rotational constants:

$$
\begin{aligned}
& \tilde{\nu}_{P}(J)=\tilde{\nu}-\left(B_{1}+B_{0}\right) J+\left(B_{1}-B_{0}\right) J^{2} \\
& \tilde{\nu}_{Q}(J)=\tilde{\nu}+\left(B_{1}-B_{0}\right) J(J+1) \\
& \tilde{\nu}_{R}(J)=\tilde{\nu}+\left(B_{1}+B_{0}\right)(J+1)+\left(B_{1}-B_{0}\right)(J+1)^{2}
\end{aligned}
$$

$$
\tilde{\nu}_{R}(J-1)-\tilde{\nu}_{P}(J+1)=4 B_{0}(J+1 / 2)
$$

$$
\tilde{\nu}_{R}(J)-\tilde{\nu}_{P}(J)=4 B_{1}(J+1 / 2)
$$

Vibrations of polyatomic molecules

Model: harmonic oscillator

- 3 or more point masses
- all points are connected to the others by springs
- it oscillates harmonically

Internal coordinates

- The vibrational problem can be solved in Cartesian coordinates.
- For molecules it is more advantageous to use internal coordinates.
- Number of internal coordinates: 3N-6.

Internal coordinates

bond-stretching
angle-bending
torsion

out-of-plane

Normal modes (coordinates)

The motion of an oscillator consisting of several point masses is complicated.

It can be resolved into $3 \mathrm{~N}-6$ normal modes. (N is the number of point masses)

A normal mode is a vibration in which all the mass points

- have the same frequency
- move in phase

Description of the oscillator of several degrees of freedom

Normal coordinate analysis

Input data

- masses of the points
- coordinates of the points (at equilibrium)
- force constants

Normal coordinates

$\hat{H}_{n u c}=\sum_{i=1}^{3 N} \frac{1}{2 M_{i}} \frac{\partial^{2}}{\partial q_{i}^{2}}+V\left(\left\{q_{i}\right\}, i=1, \ldots, 3 N\right) \quad q_{i}$ is the displacement wrt the equilibrium geometry $\hat{H}_{n u c}=\sum_{i=1}^{3 N} \frac{1}{2} \frac{\partial^{2}}{\partial q_{i}^{\prime 2}}+V\left(\left\{q_{i}^{\prime}\right\}, i=1, \ldots, 3 N\right) \quad$ mass-weighted coordinates: $\quad q_{i}^{\prime}=\sqrt{2 M_{i}} q_{i}$

Taylor series

$$
\hat{H}_{n u c}=\sum_{i=1}^{3 N} \frac{1}{2} \frac{\partial^{2}}{\partial q_{i}^{\prime 2}}+V\left(\boldsymbol{q}^{\prime}=0\right)+\sum_{i=1}^{3 N}\left(\frac{\partial V}{\partial q^{\prime}{ }_{i}}\right)_{q=0} q^{\prime}{ }_{i}+\frac{1}{2} \sum_{i, j=1}^{3 N}\left(\frac{\partial^{2} V}{\partial q_{i}^{\prime} q^{\prime}{ }_{j}}\right)_{q=0} q^{\prime}{ }_{i} q^{\prime}{ }_{j}+\ldots
$$

One can set the zero of the energy scale to have $V\left(\left\{q^{\prime}{ }_{i}=0\right\}_{i=1, \ldots, 3 N}\right)=0$
At the equilibrium geometry $\left(\frac{\partial V}{\partial q_{i}^{\prime}}\right)_{q=0}=0$
$\longrightarrow \hat{H}_{n u c}=\sum_{i=1}^{3 N} \frac{1}{2} \frac{\partial^{2}}{\partial q_{i}^{\prime \prime}}+\frac{1}{2} \sum_{i, j=1}^{3 N} F_{i j} q^{\prime}{ }_{i} q^{\prime}{ }_{j}+\ldots$
$F_{i j}=\frac{\partial^{2} V}{\partial q_{i} \partial q_{j}}$ is a symmetric matrix with real eigenvalues:

$$
\boldsymbol{F} \boldsymbol{u}^{(k)}=\lambda_{k} \mathbf{u}^{(k)}
$$

With indices: $\sum_{j} F_{i j} u_{j}^{(k)}=\lambda_{k} u_{i}^{(k)}$

$$
\begin{aligned}
\sum_{i, j=1}^{3 N} u_{i}^{(k)} F_{i j} u_{j}^{(k)}=\lambda_{k} \sum_{i=1}^{3 N} u_{i}^{(k)} u_{i}^{(k)}=\lambda_{k} & \sum_{i, j=1}^{3 N} u_{i}^{(l)} F_{i j}{ }_{j}^{(k)}=\lambda_{k} \sum_{i=1}^{3 N} u_{i}^{(l)} u_{i}^{(k)}=0 \\
q^{\prime} & =\sum_{k} u_{i}^{(k)} Q_{k}
\end{aligned} \quad \Longleftrightarrow Q_{i}=\sum_{j} u_{j}^{(i)} q^{\prime}{ }_{j} \quad \text { Normal coordinates } . ~ l
$$

$$
\frac{1}{2} \sum_{i, j=1}^{3 N} F_{i j} q^{\prime}{ }_{i} q^{\prime}{ }_{j}=\frac{1}{2} \sum_{k, l=1}^{3 N}\left(\sum_{i, j=1}^{3 N} u_{i}^{(k)} F_{i j} u_{j}^{(l)}\right) Q_{k} Q_{l}=\frac{1}{2} \sum_{k=1}^{3 N} \lambda_{k} Q_{k}^{2}
$$

Among the eigenvalues there are six with zero value, three rotational and three transitional degrees of freedom:

$$
\hat{H}_{n u c}=\sum_{i=1}^{3 N-6} \frac{1}{2} \frac{\partial^{2}}{\partial Q_{i}^{2}}+\frac{1}{2} \sum_{i=1}^{3 N-6} \lambda_{i} Q_{i}^{2}=\sum_{i=1}^{3 N-6} \hat{H}_{i}^{\text {harm. oscill. }}
$$

Symmetry \longrightarrow Degeneracy: $\frac{1}{2} \sum_{i=1}^{3 N-6} \lambda_{i} Q_{i}^{2}=\frac{1}{2} \sum_{\Gamma_{\rho}} \lambda_{\rho} \sum_{i \in \Gamma_{\rho}} Q_{i}^{2}$

Force constants

$$
F_{i j}=\frac{\partial^{2} V}{\partial Q_{i} \partial Q_{j}}=\lambda_{i} \delta_{i j}
$$

Derivatives of the potential energy wrt the internal coordinates

Generalization of the spring constant introduced for simple harmonic oscillators

$$
V=\frac{1}{2} k q^{2} \stackrel{\text { 1. differentiation }}{ } \frac{\partial V}{\partial q}=k q \stackrel{\text { 2. differentiation }}{ } \frac{\partial^{2} V}{\partial q \partial q}=k
$$

There is a separate Schrödinger equation for each normal mode.
For normal mode i:

$$
\frac{1}{2}\left[-\frac{\partial^{2}}{\partial Q_{i}^{2}}+\lambda_{i} Q_{i}^{2}\right] \Psi_{v}\left(Q_{i}\right)=E_{v i} \Psi_{v}\left(Q_{i}\right)
$$

It is similar to that of diatomic molecules.
Q_{i} - normal coordinate i, the motion of the atoms in normal mode i
λ_{i} is related to the frequency of normal mode i :

$$
\lambda_{i}=4 \pi^{2} v_{i}^{2}
$$

It can be solved!

The total vibrational energy and wave function of the molecule

Eigenvalue:

$$
\begin{aligned}
& E_{v i}^{\left(n_{i}\right)}=h v_{i}\left(n_{i}+\frac{1}{2}\right) \\
& E_{v}=\sum_{i=1}^{3 N-6} E_{v i}^{\left(n_{i}\right)}
\end{aligned}
$$

Eigenfunction:

$$
\Psi_{v}=\prod_{i=1}^{3 N-6} \Psi_{v i}^{\left(n_{i}\right)}\left(Q_{i}\right)
$$

Π : product symbol, it implies the multiplication of all the factors

Interpretation of Ψ_{v}

$\Psi^{*}{ }_{V} \Psi_{V}$ is the probability density of finding the nuclei in a given volume of space in the given vibrational state.

The Ψ_{v} functions can also be classified according to the molecular symmetry.

Selection rules

a) $\Delta n_{i}= \pm 1$,

$$
\Delta n_{j \neq i}=0
$$

Only one normal mode can be excited by a photon
b) The dipole moment of the molecule must change during the vibration (but no permanent dipole moment is required,
e.g., CCl_{4}, benzene)
c) Analyzing the $\quad \int \Psi_{v}^{*} \hat{\mu} \Psi^{\prime}{ }_{v} d \tau$
transition moment it can be proven that the irrep of the normal mode must be identical to that for any component of the translation, $\mathrm{T}_{x}, \mathrm{~T}_{y}$, or T_{z}.
$\Psi_{v}^{\left(n_{0} n_{1} n_{2} \ldots\right)}=\prod_{i=1}^{3 N-6} \Psi_{n_{i}}\left(Q_{i}\right)=\prod_{i=1}^{3 N-6} e^{-\frac{1}{2} \alpha_{i} Q_{i}^{2}} H_{n_{i}}\left(\sqrt{\alpha_{i}} Q_{i}\right), \quad \alpha_{i}=\sqrt{\lambda_{i}}$
$H_{0}(x)=1, H_{1}(x)=2 x, H_{2}=4 x^{2}-2, H_{3}(x)=8 x^{3}-12 x, \ldots$
$\Psi_{v}^{(000 \ldots)}=\prod_{i=1}^{3 N-6} e^{-\frac{1}{2} \alpha_{i} Q_{i}^{2}}=e^{-\frac{1}{2} \sum_{i=1}^{3 N-6} \alpha_{i} Q_{i}^{2}}=e^{-\frac{1}{2} \sum_{\rho} \alpha_{\rho} \sum_{i \in \Gamma_{\rho}} Q_{i}^{2}}$
$\sum_{\rho} \alpha_{\rho} \sum_{i \in \Gamma_{\rho}} Q_{i}^{i=1}$ commutes with the symmetry operations
$\sum_{\rho} \alpha_{\rho} \sum_{i \in \Gamma_{\rho}} Q_{i}^{2}$ is a totally symmetric quantity $\left(\mathrm{A}_{1}\right)$

$$
\Psi_{v}^{(000 . .)} \text { is a totally symmetric state }
$$

To have a transition from the ground state
$\underline{R}_{m n}=\int \Psi_{m}^{*} \underline{\mu} \Psi_{n} d \tau \neq 0, \Psi_{n}=\Psi_{v}^{(000 . .)}, \underline{\mu}=\left(\mu_{x}, \mu_{y}, \mu_{z}\right)$
$\Psi_{m}^{*} \mu$ product should contain A_{1}
Ψ_{m} should transform as $\mathrm{T}_{\mathrm{x}}, \mathrm{T}_{\mathrm{y}}$, or T_{z}

Character table of the $\mathrm{C}_{2 \mathrm{v}}$ point

group

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	$\sigma_{\mathrm{v}}(\mathrm{xz})$	$\sigma_{\mathrm{v}}(\mathrm{yz})$	
A_{1}	+1	+1	+1	+1	$\mathrm{~T}_{\mathrm{z}}, \alpha_{\mathrm{xx}}, \alpha_{\mathrm{yy}}, \alpha_{\mathrm{zz}}$
A_{2}	+1	+1	-1	-1	$\mathrm{R}_{\mathrm{x}}, \alpha_{\mathrm{xy}}$
B_{1}	+1	-1	+1	-1	$\mathrm{~T}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}, \alpha_{\mathrm{xz}}$
B_{2}	+1	-1	-1	+1	$\mathrm{~T}_{\mathrm{y}}, \mathrm{R}_{\mathrm{z}}, \alpha_{\mathrm{yz}}$

Example: normal modes of formaldehyde[cm^{-1}]

Vibrational frequencies

symmetric CH stretching
$v_{2} \quad$ CO stretching
$v_{3} \quad \mathrm{CH}_{2}$ bending (scissoring)
$v_{4} \quad$ out-of-plane bending (wagging)
$v_{5} \quad$ antisymmetric CH stretching
$v_{6} \quad \mathrm{CH}_{2}$ rocking

Formaldehyde gas IR spectra

Formaldehyde gas IR spectra

Infrared spectra

Vibrational transitions:

They are located in the IR region
$\lambda=2-100 \mu \mathrm{~m}$
Features of the spectra:
Abscissa: wavenumbers ($\left.v^{*}\left[\mathrm{~cm}^{-1}\right]\right)$ instead of λ
Value: 4000-400 cm^{-1}
Ordinate: intensity
absorbance

$$
A=\log \frac{I_{o}}{I}
$$

transmittance

$$
T=\frac{I}{I_{o}} \cdot 100(\%)
$$

Sample: gas, liquid, solution, solid.

Sample preparation

Gas:

- cuvette of 10-100 cm length with KBr windows

Solution:

- solvents: $\mathrm{CCl}_{4}, \mathrm{CS}_{2}$, or $\mathrm{CH}_{3} \mathrm{CN}$, chloroform
- cuvette of a couple of $\mu \mathrm{m}$ path length with KBr windows Solid
- KBr pellet (grind with KBr , compression)
- film (the solution is placed on a KBr pellet, the solvent is evaporated)
- paraffin suspension

The infrared spectrum of methane (part)

The infrared spectrum of ammonia
WAVELENGTH IN $\mu \mathrm{m}$

Symmetric rotor: energy of transitions depends on J and K :
relatively complex spectra

The infrared spectrum of ammonia

The infrared spectrum of acetanilide crystal in KBr pellet WAVELENGTH IN $\mu \mathrm{m}$

For liquid and solid samples there is no rotational fine structure. crystals: splitting due to the lattice vibrations

Analytical application

Identification of functional groups
"characteristic vibrations'": a normal mode is dominated by one of the motions of a functional group, hence similar absorption frequencies are expected for different molecules including the same functional group
E.g.:
$v \mathrm{CH}_{3} 2860-2900 \mathrm{~cm}^{-1}$ and 2950-3000 cm^{-1}
$v \mathrm{CH}_{2} 2840-2880 \mathrm{~cm}^{-1}$ and 2920-2950 cm^{-1}
$v \mathrm{C}=\mathrm{O} 1660-1720 \mathrm{~cm}^{-1}$

Vanillin IR spectra $\left(\mathrm{CCl}_{4}\right.$ solution) characteristic

 frequencies

Fourier-transform infrared spectroscopy

Fourier transform (mathematical summary)

Abbreviation for Fourier transform: FT.
It maps a function to another function, the independent variables of the two functions are the reciprocal of each other.

For instance: time-frequency

$$
F\{x(t)\}=X(v)
$$

Discrete Fourier transform

In the -a, a interval any $f(t)$ function can be reperesented as a linear combination of \sin and \cos functions: $f(t)=\sum_{i=0} c_{i} \phi_{i}(t)$, where

$$
\begin{aligned}
\phi_{0}(t) & =\frac{1}{\sqrt{2 a}} \\
\phi_{n}(t) & =\frac{1}{\sqrt{a}} \sin \left(\frac{n \pi t}{2 a}\right), \\
\phi_{n}(t) & =\frac{1}{\sqrt{a}} \cos \left(\frac{n \pi t}{2 a}\right),
\end{aligned} \quad n=2,4,6, \ldots, 3,5,7, \ldots .
$$

These functions form an orthogonal basis set: $\int_{-a}^{a} \phi_{i}(t) \phi_{j}(t) d t=\delta_{i j}$
The coefficients can be easily obtained: $\quad c_{j}=\int_{-a}^{a} \phi_{j}(t) f(t) d t$
If $a \rightarrow \infty$ the possible values of $\omega_{n}=\frac{n \pi}{2 a}$ become continuous and we obtain the continuous Fourier transform

Fourier transform

Transformation from the time domain to the frequency domain

$$
X(v)=\int_{t=-\infty}^{+\infty} x(t) \exp (i 2 \pi v t) d t
$$

Inverse transformation:

$$
x(t)=\frac{1}{2 \pi} \int_{t=-\infty}^{+\infty} X(v) \exp (-i 2 \pi v t) d t
$$

Using Euler's formula:

$$
X(v)=\int_{t=-\infty}^{+\infty} x(t) \cos (2 \pi v t) d t+i \int_{t=-\infty}^{+\infty} x(t) \sin (2 \pi v t) d t
$$

Fourier transform spectrometers

Source: heated ceramic-coated wire or tungsten lamp
Detector: thermocouple or piroelectric crystal

Sum of the original and the shifted beam:

$$
E(x, t)=A\left(e^{i \omega t-i k x}+e^{i \omega t-i k(x+p)}\right)=A e^{i \omega t-i k x}\left(1+e^{-i k p}\right)
$$

The intensity is proportional to the square of $E(x, t)$:

$$
I \propto|E|^{2}=A^{2} e^{i \omega t-i k x} e^{-i \omega t+i k x}\left(1+e^{-i k p}\right)\left(1+e^{i k p}\right)=2 A^{2}(1+\cos (k p))=2 A^{2}(1+\cos (2 \pi \widetilde{v} p))
$$

Constructive ($\widetilde{v} p=0,1,2, \ldots)$ or destructive $\left(\widetilde{v} p=\frac{1}{2}, \frac{3}{2}, \ldots\right)$ interference (monochrome radiation, \widetilde{v} : wavenumber, p : path difference)

$$
I(p, \widetilde{v})=I(\widetilde{v})(1+\cos (2 \pi \widetilde{v} p))
$$

As the radiation has a contiguous spectra:

$$
\begin{gathered}
I(p)=\int_{0}^{\infty} I(p, \widetilde{v}) d \widetilde{v}=\int_{0}^{\infty} I(\widetilde{v})(1+\cos (2 \pi \widetilde{v} p)) d \widetilde{v} \\
I(p)-\frac{I(p=0)}{2}=\int_{0}^{\infty} I(\widetilde{v}) \cos (2 \pi \widetilde{v} p) d \widetilde{v}
\end{gathered}
$$

Directly measured: interferogram, I(p)

Inverse FT

Spectrum: $\mathrm{I}(\widetilde{\boldsymbol{V}})$

- All the radiation frequency is monitored simultaneously!
- Good sign-to-noise ratio
- Fast measurement: FT spectroscopy can be applied to investigate processes in time
- FT spectrometers can be combined with gas and liquid chomatographs or microscopes

Interferogram for acetone vapor

The spectrum obtained by Fourier transform

The spectrum of acetone vapor after division by the background intensity

-For larger molecules the individual rotational lines of the P, Q, and R branches can not be seen, only the contour.

ELECTRONIC STRUCTURE OF MOLECULES

The model (Born-Oppenheimer approximation):

The nuclei are clamped, the electrons move in their field.
Schrödinger equation:

$$
\left(\hat{T}_{e}+\hat{V}_{n e}+\hat{V}_{e e}+V_{n n}\right) \Psi_{e}=\left(E_{e}+V_{n n}\right) \Psi_{e}
$$

$\hat{T}_{e}:$ kinetic energy of the electrons
$\hat{V}_{n e}$: attraction of the electrons and the nuclei
$\hat{V}_{e e}$: electron-electron repulsion
$V_{n n}$: nuclear attraction-a constant because of the clamped nuclei approximation.
E_{e} : electronic energy

This differential equation cannot be solved analytically, only approximate (numerical) solutions are possible.

E.g, methods based on the variational principle (HartreeFock)

Electronic states

Quantum chemistry:

- equilibrium geometry of molecules
- vibrational frequencies and normal modes
- charge distribution
- chemical reactions
- excited states

Example for photochemical reactions:

a photochrome pigment

ring opening under UV irradiation

How shall we choose the electronic wave functions?

The molecular orbital model

LCAO-MO method

MO: molecular orbital
LCAO : linear combination of atomic orbitals

The approximate wave function is written as a Slater-determinant

A row: an electron
A column: an MO

$$
\Psi=\left|\begin{array}{cccc}
\phi_{1 \alpha}(1) & \phi_{1 \beta}(1) & \ldots & \phi_{N \beta}(1) \\
\phi_{1 \alpha}(2) & \phi_{1 \beta}(2) & \ldots & \phi_{N \beta}(2) \\
\vdots & & \ddots & \\
\phi_{1 \alpha}(N) & \phi_{1 \beta}(N) & \ldots & \phi_{N \beta}(N)
\end{array}\right|
$$

There are no quantum numbers, but spin

Linear combination

The molecular orbitals are constructed by linear combination of atomic orbitals.

$$
\phi=N \sum_{i} c_{i} X_{i}
$$

N : normalization factor
X_{i} : atomic orbital
C_{i} : combination coefficient

Construction of molecular orbitals: those atomic orbitals are combined
a) which lie closely in energy
b) which have significant overlap (or which are core orbitals)
c) whose linear combination transforms according to some irrep under the symmetry operations of the point group of the molecule

Example: N_{2} molecule

Simplest combinations:

- one atomic orbital from both atoms
- $\mathrm{c}_{1}=\mathrm{c}_{2}=+1$, or $\mathrm{c}_{1}=+1, \mathrm{c}_{2}=-1$

Example: N_{2} molecule (1)

a) satisfied
b) satisfied
c) satisfied

Example: N_{2} molecule (2)

a) satisfied
b) satisfied
c) satisfied

Example: N_{2} molecule (3)

a) satisfied
b) not satisfied
c) not satisfied

Example: N_{2} molecule (4)

a) satisfied
b) satisfied
c) not satisfied

Electronic structure of diatomic molecules

Diatomic molecules

Homonuclear
$\left(\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{Cl}_{2}\right)$

Heteronuclear
($\mathrm{NO}, \mathrm{CO}, \mathrm{HCl}$)

E.g.: a homonuclear diatomic molecule, N_{2}

Simplest molecular orbitals: the linear combinations of the identical atomic orbitals of the two atoms.

$$
\begin{aligned}
\phi^{+}(1 s) & =\frac{1}{\sqrt{2}}\left[\chi_{1}(1 s)+\chi_{2}(1 s)\right] \\
\phi^{-}(1 s) & =\frac{1}{\sqrt{2}}\left[\chi_{1}(1 s)-\chi_{2}(1 s)\right]
\end{aligned}
$$

Construction of molecular orbitals from atomic orbitals
: "bonding" orbital (lower-energy combination)
ϕ^{-}: "antibonding" orbital (higher-energy combination)

Notation:

* index : antibonding orbital
no index : bonding orbital
σ-orbital : cylindrical symmetry around the bond
π-orbital : nodal plane going through the bond
" g " index : symmetric wrt the inversion (gerade $=$ even)
" u " index : antisymmetric wrt the inversion (ungerade = odd)
n-orbital : non-bonding molecular orbital

Note:

cylindrical symmetry
Molecular orbitals are
L_{z} eigenfunctions with $m_{l} \hbar, \quad m_{l}=0,1,2,3, \ldots(\sigma, \pi, \delta, \ldots)$ eigenvalues.

More than two atomic orbitals can also be combined.

Molecular orbital energy diagram for $\mathbf{N}_{\mathbf{2}}$

Molecular orbital diagram for N_{2}

MO diagram for $\mathrm{N}_{2}: p$ combinations

Electronic configuration

Ground state:

$$
\left(\sigma_{g} 1 s\right)^{2}\left(\sigma_{u}^{*} 1 s\right)^{2}\left(\sigma_{g} 2 s\right)^{2}\left(\sigma_{u}^{*} 2 s\right)^{2}\left(\pi_{u} 2 p\right)^{4}\left(\sigma_{g} 2 p\right)^{2}
$$

Excited state, e.g.:

$$
\left(\sigma_{g} 1 s\right)^{2}\left(\sigma_{u}^{*} 1 s\right)^{2}\left(\sigma_{g} 2 s\right)^{2}\left(\sigma_{u}^{*} 2 s\right)^{2}\left(\pi_{u} 2 p\right)^{4}\left(\sigma_{g} 2 p\right)^{1}\left(\sigma_{u}^{*} 2 p\right)^{1}
$$

Singlet and triplet states

Excited state:

$$
\begin{aligned}
& \left(\sigma_{g} 1 s\right)^{2}\left(\sigma_{u}^{*} 1 s\right)^{2}\left(\sigma_{g} 2 s\right)^{2}\left(\sigma_{u}^{*} 2 s\right)^{2}\left(\pi_{u} 2 p\right)^{4}\left(\sigma_{g} 2 p\right)^{1}\left(\sigma_{u}^{*} 2 p\right)^{1} \\
& \stackrel{\wedge}{4} \\
& \square \\
& S=0 \\
& \mathrm{~S}=1
\end{aligned}
$$

Singlet state Triplet state

Molecular orbitals of polyatomic molecules

MOs of polyatomic molecules: in principle they are constructed by combining the AOs of all the atoms.

Core MOs
Valence MOs

Core MOs:

The overlap between the core orbitals of different atoms is very small. Therefore:

- the core orbitals are localized on an atom (or on a symmetric group of atoms)
- their shape and energy are hardly different from those of the isolated atom

Valence MOs: the AOs mix

Features:
Energy
Shape - localized or delocalized character - point-group symmetry

Energy of valence MOs:

HOMO: highest occupied MO
LUMO: lowest unoccupied MO

Localized and delocalized MOs

- Localized on an atom: non-bonding electron pair
- Localized on two atoms
σ-bond: cylindrical symmetry around the bond
π-bond: nodal plane through the bond
- Localized on a functional group, combination of the valence AOs of many atoms
local
symmetry

Molecular orbital energy diagram of formaldehyde

$$
\begin{aligned}
& \pi^{*}(C O)-2 b_{1} \\
& n_{2}\left(O\left[2 p_{x}\right]\right) \rightarrow \times 2 \mathrm{~b}_{2} \\
& \pi(C O) \quad * \longrightarrow 1 b_{1} \\
& \begin{aligned}
n_{1}\left(O\left[2 p_{y}\right]\right) & \times \\
\sigma_{2}\left(\mathrm{CH}_{2}\right) & \times
\end{aligned} \\
& \sigma_{1}\left(\mathrm{CH}_{2}\right) \quad \times \times 4 \mathrm{a}_{1} \\
& \sigma(C O) \rightarrow \times 3 \mathrm{a}_{1}
\end{aligned}
$$

- Molecular orbitals from a HartreeFock calculation.
- "minimal" basis set (STO-3G)
- Orbitals are not normalized

Core orbitals

$2 \mathbf{a}_{1}$

$-11.125 \mathrm{E}_{\mathrm{h}}$ $\Psi_{2 a_{1}} \propto \Psi_{C[1 s]}$

Sigma bonding CO and symmetric bonding CH_{2} orbitals

$\sim_{\sim(C O}{ }^{\mathbf{3 a} \mathbf{a}_{1}}$

Antisymmetric CH_{2} sigma and symmetric non-bonding orbital of O

Pi and non-bonding orbitals

```
~\mp@subsup{n}{2}{}}(O[2\mp@subsup{p}{x}{}]
2b
                                | }\mp@subsup{\Psi}{2\mp@subsup{b}{~}{\prime}}{~}\propto0.87\mp@subsup{\Psi}{O[2\mp@subsup{p}{x}{}]}{}-0.18\mp@subsup{\Psi}{C[2\mp@subsup{p}{x}{}]}{
                                -0.36 \Psi [H({, [s]
-0.354 E 
(HOMO)
~\pi(CO)

Pi CO and sigma \(\mathrm{CH}_{2}\) antibonding orbitals
\(\sim \sigma^{*}\left(\mathrm{CH}_{2}\right)\)
\(6 \mathbf{a}_{1}\)

\(\sim \pi^{*}(C O)\)
\(2 b_{1}\)


\section*{Oxazine 1}



HOMO


Molecular orbitals
All the atoms contribute
electronic excitation
ionization

\section*{Chemical bond}

It connects two atoms
bond length
valence vibration

\section*{Two different concepts!!!}

\title{
Electronic excitations in polyatomic molecules
}

\section*{Electronic excitation in MO theory:}


\section*{Electronic excitation in MO theory:}


\section*{Energy and intensity of electronic excitations: Main aspects}
- Local symmetry of orbitals
- Symmetry of the electronic states
- Spin

Classification of electronic transitions according to the local symmetry (e.g., formaldehyde)


\section*{Order of excitation energies:}
\[
\mathrm{n}->\pi^{*}<\pi->\pi^{*} \sim \mathrm{n}->\sigma^{*}<\sigma->\pi^{*} \sim \pi->\sigma^{*}<\sigma->\sigma^{*}
\]


\section*{Selection rule:}

\section*{Allowed: \(n->\pi^{*}, \pi->\pi^{*}\), \(n->\sigma^{*}, \sigma->\sigma^{*}\)}


\section*{Symmetry (irreducible representation) of electronic states}

\author{
Example: formaldehyde \\ Point group: \(\mathrm{C}_{2 \mathrm{v}}\)
}

\section*{Character table of the \(\mathrm{C}_{2 \mathrm{v}}\) point group}
\begin{tabular}{c|cccc|r}
\(\mathrm{C}_{2 \mathrm{v}}\) & E & \(\mathrm{c}_{2}^{\prime}(\mathrm{z})\) & \(\sigma_{\mathrm{v}}(\mathrm{xz})\) & \(\sigma_{\mathrm{v}}(\mathrm{yz})\) & \\
\hline \(\mathrm{A}_{1}\) & +1 & +1 & +1 & +1 & \(\mathrm{~T}_{\mathrm{z}}, \mathrm{\alpha}_{\mathrm{xx}}, \mathrm{C}\) \\
\(\mathrm{A}_{2}\) & +1 & +1 & -1 & -1 & \(\mathrm{R}_{\mathrm{x}}, \mathrm{C}\) \\
\(\mathrm{B}_{1}\) & +1 & -1 & +1 & -1 & \(\mathrm{~T}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}\) \\
\(\mathrm{B}_{2}\) & +1 & -1 & -1 & +1 & \(\mathrm{~T}_{\mathrm{y}}, \mathrm{R}_{\mathrm{z}}\)
\end{tabular}

MO energy diagram of


Valence shell virtual orbitals

Valence shell
\[
\begin{aligned}
n_{1}\left(O\left[2 p_{y}\right]\right) & \stackrel{*}{*} \leq \mathrm{a}_{1} \\
\sigma_{2}\left(\mathrm{CH}_{2}\right) & \stackrel{\sim}{*} 1 \mathrm{~b}_{2}
\end{aligned}
\]
occupied orbitals
\[
\sigma_{1}\left(\mathrm{CH}_{2}\right) \not * 4 \mathrm{a}_{1}^{2}
\]
\[
\sigma(C O) * \times 3 \mathrm{a}_{1}
\]
\[
\begin{aligned}
& \bar{C}[1 s] \stackrel{ }{*} \underset{\times}{*} \times a_{1} \\
& O[1 s] \times-\cdots
\end{aligned}
\]

Inner shell
core orbitals

\section*{Electronic configurations of formaldehyde}

Electron configuration of the ground state:
\[
\begin{aligned}
& \quad\left(1 a_{1}\right)^{2}\left(2 a_{1}\right)^{2}\left(3 a_{1}\right)^{2}\left(4 a_{1}\right)^{2}\left(1 b_{2}\right)^{2}\left(5 a_{1}\right)^{2}\left(1 b_{1}\right)^{2}\left(2 b_{2}\right)^{2} \\
& n-\pi^{*} \text { transition }
\end{aligned}
\]

Lowest-energy excited configuration:
\[
\left(1 a_{1}\right)^{2}\left(2 a_{1}\right)^{2}\left(3 a_{1}\right)^{2}\left(4 a_{1}\right)^{2}\left(1 b_{2}\right)^{2}\left(5 a_{1}\right)^{2}\left(1 b_{1}\right)^{2}\left(2 b_{2}\right)^{1}\left(2 b_{1}\right)^{1}
\]

\title{
Determination of the symmetry (irrep) of electronic states
}

Irrep of electronic states: the direct product of the irreps of the singly occupied MOs

Direct product: multiplication of characters for each symmetry operation.

Ground-state configuration :
\(A_{1}\) state
\[
\left(1 a_{1}\right)^{2}\left(2 a_{1}\right)^{2}\left(3 a_{1}\right)^{2}\left(4 a_{1}\right)^{2}\left(1 b_{2}\right)^{2}\left(5 a_{1}\right)^{2}\left(1 b_{1}\right)^{2}\left(2 b_{2}\right)^{2}
\]

Closed-shell configurations always belong to the \(\mathrm{A}_{1}\) irrep.

Lowest-energy excited configuration:

\section*{\(\mathrm{A}_{2}\) state}
\[
\left(1 a_{1}\right)^{2}\left(2 a_{1}\right)^{2}\left(3 a_{1}\right)^{2}\left(4 a_{1}\right)^{2}\left(1 b_{2}\right)^{2}\left(5 a_{1}\right)^{2}\left(1 b_{1}\right)^{2}\left(2 b_{2}\right)^{1}\left(2 b_{1}\right)^{1}
\]
\begin{tabular}{c|cccc} 
& E & \(C_{2}^{1}(z)\) & \(\sigma_{\mathrm{v}}(\mathrm{xz})\) & \(\sigma_{\mathrm{v}}(\mathrm{yz})\) \\
\hline \(\mathrm{B}_{1}\) & +1 & -1 & +1 & -1 \\
\(\mathrm{~B}_{2}\) & +1 & -1 & -1 & +1 \\
\hline \(\mathrm{~B}_{1} \times \mathrm{B}_{2}=\mathrm{A}_{2}\) & +1 & +1 & -1 & -1
\end{tabular}

Selection rule: a transition is allowed if the final state belongs to the same irrep as any of the translations, \(T_{x}, T_{y}\), or \(T_{z}\)
\begin{tabular}{c|cccc|c}
\(\mathrm{C}_{2 \mathrm{v}}\) & E & \(C_{2}^{1}(z)\) & \(\sigma_{\mathrm{v}}(\mathrm{xz})\) & \(\sigma_{\mathrm{v}}(\mathrm{yz})\) & \\
\hline \(\mathrm{A}_{1}\) & +1 & +1 & +1 & +1 & \(\mathrm{~T}_{\mathrm{z}}, \alpha_{\mathrm{xx}}, \alpha_{\mathrm{yy}}, \alpha_{\mathrm{zz}}\) \\
\(\mathrm{A}_{2}\) & +1 & +1 & -1 & -1 & \(\mathrm{R}_{\mathrm{x}}, \alpha_{\mathrm{xy}}\) \\
\(\mathrm{B}_{1}\) & +1 & -1 & +1 & -1 & \(\mathrm{~T}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}, \alpha_{\mathrm{xz}}\) \\
\(\mathrm{B}_{2}\) & +1 & -1 & -1 & +1 & \(\mathrm{~T}_{\mathrm{y}}, \mathrm{R}_{\mathrm{z}}, \alpha_{\mathrm{yz}}\)
\end{tabular}

\section*{Spin:}

\section*{Singlet and triplet states}
\[
\left(1 a_{1}\right)^{2}\left(2 a_{1}\right)^{2}\left(3 a_{1}\right)^{2}\left(4 a_{1}\right)^{2}\left(1 b_{2}\right)^{2}\left(5 a_{1}\right)^{2}\left(1 b_{1}\right)^{2}\left(2 b_{2}\right)^{1}\left(2 b_{1}\right)^{1}
\]


Singlet state


\(\mathrm{S}_{0}\) : ground state
\(\mathrm{S}_{1}, \mathrm{~S}_{2}\) : singlet excited states
\(\mathrm{T}_{1}, \mathrm{~T}_{2}\) : triplet excited states

\section*{Selection rule}
\[
\Delta \mathrm{S}=0
\]

Singlet-singlet
Triplet-triplet
Singlet-triplet
Triplet-singlet

Allowed
Allowed
Forbidden
Forbidden

\section*{Transitions in the electronic excitation spectrum of formaldehyde}


Ultraviolet-visible spectroscopy

Excitation of core electrons: X-ray radiation
Excitation of valence electrons: UV and visible light.
\(\lambda=100-1000 \mathrm{~nm}\)
Far (vacuum: \(\mathrm{O}_{2}\) and \(\mathrm{N}_{2}\) absorb here) UV region: 100-200 nm
Near UV: 200-400 nm
Visible region: 400-800 nm
Near IR region: from 800 nm .

The spectrum:
Abscissa: \(\lambda[\mathrm{nm}]\)

Ordinate: intensity
absorbance
\[
A=\log \frac{I_{o}}{I}
\]
transmission
\[
T=\frac{I}{I_{o}} \cdot 100(\%)
\]

More frequently solvent samples are studied. (Solvent: n-hexane(sigma-sigma* is the lowest tr.), water or ethanol (sigma-sigma*, n-sigma*), etc.)

\section*{Studied compounds}

\section*{Organic compounds}
a) molecules containing functional groups with both \(\pi\)-bonds and nonbonding electron pairs ( \(\mathrm{CO}, \mathrm{CN}, \mathrm{NO}_{2}\)-groups; \(n-\pi^{*}\) transitions)
b) molecules with weakly-bonded nonbonding electron pairs \((\mathrm{Cl}\), \(\mathrm{Br}, \mathrm{I}\), Se-containing compounds; \(\mathrm{n}-\sigma^{*}\) transitions, above 200 nm )
c) molecules containing conjugated \(\pi\)-electron system \(\left(\pi-\pi^{*}\right.\) transitions, above 200 nm )

\section*{Inorganic compounds}

Transition metal complexes
The degenerate \(d\) or \(f\) orbitals of the metal atom split due to the ligands. The energy difference between split orbitals is small. These transitions are located in the UV-visible spectral region.

Theoretical fundamentals: ligand-field theory.

\section*{Single-beam UV-visible absorption spectrophotometer}
\[
\text { /sample } \quad \text { concave grating }
\]
light
photodiode source

\section*{Double-beam UV/VIS absorption spectrophotometer}



\title{
Electronic spectrum of benzene (in ethanol)
}

Above the dissociation limit: absorption is a continuum. Below the dissociation limit: electronic spectrum contains the vibrational states.

\section*{Electronic spectrum of benzene (gas phase)}
\(N_{a}^{b}\) : excitation from state \(a\) to state \(b\) of normal mode \(N\)


Normal mode 6:

Figure 7.42 Low-resolution \(\tilde{A}^{1} B_{2 u}-\tilde{X}^{1} A_{1 g}\) absorption spectrum of benzene

\(\psi_{2}\left(e_{1 g}\right)\)

\section*{Theory of fluorescence and phosphorescence}

\section*{Absorption: all compounds}

Emission: few materials, mainly large, aromatic compounds

Demonstration of emission: Jablonski diagram
(a schematic electronic energy diagram for molecules with vibrational fine structure, socalled "vibronic" states)

\section*{Jablonski-diagram (fate of excited states)}


VR: vibrational relaxation
ISC: intersystem crossing
IC: internal conversion
S, T: singlet and triplet states
\(\sim \sim \sim\) non-radiative transition
\(\longrightarrow\) radiative transition

Usually the triplet states have lower energy (see: He atom)

Without radiations the electrons are in the ground state \(\mathrm{S}_{0}\) (see: Boltzmann dist.).

Due to the radiation the state \(S_{1}\) will be populated.

Monochrome radiation: few vibr. level will be populated, polychrome rad: many occupied vibr.states
vibrational relaxation: no radiation, the extra energy transferred to the solvent (rapid process, \(10^{-12} \mathrm{~s}\) ).

\section*{Jablonski-diagram (fate of excited states)}


ISC: intersystem crossing:non-ratiative siglet-triplet transition.

Phosphorescence: forbidden at first order \(\rightarrow\) small probability, \(\mathrm{T}_{1}\) has long lifetime in the order of micro- or millisec.

Fluorescence: emission process where the initial and final electronic states have the same multiplicity. From the lowest \(S_{1}\) to one of the vib. states of \(\mathrm{S}_{0}\).
Due to VR the emitted radiation has lower energy than the absorbed.

Typical for rigid molecules (fixed saturated rings).
phosphorescence
IC: the liberated energy transforms into heat: rotational and vibrational states will be excited. No radiation. No spin multiplicity changed. Typical for flexible molecules.

Photoinduced absorption: \(\mathrm{S}_{1}\) eliminates a second photon.

\section*{Phosphorescence}

If the Hamiltonian does not contain the spin, the S is a good quantum number, and the singlet-triplet transition is not possible.

Due to the significant spin-orbit coupling, the spin of molecule containing moderately heavy atom (e.g., sulfur) is not a exact quantum number any more and the intersystem crossing is possible.

\section*{Absorption and emission spectra of the Rodamine-B dye}


\section*{Absorption and fluorescence}

\(\Delta E\left(S_{0,} n_{v}=0 \rightarrow S_{1,} n_{v}=2\right)=\Delta E_{e}+2 h v^{\prime}\)
\[
\begin{aligned}
\Delta E\left(S_{0,} n_{v}\right. & \left.=0 \rightarrow S_{1}, n_{v}=0\right)= \\
-\Delta E\left(S_{1,}, n_{v}=0 \rightarrow S_{0,}, n_{v}=0\right) & =\Delta E_{e}
\end{aligned}
\]

\(\Delta E\left(S_{1,} n_{v}=0 \rightarrow S_{0,} n_{v}=2\right)=-\left(\Delta E_{e}-2 h v\right)\)

\section*{Fluorescence-spectroscopy}

The emission is measured after the absorption of light.
This is mainly fluorescence (sometimes phosphorescence)

The spectrum:
Abscissa: \(\lambda[\mathrm{nm}]\)

Ordinate: intensity
\(\mathrm{I}_{\mathrm{F}}\) (arbitrary units)
\(\Phi_{\mathrm{F}}\) fluorescence quantum yield
\[
\Phi_{F}=\frac{\text { number of emitted photons }}{\text { number of absorbed photons }}
\]

Solvents: (see UV/VIS spectroscopy)

\section*{Spectrofluorimeter}


\section*{The advantages of fluorescence spectroscopy}
1. Much higher sensitivity in contrast to absorption experiments since the intensity is measured compared to I \(=0\) ('‘darkness'’).

The ideal concentration of a strongly fluorescing compound is \(\sim 10^{-6} \mathrm{M}\).
2. Double selectivity due to the
- wavelength of the absorbed light
- wavelength of the emitted light

Important analytical method!

\section*{Optical rotation and circular dichroism}

There are many chiral compound in the living matter: amino acids, sugars, amines, steroids, alkaloids, terpenoids

These can be investigated by chiroptical methods: optical rotation, optical rotatory dispersion (ORD), circular dichroism (CD)


Linearly polarized light

\section*{Optical rotation}

The solution of chiral molecules rotates the plane of polarization:
\(\alpha=[\mathrm{M}] \cdot \mathrm{c} \cdot \ell\)
[M] molar (optical) rotation
c concentration
\(\ell\) path length of the cuvette

\section*{Molar optical rotation is wavelength-dependent}
- Polarimeter: [M] is measured at a given wavelength, usually at the D -line of \(\mathrm{Na}\left([\mathrm{M}]_{\mathrm{D}}\right)\)
application: optical purity, \(100 * \frac{[M]}{[M]_{\text {pure enantioner }}}\)
- Spectropolarimeter: [M] - \(\lambda\) spectrum is measured (Optical rotatory dispersion, ORD)
application: structure analysis

\section*{CD}

(a) left
(b) right
circularly-polarized light

\section*{Circular dichroism}

The absorption coefficients of the left and right circularly-polarized light are different!

This effect is measured:
\[
\mathrm{A}_{\mathrm{L}}=\varepsilon_{\mathrm{L}} \cdot \mathrm{c} \cdot \ell, \text { and } \mathrm{A}_{\mathrm{R}}=\varepsilon_{\mathrm{R}} \cdot \mathrm{c} \cdot \ell
\]
\(C D\) signal: \(\Delta A=A_{L}-A_{R}=\left(\varepsilon_{L}-\varepsilon_{R}\right) \cdot c \cdot \ell\)
CD spectrum: \(\triangle \mathrm{A}\) as a function of the wave length

\section*{Example: CD spectrum of (R)- and (S)-phenyl-ethyl-amine}

(R)-FEA

(S)-FEA

\section*{CD spectrum of (R)-phenyl-ethyl-amine}

\section*{CD-spectrum}


\section*{CD spectrum of (R)- and (S)-phenyl-ethyl-amine}


\section*{Application of CD spectroscopy}
1. Structure analysis: determination of the configuration
2. Analytical chemistry: measurement of the concentration of chiral compounds
3. Analysis of biological systems (HPLC + CD spectrometer)

\section*{PHOTOELECTRON SPECTROSCOPY}

The fundamentals of photoelectronspectroscopical methods. The Koopmans' theorem

\section*{Photoelectron spectroscopy \(=\) PES}

A spectroscopical method based on ionization!
- the sample is bombarded with monochromatic high-energy (far UV or X-ray) photons, which ionize the molecule
- the kinetic energies of the ejected electrons are measured, and the ionization energy is calculated therefrom

\section*{Molecular-orbital theory}
- the electrons are in molecular orbitals
- the orbital energies \(\left(\varepsilon_{i}\right)\) can be calculated by quantumchemical methods (eigenvalues of the Fock operator)

Koopmans' theorem: \(\quad I_{i}=-\varepsilon_{i}\)

\title{
Ionization potential (energy): the energy required to strip a molecule of an electron
}

\section*{An experimentally observable quantity}

A molecule has n ionization potentials with n being the number of electrons.

Notation: \(I_{i}\)
\(\mathrm{I}_{\mathrm{i}}\) is the energy required to strip the molecule of the \(i\) th electron after the first \(i-1\) have already been removed

\section*{Ionization on the MO energy diagram}


The Koopmans' theorem is a good approximation only for the first ionization potential, because the electrons reorganize after ionization, and the orbital energies of the ions are different.

\title{
Ionization: reaction equation
}
\(\mathrm{M}+\) photon \(\rightarrow \mathrm{M}^{+}+\mathrm{e}^{-}\)

\section*{Ionization: energy balance}
photon energy
ionization potential
change in vibrational energy change in rotational energy
kinetic energy of the electron
kinetic energy of the ion
\(\mathrm{hv}=I+\Delta \mathrm{E}_{\mathrm{vib}}+\Delta \dot{\mathrm{E}}_{\mathrm{rot}}+\frac{1}{2} m_{e} v_{e}^{2}+\frac{1}{2} m_{M^{+}} v_{M^{+}}^{2}\)

\section*{The basic principle of photoelectron spectroscopy}


Photoelectron spectrum: distribution of the electronic kinetic energy

\section*{Ionizing radiations}

Far UV light
It is capable of removing valence electrons
UPS = ultraviolet photoelectron spectroscopy

X-ray
It is also capable of removing core electrons
XPS = X-ray photoelectron spectroscopy
AES = Auger electron spectroscopy
\(\mathrm{XF}=\mathrm{X}\)-ray fluorescence

\section*{Electron spectroscopies}


\section*{Stabilization after removing a core electron}

Another (valence or core) electron falls down from a higher-energy orbital, and the corresponding energy is released by
- ejecting a second electron-Auger-effect, experimental method: Auger electron spectroscopy (AES)
- emitting an X-ray photon-X-ray fluorescence (XF), the frequency of the emitted photon characterizes the element, XF is an analytical method, e.g., determination of alloy composition

\section*{Ultraviolet photoelectron spectroscopy (UPS)}

The valence electrons of molecules are ejected by far UV photons.

\section*{Light source}

He discharge lamp.
He plasma (a plasma is a collection of ground- and excited-state ions, atoms, and molecules as well as electrons)

Two lines are used:
\(\mathrm{He}(\mathrm{I})\) radiation:
\[
\begin{aligned}
& 2^{1} \mathrm{P}_{1} \rightarrow 1^{1} \mathrm{~S}_{0} \text { transition of the He atom } \\
& 21.22 \mathrm{eV}(\lambda=58.4 \mathrm{~nm})
\end{aligned}
\]
\(\mathrm{He}(\mathrm{II})\) radiation:
\[
\mathrm{n}=2 \rightarrow \mathrm{n}=1 \text { transition of the } \mathrm{He}^{+} \text {ion }
\]
\[
40.81 \mathrm{eV}(\lambda=30.4 \mathrm{~nm})
\]

\section*{Components of a photoelectron spectrometer}


\section*{The Franck-Condon principle}

The electronic excitation and ionization are much faster than the motion of the nuclei. Thus the change in interatomic distances can be neglected during these processes.

Adiabatic ionization potential: the difference between the vibrational ground state of the ion and the molecule

Vertical ionization potential: energy of the ionization at a fixed internuclear distance. The resultant ion is often in excited vibrational state.


\section*{The UPS spectrum of \(\mathrm{N}_{2}\)}


Ionization energy/eV
\(\left(1 \mathrm{eV}=8065.6 \mathrm{~cm}^{-1}\right)\)

\section*{MO energy diagram of \(\mathbf{N}_{2}\)}


\section*{Application of UPS}

Testing quantum-chemical methods


Low-pressure samples!

\section*{X-ray photoelectron spectroscopy (XPS)}

Both the core and the valence electrons can be ejected by X-ray radiation.

\section*{Sources of X-ray radiation}

A metal target (usually Mg or Al ) which is bombarded with highenergy electrons resulting in ejecting electrons from the innermost ( \(\mathrm{n}=1, \ldots \mathrm{~K} "\) ) shell. The vacancy is filled by an electron falling back from the next highest energy shell ( \(\mathrm{n}=2, \ldots \mathrm{~L}\) ) , the energy is emitted as characteristic X-ray.
\(\mathrm{Mg} \mathrm{K}_{\alpha}\) lines: 1253.4 keV and 1253.7 keV
Al \(\mathrm{K}_{\alpha}\) lines: 1486.3 keV and 1486.7 keV
One component of the doublet is chosen by a quartz crystal (it works as a diffraction grating).

Resolution: \(\sim 0.2 \mathrm{keV}\left(1600 \mathrm{~cm}^{-1}\right)\), the vibrational fine structure cannot be observed.

\section*{Applications of XPS}
- the cross section of the ionization due to X-rays is by 2-3 orders of magnitude smaller than that by far UV photons.
- thus it is mainly used for the analysis of solid samples.
- the ionization potential of core electrons is characteristic of the atoms, hence it can be applied to the determination of the atomic composition of the samaples.
- chemical shift: provides info about the surrounding elements
- the penetrability of X-rays is good, however, that of the electrons is small, therefore the composition of the surface of the sample is measured.

\section*{Components of an XP spectrometer (the same as a UP spectrometer)}


\section*{XPS spectra of a 2:1 mixture of CO and \(\mathrm{CO}_{2}\) gases}


Chemical shift

\section*{XPS spectrum of \(\mathrm{Cu}, \mathrm{Pd}\), and a \(60 \% \mathrm{Cu}\) and \(40 \% \mathrm{Pd}\) alloy}


Ionization energy/eV
\(\mathrm{N}(1 \mathrm{~s})\) in N atom


XPS spectra of nitric oxide (NO) absorbed on an iron surface
1) Iron surface without NO at 85 K
2) Exposed to NO at 85 K and \(2.65 \times 10^{-5} \mathrm{~Pa}\) for 80 s
3) As for 2 but exposed for 200 s
4) As for 2 but exposed for 480 s
5) After warming to 280 K

\section*{LASERS AND LASER SPECTROSCOPY}

Laser: a source of strong, coherent, and near-monochromatic light (electromagnetic radiation)
L
A
S \(\quad \mathbf{E}\)
R

Light Amplification by Stimulated Emission of Radiation

First laser: ruby laser

\section*{Theodore Maiman (1960)}

\section*{Application of lasers}
- optics
- medical technology
- military technology
- informatics
- material processing
- applications in chemistry:
- spectroscopy
- photochemistry

\section*{Operation of lasers}
- Stimulated emission
- Population inversion
- Optical resonator

\section*{Radiative transitions}


\section*{Absorption}
\[
M_{1}+h v \rightarrow M_{2}
\]

Rate equation:
\[
-d N_{1} / d t=A_{12} N_{1} \rho_{v}
\]
\(\mathrm{N}_{1}\) : concentration of molecules in the initial state
\(\rho_{v}\) : concentration of photons
\(\mathrm{A}_{12}\) : rate constant of the absorption

\section*{Spontaneous emission}

\[
M_{2} \rightarrow M_{1}+h v
\]

> Rate equation:
> \(-d N_{2} / d t=d N_{1} / d t=B_{21} N_{2}\)
\(\mathrm{B}_{21}:\) rate constant of the spontaneous emission
spontaneous emission

\section*{Stimulated emission}

stimulated emission

\section*{\(M_{2}+h v \rightarrow M_{1}+2 h v\)}

The frequency, direction, and polarization of the emitted photon is identical to those of the stimulating photon.

Rate equation:
\(-d N_{2} / d t=d N_{1} / d t=A_{21} N_{2} \rho_{v}\)
\(\mathrm{A}_{21}\) : rate constant of the stimulated emission

\section*{Einstein coefficients}

At equilibrium the rate constants can not be independent: Net effect of absorption+spontaneous emission+induced emission to the population of state 2 is zero.
\(A_{12} N_{1} \rho_{v}-B_{21} N_{2}-A_{21} N_{2} \rho_{v}=0\)
Connections among the three rate constants:
\[
\begin{gathered}
B_{21}=\frac{8 \pi h v^{3}}{c^{3}} A_{12} \\
A_{21}=A_{12}
\end{gathered}
\]

In lasers (there is no equilibrium!) the light is amplified by stimulated emission, more photons are emitted by stimulated emission than absorbed.

Stimulated emission:
\[
-d N_{2} / d t=d N_{1} / d t=A_{21} N_{2} \rho_{v}
\]

Absorption:
\[
-d N_{1} / d t=A_{12} N_{1} \rho_{v}
\]

Since \(A_{21}=A_{12}\), the condition for lasers:
\[
\mathrm{N}_{2}>\mathrm{N}_{1}
\]
(The spontaneous emission is ignored.)

\section*{Inverse population}

In thermal equilibrium: Boltzmann distribution
\[
\mathrm{N}_{1} / \mathrm{N}_{2}=\exp \left(\left(\mathrm{E}_{2}-\mathrm{E}_{1}\right) / \mathrm{kT}\right)
\]

If T increases, \(\mathrm{N}_{1}\) approaches \(\mathrm{N}_{2}\).
But \(\mathrm{N}_{1}<\mathrm{N}_{2}\) always holds.
In lasers \(\mathrm{N}_{2}>\mathrm{N}_{1}\).
This state is referred to as inverse population.
No thermal equilibrium!
The establishment of inverse population is possible using special systems of three or four energy levels.

\section*{Pumping of lasers}

Transmission of the energy to the laser is required for the stimulated emission.

The pumping can be carried out in several ways:
- optical (flash lamp, light of another laser)
- electrical (discharge in gas)
- chemical (chemical reaction)

\section*{Optical resonator}
resonant optical cavity

\[
\begin{array}{ll}
\text { end mirror } & \text { exit mirror } \\
\mathrm{R}=100 \% & \mathrm{R}=80-99 \% \\
& \mathrm{~T}=1-20 \%
\end{array}
\]

The active medium is placed between two mirrors.
The light is reflected back and forth, consequently the path length of the photons, thus the likelihood of the stimulated emission increases.

\section*{Condition for constructive interference}

Standing waves:
\[
L=m \frac{\lambda}{2}
\]
\(\lambda\) - wavelength, m-integer
Frequency:
\[
v=\frac{c}{\lambda}=\frac{m c}{2 L}
\]

\section*{Spectrum of lasers}

The gas lasers have some modes, the dye lasers have infinitely many


\section*{Types of lasers (by the active medium)}
- doped insulator lasers
- semiconductor lasers
- gas lasers
- dye lasers

\section*{Doped insulator lasers}

Active medium: ionic insulator doped with metal ions
The laser radiation is produced by the doping ions.
Pumping: optical (white-light emitting lamp or semiconductor laser)
- ruby laser \(\left(\mathrm{Al}_{2} 0_{3}: \mathrm{Cr}\right)\)
- Nd:YAG laser
- titanium sapphire laser

active laser medium

\section*{Neodymium-YAG laser}

Crystalline host: \(\mathrm{Y}_{3} \mathrm{Al}_{5} \mathrm{O}_{12}\)
yttrium aluminium garnet \(=\) YAG
Dopant ion: \(\mathrm{Nd}^{3+}(\sim 1 \%\) by weight \()\)


\section*{Neodynium is the 60th element.}

The electron configuration of the Nd atom:
\[
\text { KLM } 4 s^{2} 4 p^{6} 4 d^{10} 4 f^{4} 5 s^{2} 5 p^{6} 6 s^{2}
\]

The electron configuration of the \(\mathrm{Nd}^{3+}\) ion:
\[
\text { KLM } 4 s^{2} 4 p^{6} 4 d^{10} 4 f^{3} 5 s^{2} 5 p^{6}
\]

\section*{Energy levels of the Nd:YAG laser}


\section*{Gas lasers}

Active medium: pure gas (e.g., nitrogen laser) gas mixture (e.g., carbon dioxide laser)

For a gas the absorption bands are narrow
Pumping: electrical (gas discharge)
Helium-neon laser (electronic tr., visible light)
Argon laser (electronic tr., visible)
\(\mathrm{N}_{2}\) laser (electronic tr., UV light)
\(\mathrm{CO}_{2}\) laser (vibrational tr., IR light)


\section*{Argon laser}

Active medium: argon gas of \(\sim 0.5\) Torr pressure, in a discharge tube In the discharge - excited molecules
\(\left.\begin{array}{l}\text { - ground-state ions } \\ \text { - excited ions }\end{array}\right\}\) arise (plasma)
Operating characteristics of the discharge tube: current, voltage, pressure, temperature-the population of various energy levels of the Ar ions depends on these factors.

Population inversion can be achieved in particular excited states of Ar ions wrt to the lower states.

\section*{Ar is the 18th element.}

Electron configuration of the Ar atom:
\[
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}
\]

Ground-state electron configuration of the \(\mathrm{Ar}^{+}\) ion:
\[
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}
\]


\section*{The argon laser}
dispersing element
cathode
\[
\begin{aligned}
& \text { exit mirror } \\
& \mathrm{R}=98 \%, \mathrm{~T}=2 \%
\end{aligned}
\]
end mirror
\(\mathrm{R}=100 \%\)

\section*{\(\mathrm{CO}_{2}\) laser}

Active medium: \(\sim 1: 1\) mixture of \(\mathrm{CO}_{2}\) and \(\mathrm{N}_{2}\) gases sealed: closed discharge tube of \(\sim 10\) Torr pressure open: gas flow through the cavity at \(\sim\) atmospheric pressure The laser transition takes place between the excited vibrational states of the \(\mathrm{CO}_{2}\) molecule, therefore infrared light is emitted.
\(\mathrm{N}_{2}\) - buffer gas.

\section*{Normal modes of the \(\mathrm{CO}_{2}\) molecule}
symmetric stretching
bending
antisymmetric
stretching


Quantum numbers for the three normal modes.

\section*{Energy levels relevant to the \(\mathrm{CO}_{2}\) laser}


Advantage:
the electric energy is efficiently converted to infrared light

Application:
- metal processing
- surgery
- spectroscopy: plasma generation

\section*{The dye lasers}

Active medium: solution of strongly fluorescing dyes.
Pumping: optical (white-light lamp or another laser).
Advantage: tunable
The laser transition takes place between the vibrational ground state of the \(\mathrm{S}_{1}\) electronic state and the excited vibrational state of \(S_{0}\).

\section*{Jablonski-diagram}

\(\sim \sim \sim\) non-radiative transition
\(\longrightarrow\) radiative transition

\section*{A dye laser}


\section*{Spectral ranges of emission bands for different laser dyes}

Typicaloutput
power (W)


Wavelength (nm)

\section*{Mode-locking}

\section*{electro-optic}


Laser radiates at a number of different frequencies: these modes have random phases relative to each other. It is possible to lock their phases together (see Atkins).
\[
\begin{aligned}
& \begin{array}{l}
\text { E.g., } t=\frac{2 L}{c}=\frac{2 \cdot 1.5 \mathrm{~m}}{3 \cdot 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}}=10^{-8} \mathrm{~s}=1000 \\
\text { electro-optic modulator: refraction }
\end{array} \\
& \text { coefficient is changed when voltage } \\
& \text { applied, after each } t \text { period it lets a }
\end{aligned}
\] short pulse to reflect from the mirror.

\section*{Synchronous pumping}

A mode-locked, non-tunable laser is employed to pump another laser of the same optical cavity length.

Advantage: - tunable
- much shorter pulses
E.g.: the pulsewidth of the mode-locked argon laser is 300 ps , which is reduced to 10 ps when pumping a dye laser.

\section*{Properties of the laser beam}

They are superior in many aspects to those of the light produced by conventional light sources.

\section*{Power density}

High power density within a small region.
Typical diameter of a laser beam is \(1 \mathrm{~mm}^{2}\).
The power of laser beams varies from the mW to the kW region.

\section*{High degree of collimation}

The diameter of a laser beam does not change significantly even at 100 m from the source (very nearly parallel front and back mirrors )

\section*{Spectral linewidth}

Very thin linewidth, especially for gas lasers, e.g., that for the 514.5 nm light of the argon laser is \(10^{-4} \mathrm{~nm}\).

\section*{Short pulses}

The pulse lasers generate pulses in the \(\mu \mathrm{s}\) (ruby laser, Nd :YAG laser) or ns ( \(\mathrm{N}_{2}\) laser) range.

Picosecond and femtosecond pulses are generated by modelocked lasers.

\section*{Tuning the frequency of lasers}
- dye laser
- non-linear materials (non-linearity is typically observed only at very high light intensities)
- harmonic generation \((2 v, 3 v, 4 v)\)
- frequency conversion \(\left(v=v_{1}+v_{2}\right)\)


\section*{Raman scattering}

\section*{Interactions of the photons and molecules}
- absorption
- emission
- stimulated emission
- elastic scattering
- inelastic scattering
- ionization
- etc.

\section*{Rayleigh scattering}

Elastic scattering of light by molecules.
Elastic scattering involves no (or very small) loss or gain of energy by the radiation.

Application: determination of particle size in colloids.
Blue sky and red sunset: \(\quad I \propto \frac{I_{o}}{\lambda^{4}}\)


\section*{Raman scattering}

Inelastic scattering of photons by molecules.
The energy of both the photon and the molecule is changed:
- the molecule absorbs energy: Stokes scattering
- the molecule loses energy: anti-Stokes scattering

Rotational, vibrational, and electronic levels may all be involved in Raman scattering.

\section*{Sir CHANDRASEKHARA VENKATA RAMAN (1888-1970)}


\section*{The Raman scattering process}

(a) Stokes

(b) anti-S tokes

\section*{The Raman spectrometer}

photomultiplier

\section*{Selection rules}

They differ from those for the absorption and emission spectra:
\[
\mu_{\text {perm }}=q \cdot d
\]

In the case of the Raman scattering the induced dipole moment is considered (not the permanent!).
\[
\mu_{i n d}=\underline{\underline{\alpha}} \cdot \underline{E}
\]
\(\underline{\underline{\alpha}}\) : polarizability tensor
\(\underline{E}\) : electric field

\section*{Polarizability tensor}
\[
\underline{\alpha}=\left(\begin{array}{lll}
\alpha_{x x} & \alpha_{x y} & \alpha_{x z} \\
\alpha_{y x} & \alpha_{y y} & \alpha_{y z} \\
\alpha_{z x} & \alpha_{z y} & \alpha_{z z}
\end{array}\right)
\]
\(\underline{\underline{\alpha}}\) symmetric tensor, that is, \(\alpha_{x y}=\alpha_{y x}, \alpha_{x z}=\alpha_{z x}\), and \(\alpha_{y z}=\alpha_{z y}\)

\section*{Rotational Raman spectra of \(\mathrm{N}_{2}\)}

In contrast to conventional rotational spectroscopy, molecules without permanent dipole moment also have allowed rotational transitions.


\section*{Vibrational Raman spectra}

Selection rules:
a) \(\Delta v_{i}= \pm 1\),
\[
\Delta v_{j \neq i}=0
\]
only one normal vibration can be excited
b) Analyzing the \(\int_{-\infty}^{+\infty} \Psi_{v}^{*} \hat{\mu}_{\text {ind }} \Psi_{v} d \tau\)
transition moment it can be proven that the irrep of the normal mode must be identical to that of any component of the polarizability tensor \(\alpha\).

\section*{Character table of the \(\mathrm{C}_{2 \mathrm{v}}\) point}

\section*{group}
\begin{tabular}{l|cccc|c}
\(\mathrm{C}_{2 \mathrm{v}}\) & E & \(c_{2}^{1}(z)\) & \(\sigma_{\mathrm{v}}(\mathrm{xz})\) & \(\sigma_{\mathrm{v}}(\mathrm{yz})\) & \\
\(\mathrm{A}_{1}\) & +1 & +1 & +1 & +1 & \(\mathrm{~T}_{\mathrm{z}}, \alpha_{\mathrm{xx}}, \alpha_{\mathrm{yy}}, \alpha_{\mathrm{zz}}\) \\
\(\mathrm{A}_{2}\) & +1 & +1 & -1 & -1 & \(\mathrm{R}_{\mathrm{x}}, \alpha_{\mathrm{xy}}\) \\
\(\mathrm{B}_{1}\) & +1 & -1 & +1 & -1 & \(\mathrm{~T}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}, \alpha_{\mathrm{xz}}\) \\
\(\mathrm{B}_{2}\) & +1 & -1 & -1 & +1 & \(\mathrm{~T}_{\mathrm{y}}, \mathrm{R}_{\mathrm{z}}, \alpha_{\mathrm{yz}}\)
\end{tabular}

\section*{The infrared and Raman spectra are complementary}

The IR-forbidden vibrations may be active in the Raman spectrum and vice versa.

\section*{The vibrational spectrum of crotonaldehyde}


Raman spectrum



\(s\)-trans-crotonaldehyde

\section*{Vibrational wavenumbers of crotonaldehyde}
\begin{tabular}{|c|c|c|c|}
\hline (C) & & \multicolumn{2}{|r|}{\(\mathrm{i} / \mathrm{cm}^{-1}\)} \\
\hline & & Infrared & Raman \\
\hline \multicolumn{4}{|l|}{In-plane} \\
\hline \(\nu_{1}\) & CH antisymmetric stretch on \(\mathrm{C}=\mathrm{C}\) & 3042 & 3032 \\
\hline \(\nu_{2}\) & CH symmetric stretch on \(\mathrm{C}=\mathrm{C}\) & 3002 & 3006 \\
\hline \(\nu_{3}\) & \(\mathrm{CH}_{3}\) antisymmetric stretch & 2944 & 2949 \\
\hline \(\nu_{4}\) & \(\mathrm{CH}_{3}\) symmetric stretch & 2916 & 2918 \\
\hline \(\nu_{5}\) & CH stretch on CHO & 2727 & 2732 \\
\hline \(v_{6}\) & \(\mathrm{C}=\mathrm{O}\) stretch & 1693 & 1682 \\
\hline \(\nu_{7}\) & \(\mathrm{C}=\mathrm{C}\) stretch & 1641 & 1641 \\
\hline \(\nu_{s}\) & \(\mathrm{CH}_{3}\) antisymmetric deformation & 1444 & 1445 \\
\hline \(\nu_{9}\) & CH rock (in-plane bend) on CHO & 1389 & 1393 \\
\hline \(\nu_{10}\) & \(\mathrm{CH}_{3}\) symmetric deformation & 1375 & 2
+1380 \\
\hline \(v_{11}\) & CH symmetric deformation on \(\mathrm{C}=\mathrm{C}\) & 1305 & 1306 \\
\hline \(\nu_{12}\) & CH antisymmetric deformation on \(\mathrm{C}=\mathrm{C}\) & 1253 & 1252 \\
\hline \(\nu_{13}\) & \(\mathrm{CH}_{3}\) in-plane rock & 1075 & 1080 \\
\hline \(\nu_{14}\) & \(\mathrm{C}-\mathrm{CHO}\) stretch & 1042 & 1046 \\
\hline \(\nu_{15}\) & \(\mathrm{C}-\mathrm{CH}_{3}\) stretch & 931 & 931 \\
\hline \(\nu_{16}\) & \(\mathrm{CH}_{3}-\mathrm{C}=\mathrm{C}\) bend & 542 & 545 \\
\hline \(\nu_{17}\) & \(\mathrm{C}=\mathrm{C}-\mathrm{C}\) bend & 459 & 464 \\
\hline \(\nu_{18}\) & \(\mathrm{C}-\mathrm{C}=\mathrm{O}\) bend & 216 & 230 \\
\hline \multicolumn{4}{|l|}{Out-of-plane} \\
\hline \(\nu_{19}\) & \(\mathrm{CH}_{3}\) antisymmetric stretch & 2982 & 2976 \\
\hline \(\nu_{20}\) & \(\mathrm{CH}_{3}\) antisymmetric deformation & 1444 & 1445 \\
\hline \(\nu_{21}\) & \(\mathrm{CH}_{3}\) rock & 1146 & 1149 \\
\hline \(\nu_{22}\) & CH antisymmetric \({ }^{\text {a }}\) deformation on \(\mathrm{C}=\mathrm{C}\) & 966 & \(\overline{70}\) \\
\hline \(\nu_{23}\) & CH symmetric \({ }^{\text {a }}\) deformation on \(\mathrm{C}=\mathrm{C}\) & - & 780 \\
\hline \(\nu_{24}\) & CH wag (out-of-plane bend) on CHO & 727 & - \\
\hline \(\nu_{25}\) & \(\mathrm{CH}_{3}\) bend & 297 & 300 \\
\hline \(v_{26}\) & \(\mathrm{CH}_{3}\) torsion & 173 & - \\
\hline \(\nu_{27}\) & CHO torsion & 121 & - \\
\hline
\end{tabular}

\section*{Advantages of Raman spectroscopy}
- aqueous solutions can be used (the absorption of water is strong over almost the entire IR range, but its Raman scattering is weak)
- non-destructive technique (The solid sample does not need to be ground with KBr and compressed to a pellet or to dissolve, only to place in the path of the light.)
- resonance Raman-effect (The wavelength of the exciting laser is within the electronic spectrum of a molecule. In that case the intensity of some Raman-active vibrations increases dramatically. Colorful components can be detected at low concentrations, e.g., in biological samples.)

\section*{Two-photon absorption}

Rotational, vibrational, or electronic transitions when two photons are absorbed by the molecule. Its probability is sufficiently larger if the concentration of photons is high. It can be induced by pulse lasers, but not by conventional light sources, and continuous lasers.

Most often, the two-photon absorption is used in electronic spectroscopy.

\section*{Energy levels in two-photon absorption}

single tunable laser

\section*{Detection methods for two-photon absorption}

Ionization continuum
The 2-photon absorption is a small perturbation wrt the background.


Either the total fluorescence intensity or the number of ions is proportional to the 2-photon absorption.

\section*{Selection rules}

They are different from those of the one-photon absorption.
They are similar to those of the Raman scattering.
The irrep of the wave function of the final state must be identical to that of any component of \(\alpha\).

Explanation: Raman scattering
Two-photon processes
One-photon absorption Spontaneous emission \(\}\) One-photon processes

\section*{Applications 1}

1a) Investigation of transitions which are forbidden in onephoton absorption (because of the different selection rules)

1b) In the electronic spectrum transitions in the far UV range can also be observed. For instance, instead of the absorption of a photon of 150 nm , the transition can be induced by two photons of 300 nm .

\section*{Applications 2}
2) High-resolution spectroscopy: elimination of the Doppler broadening of spectral lines.

The consequence of Doppler effect:
\[
v^{\prime}=v\left(1 \pm \frac{v}{c}\right)
\]

\section*{Elimination of Doppler broadening}

\[
\begin{aligned}
& \Delta E=2 v\left(1+\frac{v}{c}\right) \\
& \Delta E=v\left(1+\frac{v}{c}\right)+v\left(1-\frac{v}{c}\right)=2 v
\end{aligned}
\]

\section*{Two-photon spectrum of 1,4-difluorobenzene}


\section*{Applications 3}
3. Two-photon microscopy

The laser beam is focused onto the sample, due to the high photon density, two-photon absorption takes place, which is indicated by fluorescence. This is what is detected.

Advantage: the sample does not absorb at the wavelength of the exciting light (in one-photon absorption), therefore
- thick layers can be studied,
- the destruction caused by the light is low

\section*{Example: two-photon microscope image of ant cells}


\section*{Flash photolysis}

The concentration of excited-state molecules most often decreases according to first-order kinetics:
\(\left[\mathrm{M}^{*}\right]=\left[\mathrm{M}^{*}\right]_{0} \exp (-\mathrm{kt})\)
\(\tau=1 / \mathrm{k}\) characteristic time

\section*{Triplet state}
\(\tau_{\mathrm{T}_{1}}=10^{-6}-10^{0} \mathrm{~S}\)
there is time for chemical reactions
Instrument:
simple pulse laser
+ photodiode or photomultiplier
+ electronics (oscilloscope)
Experimental method: flashphotolysis

\(S_{0}\)
\(S_{1}\)
\(\mathrm{T}_{1}\)

\section*{Flash photolysis I}


\section*{Flash photolysis II}
\[
\begin{array}{|c|}
\hline \text { b) measurement of transition } \\
\text { emission (fluorescence) } \\
\hline
\end{array}
\]
sample
frequencydoubling crystal



Decay of the triplet state of a porphyrin molecule dissolved in the lipid bilayer of a phospholipid vesicle in the presence of oxygen


Idealized structure of a phospholipid vesicle with the most probable location of the probe molecule.


Absorption spectrum of triplet antracene
A: in hexane
B: in a phospholipid vesicle at \(25^{\circ} \mathrm{C}\)
C : in a phospholipid vesicle at \(18{ }^{\circ} \mathrm{C}\)


Decrease of the acceptor reacting with singlet oxygen by measuring the absorbance of the acceptor


IR emission signal of singlet oxygen in the presence of hematoporphyrin sensitizer. (Thick line: extrapolation)

\section*{The pump and probe experiment}

\section*{Singlet states}
\(\tau_{\mathrm{S}_{1}} 10^{-11}-10^{-8} \mathrm{~S}\)
there is no time for chemical reactions


Instrument
mode-locked laser
+ fast photodiode or photomultiplier
+ electronics (lock-in amplifier)
Experimental method: pump and probe experiment

\section*{The pump and probe experiment}


\section*{Decay of the transient absorption of Nile Blue}

solvent: ethyleneglycol temperature: \(\quad 20{ }^{\circ} \mathrm{C}\)
\(40{ }^{\circ} \mathrm{C}\)
\(60{ }^{\circ} \mathrm{C}\)

\section*{The transient absorption is the resultant of several factors:}
- bleaching: decrease of the population of the \(S_{0}\) state (the intensity of the probe beam increases)
- stimulated emission: increase of the population of the \(\mathrm{S}_{1}\) state (the intensity of the probe beam increases)
\(-\underline{S}_{1} \rightarrow \underline{S}_{2}\) absorption: (the intensity of the probe beam decreases)

\section*{ENERGY LEVELS OF NUCLEI}

The nuclear shell model

\section*{Nuclear shell model}


\section*{The angular momentum of nucleons due to spin}
\[
\begin{aligned}
& \mid \vec{S}(\text { proton })|=| \vec{S}(\text { neutron })|=| \vec{S}(\text { electron }) \mid=\sqrt{S(S+1)} \hbar \\
& S=1 / 2
\end{aligned}
\]
(Protons and neutrons are particles of \(1 / 2\) spin like the electrons.)


\section*{Nuclear shell model}
- used for the description of quantum states of the nuclei
- it is similar to the model applied to polyatomic molecules, which introduces the electron shells. (It is more complicated, because there are two types of nucleons.)

\title{
Characterization of the quantum states of the nuclei (Results of the nuclear shell model)
}

The states of the nuclei are characterized by two quantum numbers:
- I: nuclear spin quantum number
\(-\mathrm{M}_{\mathrm{I}}\) : nuclear magnetic quantum number

\section*{Nuclear quantum numbers}

I: nuclear spin quantum number
I is defined by the atomic number and the mass number.
\begin{tabular}{lll} 
atomic number & mass number & possible values of I \\
even & even & it is zero \\
even & odd & half-integers \((1 / 2,3 / 2,5 / 2 \ldots)\) \\
odd & even & integers \((1,2,3 \ldots)\) \\
odd & odd & half-integers \((1 / 2,3 / 2,5 / 2 \ldots)\)
\end{tabular}
\(\underline{M}_{1}\) : values of the nuclear spin quantum number:
\[
\mathrm{M}_{\mathrm{I}}=\mathrm{I}, \mathrm{I}-1, \ldots,-\mathrm{I} .
\]

\section*{Energy of nuclei}

Without magnetic field it depends on I and it is degenerate ( \(\mathrm{M}_{1}\)-fold degeneracy).

In magnetic field this degeneracy is lifted.

\section*{Excitation of nuclei}
- Mössbauer effect: I is modified, excitation with gamma-photon
- Nuclear magnetic resonance: \(\mathrm{M}_{\mathrm{I}}\) is modified (in magnetic field), excitation with radiofrequency pulse

\section*{Mössbauer-effect}
- Transition involves the change of nuclear spin quantum number I.
- Large energy \(\gamma\)-radiation
- Recoilless nuclear resonance fluorescence
- Vary narrow linewidth

\author{
small energy shifts correspond to large changes in absorbance
}

\section*{Mössbauer effect}

Radiation source: compounds containing the same type of nuclei which are under investigation in the sample

excited state

Excited nuclei of the compounds serves as a radiation source appear from radioactive decay.

Example: Mössbauer-absorption of \({ }^{57} \mathrm{Fe}-\) nucleus using \({ }^{57} \mathrm{Co}\) isotop as the radiation source


\section*{Mössbauer-spectroscopy}
- Mössbauer-effect can be utilized in the structural chemistry.
- Roughtly the half of the chemical elements of the periodic system can be studied using the Mössbauerspectroscopy.
- There is a need for a radioactive parent (nucleus with atomic number one unit greater) which dacays to the excited state of the investigated nucleus.
- Some frequently studed nuclei: \({ }^{57 \mathrm{Fe},{ }^{119} \mathrm{Sn},{ }^{121} \mathrm{Sb},{ }^{125} \mathrm{Te} \text {. }}\)

\section*{Experimental technique}

Tuning of the source of \(\gamma\)-radiation using Doppler-effect: The radiation source is moved wrt the sample.
\[
v^{\prime}=v\left(1 \pm \frac{\mathrm{v}}{\mathrm{c}}\right)
\]

Absorption is measured while changing v systematically.
Detector: intenzity of the \(\gamma\)-radiation is measured by a NaI crystal. The \(\gamma\)-photon can strip an electron from one of the \(I^{-}\)ion of the NaI crystal. The current is detected. The current is amplified by an electron multiplier.

\section*{Properties of spectra}
- Chemical shift: the absorbed frequency is characteristic to the nuclei but it also depends slightly on the electronic density of surrounding atoms, thus the spectrum contains information about the molecular structure as well.
- Quadruple splitting: the quadruple moment is a property of charge distribution. If the nucleus has a quadruple moment (the charge distribution is not spherically symmetric) than the energy levels (belonging to quantum number I) are split.
- Magnetic splitting: in magnetic field the energy of states characterized by quantum number I are broken according to \(\mathrm{M}_{\mathrm{I}}\). Observable:
- in external magnetic field
- in internal magnetic field (e.g., in ferromagnetic material)

\section*{\(\mathrm{Fe}_{3}(\mathrm{CO})_{12}\) - Mössbauer spectra}


Two excited levels due to the quadruple spitting


According to the chemical environment two peaks are expected with \(2: 1\) intensity.

First Mössbauer Spectrum Recorded on Martian Surface
Gusev Crater, January 17, 2004 (3h25min)


Figure 4. Very first Mössbauer spectrum ever taken on an extraterrestrial surface. The data from the Martian soil at the Spirit landing site were taken on sol ( = Martian day) 13 of operations.

\footnotetext{
"With MIMOS II, besides other minerals the Fe silicate olivine has been identified in both soil and rocks at both landing sites. At the Meridiani site the Fe sulfate jarosite has been identified by MIMOS II which is definitive mineralogical proof of the presence of water at this site in the past." (Hyperfine Interactions (2004) 158:117-124)
}

\section*{Applications in structural chemistry}
- Metal complexes
- Corrosion - the atoms in the different oxidized state affected by different chemical shifts
- Magnetic alloys (internal magnetic field)

Nuclear magnetic resonance spectroscopy (NMR)

\section*{Absorption of nuclei in magnetic}

\section*{field}

Mössbauer effect
Without magnetic field it is I dependent, degenerate according to \(\mathrm{M}_{\mathrm{I}}\)

Nuclear magnetic resonance
In magnetic field: energy of states depend on I and \(\mathrm{M}_{\mathrm{I}}\)

\section*{Magnetic nuclear resonance}


Transition with changing
\(M_{I}\) and constant \(I\) value.
Magnetic field is needed!
magnetic field


Absorption of radio wave radiation

\section*{Nuclear spin, angular momentum, and magnetic moment}

Eigenvalues of the \(\hat{L}^{2}\) and \(\hat{L}_{z}\) operators: \(\hbar^{2} I(I+1)\) and \(\hbar M_{I}\)
\[
M_{I}=-I,-I+1, \ldots, I
\]

Nuclear spin
Nuclear magnetic moment
\(\mathrm{g}:\), Lande-factor"
\(\mu_{\mathrm{n}}:\) Bohr-magneton of nucleus
(nuclear magneton)
\(\mathrm{m}_{\mathrm{n}}\) : mass of nucleus
Eigenvalues of the \(\hat{M}^{2}\) and \(\hat{M}_{z}\) operators: \(g^{2} I(I+1) \mu_{n}^{2}\) and \(g M_{I} \mu_{n}\)

\section*{Potential energy of a particle with magnetic moment}

Classical physics:
\[
V=-\vec{M} \cdot \vec{B}
\]

In magnetic field oriented in the direction of z axis,
\[
V=-M^{z}|\vec{B}|
\]

In quantum mechanics:
\[
\begin{gathered}
M^{z}=\mathrm{gM}_{I} \mu_{n} \\
V=-\mathrm{gM}_{I} \mu_{n}|\vec{B}|
\end{gathered}
\]

\section*{Most frequently investigated nuclei in NMR spectroscopy: \({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\)}

\author{
Atomic Mass I (ground \(\mathrm{M}_{\mathrm{I}}\) number number state)
}
\({ }^{1} \mathrm{H}\)
even odd \(\quad 1 / 2 \quad+1 / 2,-1 / 2 \quad 5.586\)
\({ }^{13} \mathrm{C}\)
even odd \(\quad 1 / 2 \quad+1 / 2,-1 / 2 \quad 1.405\)

\section*{Splitting as a function of magnetic field}

Energy of
\(M_{1}=+1 / 2\) state:
\[
E_{1}=-\frac{1}{2} g \mu_{n}|\vec{B}|
\]

Energy of
\(\mathrm{M}_{\mathrm{I}}=-1 / 2\) state:
\(E_{2}=+\frac{1}{2} g \mu_{n}|\vec{B}|\)

\section*{Transitions between the nuclear states of \({ }^{1} \mathrm{H}\) and \({ }^{13} \mathrm{C}\)}
\(\mathrm{M}_{\mathrm{I}}=+1 / 2 \longrightarrow \mathrm{M}_{\mathrm{I}}=-1 / 2\)
The transition is allowed!
\[
\Delta \mathrm{E}=\mathrm{g} \mu_{n}|\vec{B}|=h v
\]

Energy of absorbed photon:
\[
v=\frac{\Delta E}{h}=\frac{g \mu_{n}|\vec{B}|}{h}
\]

\section*{Absorption NMR frequencies of nuclei}

\section*{In \(|\vec{B}|=1 T\) magnetic field}

Nucleus Natural occurrence(\%)
\begin{tabular}{lccc}
\({ }^{1} \mathrm{H}\) & 99.98 & \(1 / 2\) & 42.58 \\
\({ }^{11} \mathrm{~B}\) & 81.17 & \(3 / 2\) & 13.66 \\
\({ }^{13} \mathrm{C}\) & 1.11 & \(1 / 2\) & 10.70 \\
\({ }^{19} \mathrm{~F}\) & 100.0 & \(1 / 2\) & 40.06
\end{tabular}

\title{
Properties of NMR spectra I Chemical shift
}

\section*{\({ }^{1} H\) NMR spectrum of Ethylbenzene}


\section*{Chemical shift}

Chemical shift: the characteristic atomic absorption (emission, ionization) frequency is slightly modified by surrounding molecular enviroment.

\section*{Detectable:}
- XPS (ionization energy of atomic core)
- Mössbauer-effect (changing of nuclear energy due to the absorption of a \(\gamma\)-photon)
- Magnetic nuclear resonance (transition between magnetic energy levels due to absorption of radio wave radiation)

\section*{Chemical shift in the NMR}

\section*{spectrum}

In the magnetic field electrons around a nucleus will circulate and create a secondary induced magnetic field.
\[
\vec{B}_{\text {lok }}=\vec{B}(1-\sigma) \quad \begin{aligned}
& \sigma: \text { sheltering coefficient } \\
& \sigma \text { positive: diamagnetic sheltering } \\
& \sigma \text { negative: paramagnetic sheltering }
\end{aligned}
\]

Due to the chemical shift the absorption frequency is modified:
\[
v^{\prime}=\frac{g \mu_{n}|\vec{B}|(1-\sigma)}{h}
\]

In the NMR-spectrum the "relative change" wrt a reference absorption frequency is given:
\[
\delta=\frac{v^{\prime}-v_{0}}{v_{0}}
\]

Choosing the \(v_{0}\)
theoretical possibility: \(v\) of an isolated nuclei
practical solution: \(v\) of an atom of a chosen compound

Most frequently applied reference molecule: Tetramethylsilane (TMS)
advantage of TMS: single absorption signal for both \({ }^{1} \mathrm{H}\) and \({ }^{13} \mathrm{C}\)
\(\delta:\) chemical shift (the phenomenon is also called chemical shift!)

Chemical shift \(\delta\) is usually expressed in parts per million (ppm) by frequency

An advantage of \(\delta\) to \(v\) : it is independent of magnetic field

Examples:
How many spectral lines can be found in the \(\mathrm{H}^{1}\) NMR spectrum of isopropanol or in the spectrum of acetone?


The set of chemical shifts of nuclei \({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\) is characteristic property of the functional groups.

http://www.mhhe.com/physsci/chemistry/carey/student/olc/graphics/carey04oc/ch13/figures/hiproh.gif

\section*{\({ }^{1} \mathrm{H}\) chemical shifts}


\section*{\({ }^{13} \mathrm{C}\) chemical shifts}


\section*{Properties of NMR spectrum II spin-spin coupling}

Spin-spin coupling: interaction between the magnetic moments of the NMR-active nuclei of molecule.

Splitting of NMR bands.

\section*{Example:}


In the \({ }^{13} \mathrm{C}\) spectrum peaks with \(1: 2: 1\) relative intensities due to the interaction of \({ }^{13} \mathrm{C}\) and the two \({ }^{1} \mathrm{H}\) nuclei.

The energy of \({ }^{13} \mathrm{C}\) in the \(\mathrm{CH}_{2}\) group with the spin-spin coupling:
\[
E=-g^{13} \mathrm{C} M_{I}^{13} \mathrm{C} \mu_{n}^{13} \mathrm{C}|\vec{B}|+J^{\mathrm{CH}} M_{I}^{13} \mathrm{C}\left(M_{I}^{\mathrm{H}_{1}}+M_{I}^{\mathrm{H}_{2}}\right)
\]
\(\mathrm{J}^{\mathrm{CH}}\) : C-H coupling constant
Excitation: \(\quad M_{I}^{C}=+\frac{1}{2} \rightarrow M_{I}^{C}=-\frac{1}{2}\)
\[
\Delta E=g^{13} \mathrm{C} \mu_{n}^{13} \mathrm{C}|\vec{B}|+J^{\mathrm{CH}}\left(M_{I}^{\mathrm{H}_{1}}+M_{I}^{\mathrm{H}_{2}}\right)
\]
\[
\begin{array}{lll}
\mathrm{M}_{\mathrm{I}}^{\mathrm{H} 1} & \mathrm{M}_{\mathrm{I}}^{\mathrm{H} 2} \quad \mathrm{E}^{\text {CH }}
\end{array}
\]
\[
+1 / 2 \quad+1 / 2 \quad+\mathrm{JCH}
\]
\[
\begin{array}{lll}
+1 / 2 & -1 / 2 & 0
\end{array}
\]
\[
-1 / 2 \quad+1 / 2 \quad 0
\]
\[
-1 / 2 \quad-1 / 2 \quad-\mathrm{J}^{\mathrm{CH}}
\]

\section*{Coupling constant depends on}
- the type of interacting atom pair (e.g., \({ }^{1} \mathrm{H}-1 \mathrm{H}\), \({ }^{1} \mathrm{H}-{ }^{13} \mathrm{C},{ }^{1} \mathrm{H}-{ }^{19} \mathrm{~F},{ }^{13} \mathrm{C}-{ }^{13} \mathrm{C}\) coupling)
- the atomic distance
- the type of chemical bound

It does not depend on the magnetic field!

\section*{Units of coupling constant:}
\[
\mathrm{J}^{\mathrm{CH}} / \mathrm{h}, \quad \mathrm{~J}^{\mathrm{HH}} / \mathrm{h}, \quad \mathrm{~J}^{\mathrm{CC}} / \mathrm{h}, \text { etc. }
\]
[Hz]

\section*{Chemically equivalent nuclei:}
- they are related by a symmetry operation of the molecule (same chemical shifts)
e.g., -3 protons of \(\mathrm{CH}_{3}\),
- 2 protons of \(\mathrm{CH}_{2}\).

\section*{Magnetically equivalent nuclei:}
- Nuclei are magnetically equivalent if they have identical spinspin interactions with any other nuclei in the molecule. Magnetically equivalent nuclei are chemically equivalent as well.
- Due to the rapid internal rotations the protons of the \(\mathrm{CH}_{3}\) group can be magnetically equivalent.

\section*{Difluoromethane and Vinylidene fluoride}


The two H atoms are symmetrically connected to both F atoms, they are magnetically equivalent.

The two H atoms are chemically equivalent, but magnetically not.

\section*{Interpretation of NMR spectrum}

Based on the chemical shifts and the spin-spin coupling
\(1^{\text {st }}\) order spin-spin coupling: chemical shifts are much larger than the value of the spin-spin coupling constant. Simple interpretation.

\section*{\({ }^{1} H\) NMR spectrum of the Ethylbenzene}


\section*{Rules of spin-spin coupling in the \({ }^{1} \mathrm{H}\) NMR spectra}
- Interaction of magnetically equivalent protons bounded to the same carbon does not cause splitting.
- The spin-spin interaction between protons of neighboring carbons do cause well-detectable splitting.
- Interaction between protons far from each other is weak in the case of aliphatic compounds. The splittings due to these weak interactions are detectable only in high resolution measurements. Interactions of protons connected by conjugated \(\mathrm{C}-\mathrm{C}\) bounds is stronger.

\section*{\({ }^{1} \mathrm{H}\) NMR spectrum of Ethylbenzene}

Splittings in the spectrum of the \(\mathrm{CH}_{3}\) group (due to the \(\mathrm{CH}_{2}\) group)
\[
\Delta E=g^{1}{ }^{H} \mu_{n}^{1}{ }^{1}|\vec{B}|+J^{\mathrm{H}_{1} \mathrm{H}_{2}}\left(M_{I}^{\mathrm{H}_{1}}+M_{I}^{\mathrm{H}_{2}}\right)
\]
\begin{tabular}{lll}
\(\mathrm{M}_{\mathrm{I}}^{\mathrm{H} 1}\) & \(\mathrm{M}_{\mathrm{I}}^{\mathrm{H} 2}\) & \(\mathrm{E}^{\mathrm{HH}}\) \\
\(+1 / 2\) & \(+1 / 2\) & \(\mathrm{~J}^{\mathrm{HH}}\) \\
\(+1 / 2\) & \(-1 / 2\) & 0 \\
\(-1 / 2\) & \(+1 / 2\) & 0 \\
\(-1 / 2\) & \(-1 / 2\) & \(-\mathrm{J}^{\mathrm{HH}}\)
\end{tabular}


\section*{\({ }^{1} \mathrm{H}\) NMR spectrum of Ethylbenzene}

Spitting of the band of \(\mathrm{CH}_{2}\) group (due to \(\mathrm{CH}_{3}\) group)
\[
\Delta E=g^{1} H \mu_{n}^{1}{ }^{1}|\vec{B}|+J^{\mathrm{H}_{1} \mathrm{H}_{2}}\left(M_{I}^{\mathrm{H}_{1}}+M_{I}^{\mathrm{H}_{2}}\right)
\]
\[
\begin{array}{llll}
\mathrm{M}_{1}^{\mathrm{H} 1} & \mathrm{M}_{\mathrm{t}}^{\mathrm{H} 2} & \mathrm{M}_{\mathrm{I}}^{\mathrm{H} 3} & \mathrm{E}^{\mathrm{HH}}
\end{array}
\]
\[
+1 / 2 \quad+1 / 2 \quad+1 / 2 \quad+3 / 2 \mathrm{~J}^{\mathrm{HH}}
\]
\[
\begin{array}{llll}
+1 / 2 & +1 / 2 & -1 / 2 & +1 / 2 \mathrm{~J}^{\mathrm{HH}}
\end{array}
\]
\[
\begin{array}{llll}
+1 / 2 & -1 / 2 & +1 / 2 & +1 / 2 \mathrm{~J}^{\mathrm{HH}}
\end{array}
\]
\[
-1 / 2 \quad+1 / 2 \quad+1 / 2 \quad+1 / 2 \mathrm{~J}^{\mathrm{HH}}
\]
\[
\begin{array}{llll}
+1 / 2 & -1 / 2 & -1 / 2 & -1 / 2 \mathrm{~J}^{\mathrm{HH}}
\end{array}
\]
\[
\begin{array}{llll}
-1 / 2 & +1 / 2 & -1 / 2 & -1 / 2 \mathrm{~J}^{\mathrm{HH}}
\end{array}
\]
\[
\begin{array}{llll}
-1 / 2 & -1 / 2 & +1 / 2 & -1 / 2 \mathrm{~J}^{\mathrm{HH}}
\end{array}
\]
\[
\begin{array}{llll}
-1 / 2 & -1 / 2 & -1 / 2 & -3 / 2 \mathrm{~J}^{\mathrm{HH}}
\end{array}
\]

\title{
The chemical formula of molecule can be obtained from the NMR spectrum.
}

\section*{Spin-spin interactions in the \({ }^{13} \mathrm{C}\) spectra}
\(\Delta E=g^{13} C \mu_{n}^{13} C|\vec{B}|+J^{\mathrm{CH}}\left(M_{I}^{\mathrm{H}_{1}}+M_{I}^{\mathrm{H}_{2}}\right)\)

The bands of \({ }^{13} \mathrm{C}\) atoms are splitted by their hydrogen neighbors.

CH group 1:1 doublet
\[
\begin{array}{lll}
\mathrm{M}_{\mathrm{I}}^{\mathrm{H1}} & \mathrm{M}_{\mathrm{I}}^{\mathrm{H}} & \mathrm{E}^{\mathrm{C}} \\
+1 / 2 & +1 / 2 & \mathrm{~J}^{\mathrm{CH}} \\
+1 / 2 & -1 / 2 & 0 \\
-1 / 2 & +1 / 2 & 0
\end{array}
\]
\[
\mathrm{CH}_{3} \text { group 1:3:3:1 quartet } \quad-1 / 2 \quad-1 / 2 \quad-\mathrm{-}^{\text {ch }}
\]

\section*{\({ }^{13} \mathrm{C}\) NMR spectrum of 1,3-butanediol (with and without proton decoupling)}


\section*{NMR spectroscopy}

In most of the cases solutions are studied.
Deuterated solvents: chloroform-d ( \(\mathrm{CDCl}_{3}\) ), aceton- \(\mathrm{D}_{6}\) (To avoid the absorption of protons, \({ }^{1} \mathrm{H}\) of the solvent are replaced by deuterium.)

TMS is also added.

\section*{The NMR signal is weak}
\[
\begin{aligned}
& { }^{1} \mathrm{H} \\
& |\vec{B}|=1 T \\
& \mathrm{t}=25^{\circ} \mathrm{C}
\end{aligned}
\]
\[
\frac{N\left(M_{I}=-\frac{1}{2}\right)}{N\left(M_{I}=+\frac{1}{2}\right)}=0,999993
\]

Reason: small excitation energy
The probability of the absorption and induced emission is almost the same.

Due to the excitations during the measurement shift this ratio closer to one.

Relaxation processes: nuclei return to the ground state in non-radiative processes.

\section*{NMR spectrometer}


\section*{Excitation pulse sequence and its Fourier transform in FT-NMR}

a) Free induction decay (FID) courve of ethylbenzene in deuteroacetone solution b) Fourier transform \({ }^{13} \mathrm{C}-\mathrm{NMR}\) spectrum


\section*{Magnetic resonance imaging}



\section*{Mass spectrometry (MS)}
- Separation of isolated, ionised particles according to the mass/charge ratio
- Main elementes of the mass spectrometer:


\section*{Single-focus mass spectrometer}


Detector slit

Single-focus mass spectrometer:
Sample is ionized, ions are accelerated in electric field than separated in magnetic field.

Mass and charge of particles: m, e.
Voltage of acceleration: U
A kinetic energy: \(\frac{1}{2} \mathrm{mv}^{2}=\mathrm{eU} \longrightarrow v^{2}=\frac{2 \mathrm{eU}}{m}\)

\section*{Magnetic field is homogeneous}
(The magnetic field is perpendicular to the velocity of entering particles.)

\section*{Lorentz force:}
\[
\vec{F}=e \cdot \vec{v} \times \vec{B}
\]
e [As]: ionic charge
\(\mathrm{v}[\mathrm{m} / \mathrm{s}]\) : speed of the ion
\(\mathrm{B}\left[\right.\) Tesla \(\left.=\mathrm{N} / \mathrm{Am}=\mathrm{Vs} / \mathrm{m}^{2}\right]\) : magnetic field

Circular motion due to the force perpendicular to the velocity (centripetal force).


Right-hand rule
B: perpendicular to the sheet.
\(\frac{m v^{2}}{r}=B \cdot e \cdot v\)
\(v=\frac{\mathrm{Ber}}{m}\)
\(v^{2}=\frac{B^{2} e^{2} r^{2}}{m^{2}}\)
\(v^{2}=\frac{2 \mathrm{eU}}{m}\)
\[
\frac{m}{e}=\frac{B^{2} r^{2}}{2 U}
\]

\section*{Separation of charged particles in magnetic field}


\section*{Methods of ionization}
a) Electron collision ionization
\[
\begin{array}{ll}
M+e^{-} \rightarrow M^{+}+2 \mathrm{e}^{-} & \text {(positive ion) } \\
M+e^{-} \rightarrow M^{-} & \text {(negative ion) }
\end{array}
\]

The positive ions are more stable.

\section*{Fragmentation}

The ions can further dissociate in parallel and consecutive reactions:
\[
M^{+} \rightarrow A^{+}+B+\ldots
\]
b) Chemical ionization: large quantity reagent gas \(\left(\mathrm{CH}_{4}, \mathrm{NH}_{3}\right.\), isobutan).

Mainly the reagent gases are ionized (most of the are \(\mathrm{MH}^{+}\)) and collide the investigated molecules.

The spectrum is relatively simple.
c) Secondary Ion Mass Spectrometry, SIMS

Solid sample is bombarded by \(\mathrm{Ar}^{+}\)or \(\mathrm{O}_{2}{ }^{+}\)ions.

Atoms and ions leave the surface.
Method for investigation of surfaces.

\section*{d) Fast Atomic Bombardment (FAB)}

Non volatile sample

The sample is dissolved (e.g., in glycerol).
Bombardment with neutral atoms (Ar, Xe)
FAB can be applied for the study of biological and medical sample.
e) Electrospray Ionisation (ESI)


3000 V

Biological macromolecules in ionic vapor

Ion formation involves extensive solvent evaporation.

\section*{MALDI = matrix-assisted laser desorption-ionisation}
matrix: aromatic acid


The sample is dissolved in a matrix material and applied to a metal surface.

A pulsed laser irradiates the sample, triggering ablation and desorption of the sample and matrix material.

The target molecules are Ionized.

\section*{M \\ resolution:}
\(M\) is the molar mass of ion, \(\Delta \mathrm{M}\) is the smallest detectable difference between two atomic mass values.
E.g., if the resolution is 500 than
molecules with 1000 and 1002 atomic mass values can be separately detected, but the difference between 1000 and 1001 atomic mass values can not be seen.

\section*{Mass spectrometer configurations}

Typical mass analyzers
a) Single-focus mass spectrometer (res:~1001000)
b) Tandem mass spectrometry (res:~10000100000)
c) Quadropul mass analyzers (fast!, res:~1000)
d) Time-of-flight spectrometry

Detector: electron multiplier

Applications of MS
a) Analytical tool

Molar mass
Quantitative analysis of gas mixes.
Identifying unknown compound
Isotopic composition
Can be combined with gaschromatograpy (GC-MS)

\section*{b) Structure of molecules}

Types of peaks:
Molecular peaks
Fragment peaks \(\quad \mathrm{M}^{+} \rightarrow \mathrm{A}^{+}+\mathrm{B}\)
Multiply charged peaks \(\quad \frac{M}{2 \mathrm{e}} \quad \frac{M}{3 \mathrm{e}}\)

Metastabe peaks (short living ions)

\section*{Thiophene}


\(4 * 1+4 * 12+32=84\)
\(\mathrm{HCS}^{+}\)
45

n-butane


\section*{n-butane}
1) peak at \(m / e=58\) has a relativelly small intensity
2) peak at \(\mathrm{m} / \mathrm{e}=43\) has the highest probability: \(58-43=15\), i.e., the \(\mathrm{CH}_{3}\) group has removed and the
\(\mathrm{C}_{3} \mathrm{H}_{7}{ }^{+}\)ion is detected
3) small peak at \(\mathrm{m} / \mathrm{e}=59\), it is caused by the \({ }^{13} \mathrm{C}\) or \({ }^{2} \mathrm{H}\) isotopes (satelite peaks)
4) \(\mathrm{C}_{2} \mathrm{H}_{5}^{+} / \mathrm{C}_{4} \mathrm{H}_{10}{ }^{2+}\) have the same \(\mathrm{m} / \mathrm{e}=29\) value
5) \(\mathrm{m} / \mathrm{e}=25.5,2^{*} 25.5=51\), doubly charged ion.
c) Application in physical chemistry

Ionization potentials, molar heat of fragments, dissociation energies, reaction kinetics

Intensity is measured as a function of the energy of the bombarding electrons.

\section*{X-ray diffraction}


X-ray diffraction pattern (reflections), protein sample (crystal)[wikipedia]

\section*{Molecular geometry}
- Bound distancies, bound angles
- Conformation
- Configuration of chiral centers

\section*{Methods for determining molecular geometry}
- Gas sample: microwave spectroscopy
rotational Raman-spectroscopy
- Solution: (NMR, conformation)
(CD-spectroscopy, chiral centrums)
- Crystals: X-ray diffraction

\section*{Perfect crystals}

\section*{Primitive cell}

Parallelepiped
Lattice parameters:
\(\mathrm{a}, \mathrm{b}, \mathrm{c}\) : edges
\(\alpha, \beta, \gamma:\) angles.

\section*{Crystal structures}

Crystal structures Num. of independent parameters
triclinic
monoclinic
orthorombic
tetragonal
rhombohedral
hexagonal
cubic

6
4
3
2
2
2
1

Parameters
\[
\begin{aligned}
& \mathrm{a} \neq \mathrm{b} \neq \mathrm{c}, \alpha \neq \beta \neq \gamma \\
& \mathrm{a} \neq \mathrm{b} \neq \mathrm{c}, \alpha=\gamma=90^{\circ} \neq \beta \\
& \mathrm{a} \neq \mathrm{b} \neq \mathrm{c}, \alpha=\beta=\gamma=90^{\circ} \\
& \mathrm{a}=\mathrm{b} \neq \mathrm{c}, \alpha=\beta=\gamma=90^{\circ} \\
& \mathrm{a}=\mathrm{b}=\mathrm{c}, \alpha=\beta=\gamma \neq 90^{\circ} \\
& \mathrm{a}=\mathrm{b} \neq \mathrm{c}, \alpha=\beta=90^{\circ}, \gamma=120^{\circ} \\
& \mathrm{a}=\mathrm{b}=\mathrm{c}, \alpha=\beta=\gamma=90^{\circ}
\end{aligned}
\]

Position of an atom in the primitive cell
\[
\vec{r}_{n}=x_{n} \vec{a}+y_{n} \vec{b}+z_{n} \vec{c}
\]


NaCl crystal


\section*{Crystal lattice}

Lattice point: assigned to one or more atoms, molecules, or ions.

Translation vectors which shift the lattice points to equivalent lattice points:
\[
\vec{t}=n_{1} \vec{a}+n_{2} \vec{b}+n_{3} \vec{c}
\]
\(\vec{a}, \vec{b}, \vec{c}\) : elementary translation vectors which keep the lattice invariant.
\[
\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}: \text { integers }
\]

\section*{The X-ray diffraction experiment}

Aim of a X-ray diffraction measurment:
to obtain the crystal structures, i.e, to access
- the parameters of the primitive cell
- the positions of atoms in the primitive cell

\section*{The X-ray diffraction}

On the crystal sample the X-ray radiation scatters ellastically. The interference of scattered radiation can be detected.
(The wavelenght of the X -ray radiation is comperable to the lattice parameters \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) leading to interference picture.)

\section*{Most important methods:}
- methods to obtain the lattice parameters:
- Debye-Scerrer method : monochromatic radiation scatters on powder sample
- Laue method: polychromatic radiation scatters on powder sample
- to have the lattice parameters and the atomic positions
- rotating crystal method: monochromatic radiation scatters on crystals

\section*{The X-ray radiation scatters on the electrons.}

Scattering on the nuclei is negligible.

\section*{X-ray diffraction instrument for rotating crystal experiments}
high energy electron beam


\section*{Lattice parameters}

\section*{Reflection from two atomic crystal layers}

\(\overline{B C}=\overline{C D}=d \sin \theta\)

\section*{Condition of constructive interference}

\(\overline{B C}+\overline{C D}=2 d \sin \theta=n \lambda\)
Bragg equatition

\section*{Example: orthorombic crystal}


\section*{Example: orthorombic crystal}

\section*{Bragg equation}
\[
\begin{array}{ccl}
\mathrm{d}=\mathrm{a} & \mathrm{~d}=\mathrm{b} & \mathrm{~d}=\mathrm{c} \\
2 a \sin \theta_{1}^{a}=\lambda & 2 b \sin \theta_{1}^{b}=\lambda & 2 c \sin \theta_{1}^{c}=\lambda \\
2 a \sin \theta_{2}^{a}=2 \lambda & 2 b \sin \theta_{2}^{b}=2 \lambda & 2 c \sin \theta_{2}^{c}=2 \lambda \\
2 a \sin \theta_{3}^{a}=3 \lambda & 2 b \sin \theta_{3}^{b}=3 \lambda & 2 c \sin \theta_{3}^{c}=3 \lambda
\end{array}
\]

\section*{Example: orthorombic crystal}

Lattice plain I.
(Miller indices)




\section*{Example: orthorombic crystal}

\section*{Lattice plain II. (Miller indices)}

(210)

\section*{Example: orthorombic crystal}

\section*{Distance of lattice plains}
\[
\frac{1}{d_{\mathrm{hk} \ell}^{2}}=\frac{h^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}+\frac{\ell^{2}}{c^{2}}
\]
\[
2 d_{h k l} \sin \theta=\lambda
\]

When not all the lattice angles are \(90^{\circ}\) than dhkl depents on the lattice angles too.

\title{
The lattice parameters can be obtained from the directions of the diffraction maxima (reflections).
}

At most 6 parameters: 6 reflections is enough to determine the lattice parameters.

Atomic positions

The atomic positions can be obtained
from the relative intensities of reflections.

\section*{Intensities}
1. Model: spherically symmetric atoms (effect of valence electrons is neglected). Steps of derivation:
1.a Scattering on an isolated atom
1.b Scattering on primitive cell
1.c Scattering on 3D crystal
2. Model: distribution of electrons is not spherically symmetric

\section*{Intensity of the scattering on a crystal of} spherically symmetric atoms
\[
I=\left|F_{\text {hke }}\right|^{2}
\]
\(\mathrm{F}_{\mathrm{hk} \ell}\) is (hk \(\ell\) ) scattering amplitude of the plain, it is the so-called structure factor.

For a set of particle it is a sum of scattering amplitudes times a phase factors: \(F=\sum_{i} f_{i} \exp \left(i \phi_{i}\right)\)
\(\phi_{i}\) quantities describe the phase differences due to the different optical path lengths.

\section*{Structure factor}
\[
F_{\text {hk } \ell}=\sum_{n} f_{n} \exp \left[2 i \pi\left(\mathrm{hx}_{n}+\mathrm{ky}_{n}+\ell z_{n}\right)\right]
\]
\(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}, \mathrm{z}_{\mathrm{n}}\) are the atomic coordinates of the primitive cell
\(f_{n}\) is the scattering factors of the \(n^{\text {th }}\) atom.

\section*{Atomic scattering factor}

atomic scattering factors as functions of \(\sin (\theta) / \lambda\)

\section*{Scattering intensity of primitive cells with contiguous electron density}
\[
\begin{gathered}
I=\left|F_{\mathrm{hk} \ell}\right|^{2} \\
F_{\text {hk } \ell}=\frac{V}{a \cdot b \cdot c} \int_{0}^{a} \int_{0}^{b} \int_{0}^{c} \rho(\mathrm{x}, \mathrm{y}, \mathrm{z}) \exp [2 \mathrm{i} \pi(\mathrm{hx}+\mathrm{ky}+\ell z] \mathrm{dxdydz}
\end{gathered}
\]


\section*{Ni-Phthalocyanine electron density map}
```


[^0]: $\Gamma^{(3)}=2 \Gamma^{(1)} \oplus \Gamma^{\prime(1)}$

[^1]: ${ }^{3}$ When the transition moment is evaluated for all possible relative

