Short Test Questions for Physical Chemistry and Structural Chemistry

Zoltán Rolik

November 21, 2019

Possible Questions for the 1^{st} Test

Please, introduce the applied notations!

- 1. What is the polar form of a complex number? Illustrate it using the concept of the complex plane!
- 2. Give the exponential form of complex numbers!
- 3. Define the linear momentum and the angular momentum (classical case)!
- 4. What is the complex conjugate of z = a ib and e^{ix} complex numbers?
- 5. What is kinetic energy and how it relates to linear momentum?
- 6. What is potential energy for a spring which obeys Hooke's law (F = -kx) and how can one calculate it?
- 7. Give the Taylor expansion for the exponential function!
- 8. Show that $x(t) = A \sin \omega t$ is a solution for $m \frac{d^2 x}{dt^2} = -kx!$ What is the connection between ω , k, and m?
- 9. Give the Bohr condition for the angular momentum (quantization of angular momentum)!
- 10. Describe the de Broglie postulate! What is the relation between the wavelength and the momentum?
- 11. What is the energy of a single photon?
- 12. Give the equation for the centripetal force in uniform circular motion!
- 13. Give the form of the 1D classical wave equation!
- 14. What is the solution of the classical wave function?
- 15. Give the form of the time-dependent Schrödinger equation for a single particle!
- 16. Write the 1D Schrödinger equation for a free particle!
- 17. Write the 1D Schrödinger equation for the particle in the 1D box problem!
- 18. Give the general form of an eigenvalue equation and also give a specific example!
- 19. Describe the Born/probability interpretation of the wave function!
- 20. Give the formula for the energy levels for the 1D particle in the box problem!

2

Possible Questions for the 2^{nd} Test

Please, introduce the applied notations!

- 1. What is the definition of Hermitian operators?
- 2. What do you know about the eigenvalues of Hermitian operators?
- 3. What do you know about the eigenfunctions of Hermitian operators?
- 4. What are the observable values of a physical quantity in quantum mechanics?
- 5. How can we calculate the average of a measurable physical quantity?
- 6. What does the uncertainty principle state about Δp_x and Δx ?
- 7. What is the definition of the momentum operator, \hat{p} ?
- 8. What is the definition of the position operator, \hat{x} ?
- 9. What is the definition of the kinetic energy operator, \hat{K} ?
- 10. What is the definition of the total energy operator, \hat{H} ?
- 11. What is the commutator of two operators $(\hat{A} \text{ and } \hat{B})$?
- 12. What does degeneracy mean?
- 13. Write the Schrödinger equation for the harmonic oscillator!
- 14. Give the formula for the energy levels in the case of the quantum harmonic oscillator!
- 15. Write the Schrödinger equation for the particle on the ring problem in spherical coordinates!
- 16. Give the formula for the energy levels for the particle on the ring problem!
- 17. Give the form of the wavefunctions of the particle on the ring problem!
- 18. What are the eigenfunctions and the eigenvalues of the \hat{L}^2 operator?
- 19. What are the eigenfunctions and the eigenvalues of the \hat{L}_z operator?
- 20. What is the commutator of \hat{L}^2 and \hat{L}_z ?
- 21. What is the commutator of \hat{L}_x and \hat{L}_y ?
- 22. Describe the Stern-Gerlach experiment!
- 23. How can we explain the Stern-Gerlach experiment?
- 24. What is the connection between the angular momenta and the magnetic moment in quantum mechanics?

Possible Questions for the 3^{rd} Test¹

Please, introduce the applied notations!

- 1. What are the fermions and bosons?
- 2. What does the Pauli exclusion principle say about the wavefunction of a fermionic system?
- 3. What are the possible values of quantum number j belonging to the total angular momentum (\hat{J}^2) for a system with a single electron on a d orbital? Explain your answer!
- 4. How is the spin-orbit interaction described in the case of the Russel-Saunders coupling? (Give the formula!)
- 5. What is the jj-coupling and when can it be applied?
- 6. Give the Hamiltonian operator for He in atomic units!
- 7. How does the ground state of Li atom look like in the Slater determinant approximation?
- 8. What do L, 2S + 1, and J denote in a term symbol, ${}^{2S+1}L_J$?
- 9. What is the concept of shell and subshell for an atom?
- 10. What are the Hund's rules?
- 11. Give the energetic order (starting from the lowest one) of the ${}^{1}S_{0}$, ${}^{3}P_{2}$, ${}^{3}P_{1}$, ${}^{3}P_{0}$, and ${}^{1}D_{2}$ atomic terms of the $2p^{4}$ configuration?
- 12. Give the energetic order (starting from the lowest one) of the ${}^{1}S_{0}$, ${}^{3}P_{2}$, ${}^{3}P_{1}$, ${}^{3}P_{0}$, and ${}^{1}D_{2}$ atomic terms of the $2p^{2}$ configuration?
- 13. What is the transition dipole moment? How is it related to the selection rules?
- 14. What are the selection rules for light atoms?
- 15. Write the Hamiltonian for a molecule (M atoms and N electrons) in atomic units!
- 16. What is the physical basis of the Born-Oppenheimer approximation?
- 17. What does the Born-Oppenheimer approximation say about the interaction between the nuclei?
- 18. What is the variational principle?
- 19. Describe the Hartree-Fock approximation! (How does the wavefunction look like? How is the wavefunction optimized?)
- 20. How does the wave function ansatz of the configuration interaction method look like?

4

¹continued on the next page

- 21. How can we obtain the coefficients of the configuration interaction method?
- 22. What symmetry operations are generated by a C_3 axis?
- 23. What operations are generated by an improper S_3 rotation axis?
- 24. What is the inverse operation for i (inversion)?
- 25. Give the point groups for $\rm H_2O,\, \rm NH_3,\, \rm CO,\, \rm and\, \rm CO_2$!
- 26. What are the possible point groups for molecules possessing a dipole moment?

Possible Questions for the 4^{th} Test²

Please, introduce the applied notations!

- 1. Which symmetry operation is missing for a chiral molecule?
- 2. What do the characters represent in a character table?
- 3. How can we determine the irreducible representations appear in a reducible representation?
- 4. Which parts of the electromagnetic spectra are connected to the electronic, vibrational, and rotational transitions?
- 5. What is the transmittance?
- 6. What is the absorbance?
- 7. What is the Beer-Lambert law?
- 8. Describe the effect of intermolecular interactions to the optical spectra! (brief explanation)
- 9. Describe the influence of Doppler effect to the optical spectra! (brief explanation)
- 10. What is the natural line broadening?
- 11. What is the moment of inertia?
- 12. In terms of the principal axes how do you define the linear and spherical top molecules?
- 13. In terms of the principal axes how do you define the prolate and oblate molecules?
- 14. What are the selection rules for rotational spectroscopy?
- 15. Describe the quantum numbers of a symmetric top! (physical meaning, possible values)
- 16. What are the possible energy levels of a symmetric top?
- 17. Plot a typical rotational spectra! What are on the axes?
- 18. Why does the application of isotopomers modify the rotational spectra?
- 19. Why does the centrifugal distortion modify the rotational energy levels?
- 20. What are the selection rules for the vibrational spectra of a diatomic molecule?
- 21. How does the Morse potential look like? Briefly compare it with the harmonic oscillator potential!
- 22. What is the Birge-Sponer extrapolation? (equation)

 $^{^{2}}$ continued on the next page

- 23. In rovibrational spectroscopy what are the differences between the P, Q, and R branches considering ΔJ ?
- 24. Plot a typical band of a vibrational spectra (diatomic molecule, gas sample)! What are on the axes?

Possible Questions for the 5^{th} Test ³

Please, introduce the applied notations!

- 1. Define the normal modes of a polyatomic molecule!
- 2. Give the vibrational Hamiltonian in terms of the normal coordinates!
- 3. Plot a typical band of a vibrational spectra (polyatomic molecule, gas sample)! What are on the axes?
- 4. How many vibrational frequencies can be found in the IR spectra of folmaldehyde? Explain your answer!
- 5. Explain why four vibrational frequencies can be seen in the IR spectrum of ammonia!
- 6. Sketch the components of a Fourier transform spectrometer!
- 7. Give the mathematical form and plot the HOMO and the LUMO orbitals of the hydrogen molecule in the LCAO approximation!
- 8. How do the σ and π orbitals look like?
- 9. The ground state of the electronic wave function of water is a totally symmetric, singlet state, $1^{1}A_{1}$! The energetic order of the lowest lying excited states are the following: $1^{3}B_{1}$, $1^{1}B_{1}$, $1^{3}A_{2}$, $1^{2}A_{2}$, $1^{3}A_{1}$, $2^{3}B_{1}$, and $2^{1}A_{1}$. Using the C_{2v} character table and the list above give the allowed radiative transitions from the ground state!
- 10. Describe the fluorescence using the Jablonski-diagram!
- 11. What is the difference between the fluorescence and the phosphorescence?
- 12. What is measured in the ORD spectroscopy?
- 13. What is measured in the CD spectroscopy?
- 14. What is the inverse population?
- 15. What are the possible frequencies of standing waves in an optical resonator?
- 16. Explain the radiation mechanism of the CO_2 laser!
- 17. List the possible options for the tuning the frequency of a laser!
- 18. What is the Rayleigh-, Raman-, Stoks-, and anti-Stoks-scattering?
- 19. What are the selection rules in the vibrational Raman spectroscopy?
- 20. Why are lasers applied as light sources in the two-photon spectroscopy?
- 21. Describe how the Doppler broadening can be eliminated using the twophoton spectroscopy!

 $^{^{3}}$ continued on the next page

Table 12.2* The C _{2v} character table						
C_{2v} , 2mm	Е	<i>C</i> ₂	$\sigma_{\rm v}$	$\sigma_{ m v}'$	h = 4	
A_1	1	1	1	1	Z	z^2, y^2, x^2
A_2	1	1	-1	-1		xy
B_1	1	-1	1	-1	x	ZX
B ₂	1	-1	-1	1	у	yz

Table 12.2* The C_{2y} character table