9. Fotoelektron-spektroszkópia

9.1. ábra. Fotoelektron-spektroszkópiai módszerek

9.2. ábra. UP-spektrométer vázlata

9.3. ábra. N₂-fotoelektron-spektrum

9.4. ábra. 2:1 mólarányú CO-CO2 gázelegy XP spektruma

9.6. ábra. Fe-felületen adszorbeált NO XP-színképe

10.2. ábra. A lézersugár spektruma

10.3. ábra. Ionkristálylézerek felépítése

10.4. ábra. Neodínium-YAG lézer energiaszint-diagramja

10.5. ábra Hélium – neon lézer energiaszint-digramja

10.6. ábra. Argonlézer energiaszint-diagramja

- 10.8. ábra Nitrogénlézer energiaszint-diagramjai
- (a) A molekulapályák betöltöttsége az X alapállapotban, valamint a B és C triplett állapotban
- (b) Az X, a B és a C állapotok potenciálgörbéi

Hullámhossz: 337 nm (ultraibolya).

10.9. ábra. Nitrogénlézer felépítése

10.10. A széndioxidlézer energiaszint-diagramja

10.11. ábra. Festéklézer működési tartománya különböző festékekkel

10.12. ábra. Folyadékcellás festéklézer

10.13. ábra. Oldatsugaras festéklézer

10.14. ábra. A lézersugár frekvenciájának változtatása

10.15. ábra. A molekulák energiaváltozása Raman-szórásban

10.16. ábra. A Raman spektrométer felépítése

10.17. ábra. Forgási Raman-színkép

10.18. ábra. Krotonaldehid rezgési színképei

10.19. ábra. Kétfoton-abszorpció detektálási módszerei

10.20. ábra. Az 1,4-difluorbenzol két-foton spektruma

10.21. ábra. Villanófény-fotolízis

10.22. ábra. Pumpa-próba kísérlet

10.23. ábra. Níluskék tranziens abszorpciójának lecsengése

10. 24. ábra. Idő-korrelált egyfotonszámláló rendszer

10. 25. ábra Níluskék festék fluoreszcencia-lecsengése toluolban

11.1. ábra. ⁵⁷Fe-mag Mössbauer-abszorpciójának vizsgálata. Sugárforrás: ⁵⁷Co izotóp

11.2. ábra. Fe₃(CO)₁₂-Mössbauer-színképe

11.3. ábra. Fe₂[(MoO₄)]₃ katalizátor redukciójának vizsgálata Mössbauerspektroszkópiával metanol gázban (Carbucicchio and Trifiro, J. Catal. <u>45</u>, 77 (1976))

Conversion electron Mössbauer spectra of iron oxidized at 225°C for specific times (a) before oxidation, (b) 5 min; (c) 15 min, (d) 120 min, and (e) 1000 min. (Simmons *et al.*, 1973.)

11.4. ábra. Korrózió vizsgálata Mössbauer-spektroszkópiával: α -vas \rightarrow magnetit (Fe₃O₄) átalakulás (Simmons et al.: Corrosion <u>29</u> (1973) 227)

12.2. ¹³C Kémiai eltolódások

12.3. ábra. Etil-benzol ¹H NMR színképe

12.4. ábra. Az 1,3-butándiol normál ill. off-resonance technikával készült ¹³C NMR színképe

12.5. ábra. Az NMR-spektrométer felépítése

12.6. ábra. FT-NMR berendezés gerjesztő impulzussorozata és az impulzussorozat Fourier-transzformáltja

12.7. ábra. A) Az etil-benzol deuteroacetonos oldatáról felvett FID görbe, B) a Fourier-transzformációval kapott ¹³C-NMR-spektrum

12.8. ábra. Szilárdfázisú NMR spektroszkópia: EPDM gumi ¹H (felül) és ¹³C NMR (alul) színképe (NMR Process Systems LLC, internet)

13.1. ábra. Az ESR-készülék felépítése

14.1. ábra. Egyszeres fókuszálású tömegspektrométer

14.2. ábra. Kettős fókuszálású tömegspektrométer

14.3. ábra. Kvadrupol tömegspektrométer

14.5. ábra. Repülési idő tömegspektrométer

Ionizátorok: (a) elektronütközéses, (b) electrospray, (c) MALDI

14.6. Tiofén tömegspektruma

14.8. ábra. Ionizációs hatásfok görbe

15.1. ábra. Az n-ik atom pozíciója az elemi cellában

15.2. ábra. Számítógéppel vezérelt röntgen diffraktométer

15.3. ábra. Röntgensugár visszaverődése két egymás alatti rácssíkról

15.4.ábra. Különböző (hkl) Miller-indexű rácssíkok

Atomi szórástényezők sin θ/λ függvényében

15.5. ábra

15.6. ábra. Ni-Ftalocianid elektronsűrűség térképe