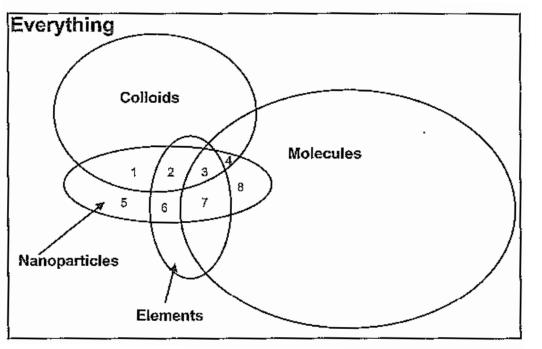

VL "Nanopartikel in der Umwelt" - NP properties


morphology, surface area colloidal stability colloid stabilization

Size ranges for ENP and colloids in aqueous systems

(Frimmel & Niessner)

The interrelation of various types of material

 a stable colloid of an inorganic compound (CdS)
 a stable colloid of an element (gold)
 a stable colloid of an element which has some molecular architecture (sulfur)
 a stable colloid of a molecule (polystyrene)
 an aggregate of an inorganic compound
 an aggregate of an element
 an aggregate of an element which has some molecular architecture
 an aggregate of an element
 an aggregate of an element
 an aggregate of an element

1-4 form stable colloids5-8 are precipitated forms of 1-4

Morphologies of nanomaterial

Spherical: typical in non-crystalline materials and very small crystalline particles

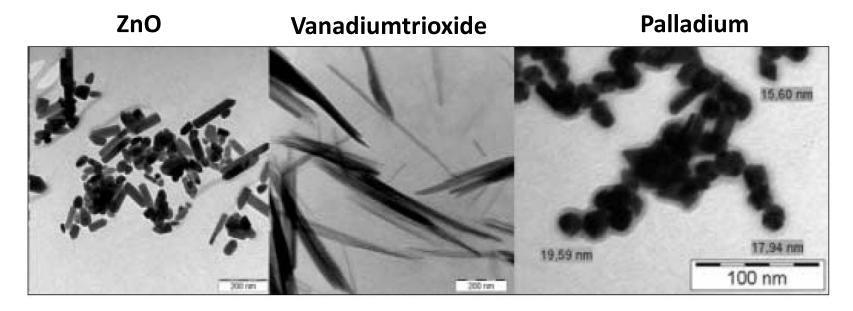
Tear Drop: An extension of the spherical morphology.

Geometric solid: typical of crystalline materials. May be a range of shapes inc. cubic, tetrahedral, icosahedral, etc.

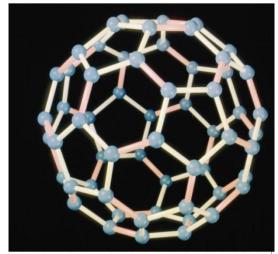
Dendritic: Composed of nanoscale wires the dendrite may be much larger than 100 nm.

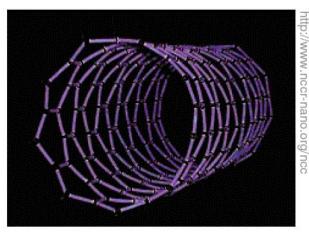
Rod or wire: May have a range of cross sections including circular, cubic and pentagonal

Dumbbell: Formed by the growth of one material only at the ends of a rod of another material

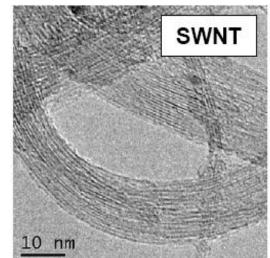


Discotic: thin flat plate often wider than 100 nm. May be a range of shapes including hexagonal and irregular



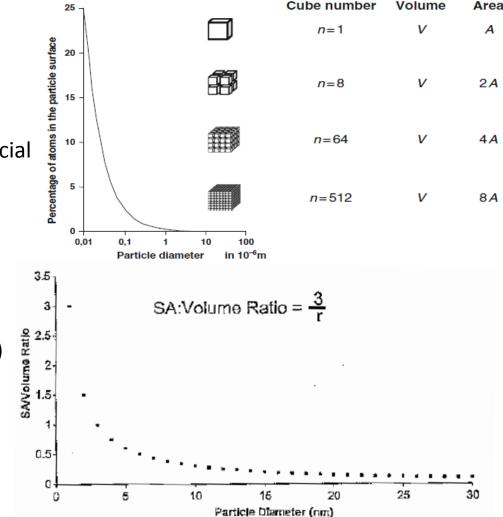

Tetrapod: Formed by the growth hexagonal phase rods from a cubic seed crystal

Morphologies of nanomaterial - examples



Fullerene

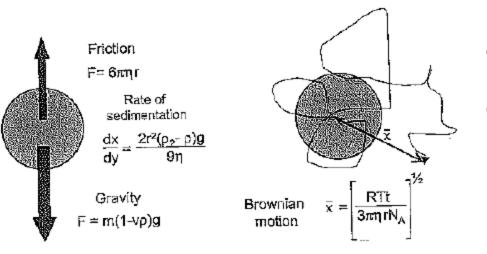
Carbon nanotube


Surface area (A)

 $\Delta G = \Delta W = 2\delta^0 A$

 Δ G: increase of free energy, Δ W: work needed to separate the pieces reversibly against the forces of attraction, δ^{0} : proportionality factor (surface or interfacial tension)

The effect of radius on the surface area (SA) to volume ratio for a constant mass of material


(P. Christian in Lead & Smith)

The fraction of atoms at the surface of NP can be very high: Au-NP d=2.5 nm \rightarrow 53% d=10 nm \rightarrow 16%

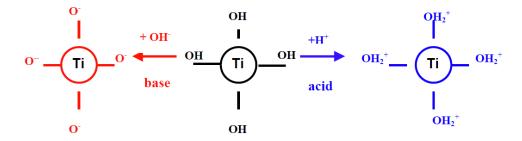
(Frimmel & Niessner)

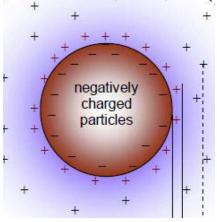
Forces acting on suspended particles

Gravity causing sedimentation Friction working against gravity Collision with molecules of medium (Brownian motion)

Calculated diffusion rates (mm/h) against sedimentation rates (mm/h) in water at room temp.

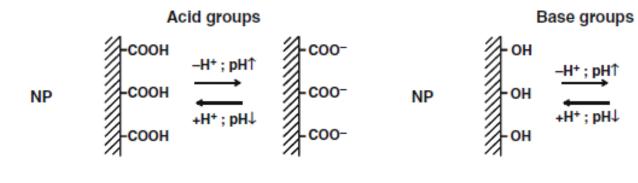
Particle diameter (nm)	1	10	100	500
Brownian diffusion	1.8635	0.5893	0.1863	0.0833
Polyethylene (0.96)	-8.82×10^{-8}	-8.82×10^{-6}	-0.0009	-0.0220
Polystyrene(1.05)	1.10×10^{-7}	1.10 × 10 ⁻⁵	0.0011	0.0276
Graphite (2.25)	2.76×10^{-6}	0.0003	0.0276	0.6889
Titania anatase (3.84)	6.26×10^{-6}	0.0006	0.0626	1.5652
Zinc oxide (5.61)	$1.02 imes 10^{-5}$	0.0010	0.1016	2.5407
Cerium (IV) oxide (7.13)	1.35×10^{-5}	0.0014	0.1351	3.3784
Silver (10.5)	2.09×10^{-5}	0.0021	0.2094	5.2357
Gold (18.9)	3.94×10^{-5}	0.0039	0.3942	9.8541
Osmium (22.5)	4.74×10^{-5}	0.0047	0.4735	11.8381

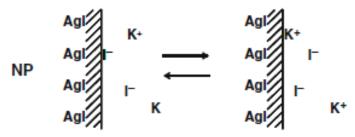

Density in g/cm⁻³ in brackets


Surface properties of nanoparticle

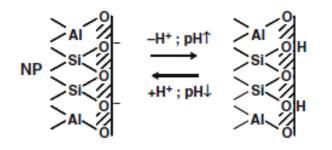
- the surface of suspended nanoparticles is electrically charged (in many cases)
- counter ions are adsorbed onto the surface, more or less to compensate the electrical charges
- the layer of surface charges + the layer of counter ions = electrical double layer

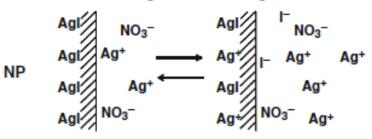
Origin of surface charges of nanoparticle


- lattice defects by substituted atoms
- adsorption of ions onto surface of the solid particle
- adsorption of molecules with functional groups which have electrical charges and/or are dissociable
- chemical (e.g. acid / basic) reactions on the surface of the solid particles (e.g. by dissociation)
- e.g. acid / basic reactions on surface of solid particles by dissociation (TiO₂)

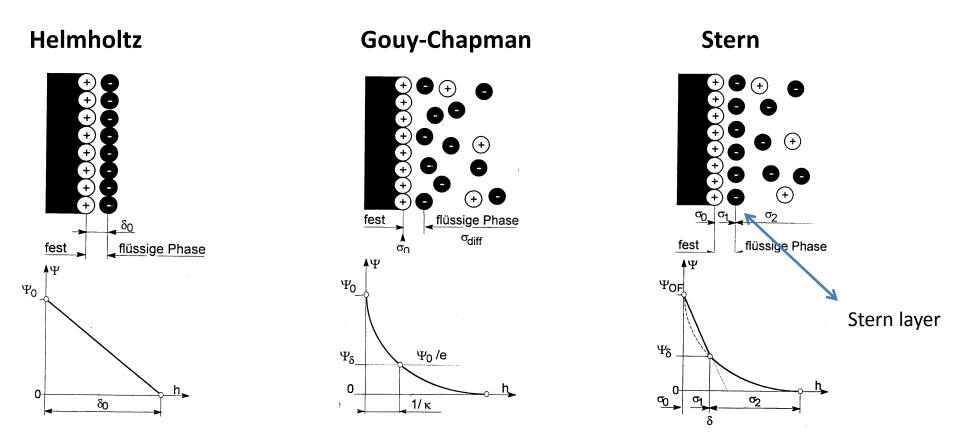


(W. Hintz)


Surface charges and their generation


Dissolution of Agl surface in KI solution

Isomorphic substitution in clay minerals



Dissolution of Agl surface in AgNO₃ solution

(Frimmel & Niessner)

Electrical double layer models

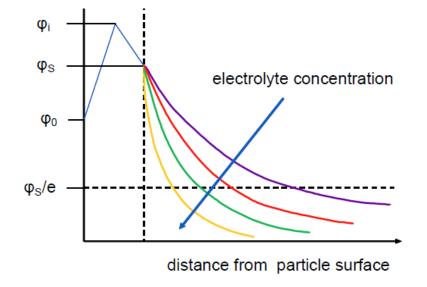
 Ψ - surface potential (V), δ – Debye-length (nm), κ - Debye-Hückel-parameter: κ =1/ δ , σ - surface charge (C/m²)

the Debye length $\delta \kappa$ is the thickness of the electrochemical double layer $\delta \kappa$ = decrease of the potential to 1/e of the surface potential

Electrical double layer models – Debye length

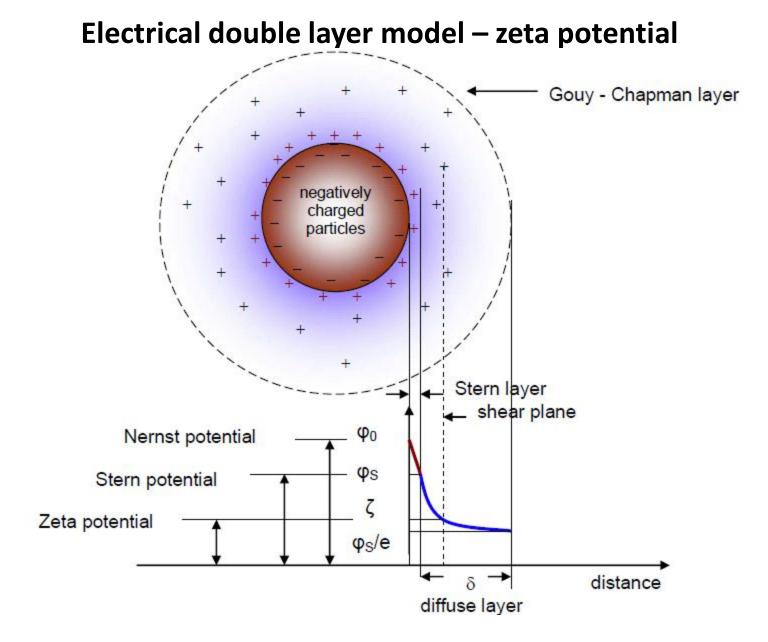
$$\frac{\phi(\mathbf{r})}{\phi_{\rm S}} = \exp\left[-\frac{\mathbf{r}}{\delta_{\rm \kappa}}\right] \quad \text{mit} \quad \delta_{\rm \kappa} = \sqrt{\frac{1}{e^2}}$$

$$\frac{\varepsilon_{\rm r}\varepsilon_0\,k\,T}{\varepsilon^2\,N_{\rm A}\sum\,c_{\rm i}\,z_{\rm i}^2}$$
 w


/ith φ_s Stern potential

- φ potential at distance r
- r distance r from the particle surface k
- $\delta_{\mbox{\tiny K}}$ Debye length
- N_A Avogadro constant
- T temperature

- ε₀ absolute dielectric constant
- ϵ_r relative dielectric constant
- Boltzmann constant
- e elementary charge
- c concentration of ions
- z valence of ions


- increasing electrolyte concentration reducing Debye length
- increasing ion valence reducing Debye length
- destabilization of suspension e.g. with addition of Fe³⁺ or Al³⁺ ions

compression of diffuse double layer

C in mol / L^3	Debye length δ_{κ} of different types of electrolytes in nm			
	(1,1)	(1,2)	(2,2)	(1,3)
10 ⁻¹	0.96	0.55	0.48	0.39
10 ⁻²	3.04	1.76	1.52	1.24
10 ⁻³	9.60	5.55	4.81	3.93
10-4	30.40	17.60	15.20	12.40

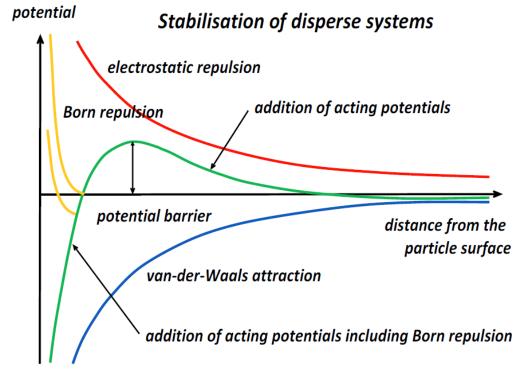
(W. Hintz)

zeta potential (ζ)= potential at the shear plane \approx stern potential

(W. Hintz)

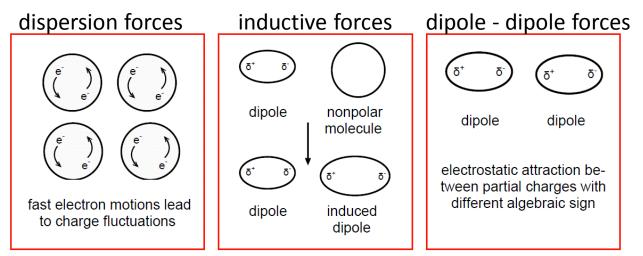
Zeta potential

A charged particle in motion caused by an electrical field or by diffusion loses a portion of its counter ions of the electrical double layer


Measurement of ζ = particle velocity in an electrical field

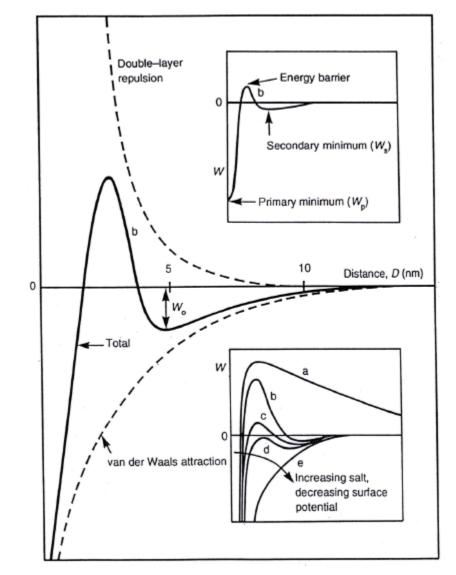
Methods for ζ determination = measurement of electrophoretic mobility or streaming potential

Helmholtz – Smoluchowski equation:


$$\zeta = \frac{\vec{v}}{\vec{E}} \cdot \frac{\eta}{\epsilon \cdot \epsilon_0}$$

 ζ zeta - potential E electrical intensity v particle velocity η viscosity $\epsilon \cdot \epsilon_0$ dielectric constant

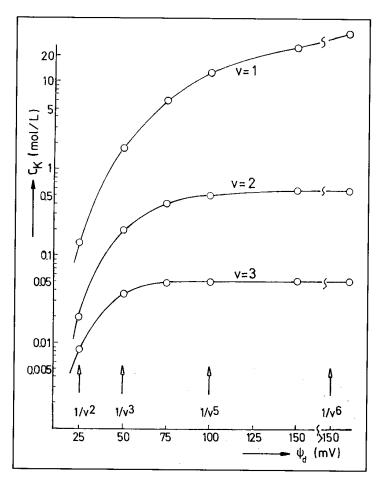
repulsive forces = Coulomb's force


attractive van der Waals forces

(W. Hintz)

Interaction energy – distance profiles from DLVO theory

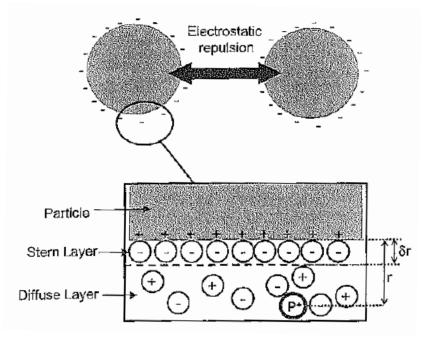
$$V_{R} = prop \frac{1}{\sqrt{I}} tanh [k_{1}\Psi d]^{2} exp(-k_{2}d/\sqrt{I}) V_{A} = -prop \frac{A}{d^{2}} | I = Ionic strength; d = distance between the NPs A = Hamaker-constant$$

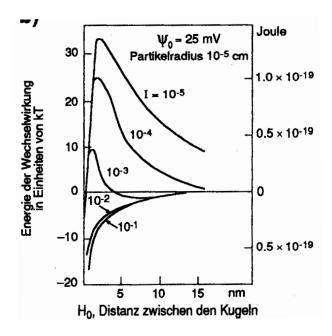

$$V_T = V_A + V_R$$

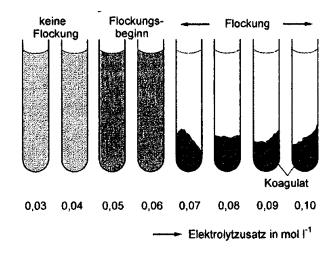
a) strong repulsion of surfaces= NP
suspension is stable
b) surfaces come into a stable equilibrium near
the second minimum, if deep enough
suspension is kinetically stable
c) surfaces come into the second
minimum, slow coagulation of NPs
d) critical coagulation concentration *ccc*:
surfaces stay in the second minimum, or
coagulate, fast coagulation of NPs
e) fast coagulation of NPs

Schulze - Hardy rule

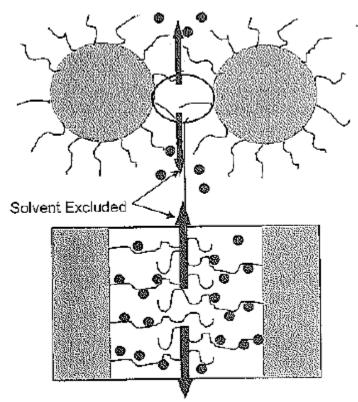
critical coagulation concentration (ccc) is reciprocal proportional to 6th power of ion valence z


$$c(Me^+): c(Me^{2+}): c(Me^{3+}) = \left(\frac{1}{1}\right)^6: \left(\frac{1}{2}\right)^6: \left(\frac{1}{3}\right)^6$$




The reciprocal c.c.c of mono-, di- and trivalent ions behave as 1:50:10000;

e.g. for Al³⁺ (v=3) 1/10000 of Na⁺ (v=1) conc. sufficient


Electrostatic stabilization of NPs

Steric stabilization of NPs

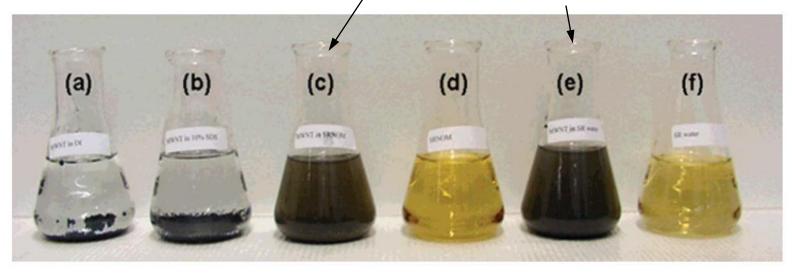
there are polymers on the surface with hydrophilic groups, polymers form short "hairs" towering into the dispersant

stabilisation by entropic effects = numbers of possible configurations would be lowered by coagulation

Stabilization by energetic effects = polymers have in the dispersant a lower energy content than being in contact each other

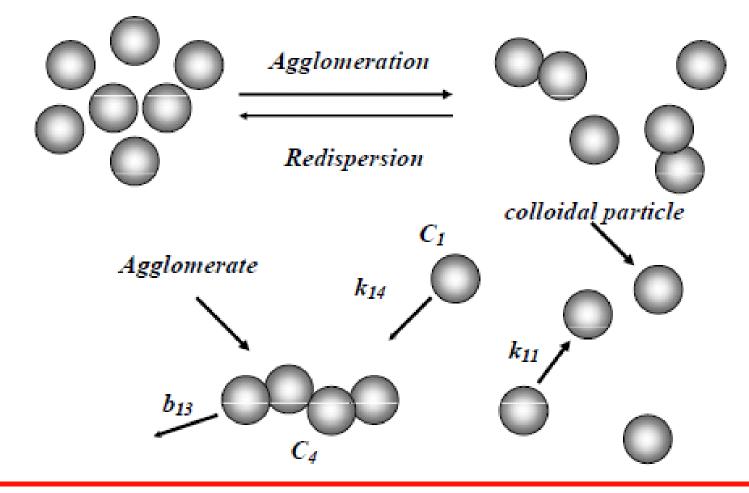
Aggregationsverhalten von Hämatit (70 nm) in Ggw. von DOM

Alginate-coated hematite Bare hematite Attachment Efficiency, α Attachment Efficiency, lpha0.1 ď CC ~ 20 mM CCC ~ 180 mM 0.1 0.01 Ò.1 0.2 0.3 0.4 0.5 0.01 0.1 NaCl Concentration (M) NaCl Concentration (M)


CCC (Hämatit) << CCC (Alginat-Hämatit)

Chen et al, ES&T 2006

Aggregationsverhalten von C-Nanoröhrchen in Ggw von DOM



100 mg/l and 500 mg/l Suwannee River organic matter

Die NP Suspensionen bleiben für Monate stabil durch DOM

Hyung, ES&T 2007

Kinetics of particle agglomeration and redispersion

C_i, C_j, C_k	Particle concentration of i, j, k - mers
k _{ij}	Agglomeration rate constant of i - mer + j - mer
b _{ij}	Redispersion rate constant of k - mer to i - mer + j - mer

Population balance model of the particle agglomeration and redispersion

Classical kinetic theory:
$$i - mer + j - mer = k - mer$$
, $i, j \ge 1 \dots max$
 b_{ij}

Т

Agglomeration: Smoluchowski - process

Redispersion: reverse Smoluchowski - process

$$\frac{dC_{k}}{dt} = \frac{1}{2} \sum_{i=1}^{k-1} (1 + \delta_{i,k-i}) k_{i,k-i} C_i C_{k-i} - C_k \sum_{i=1}^{next} (1 + \delta_{i,k}) k_{i,k} C_i$$

with $\delta_{i,j} = 1$ for $i = j$ and $\delta_{i,j} = 0$ for $i \neq j$

$$\frac{dC_{b}}{dt} = -\frac{1}{2}C_{b}\sum_{i=1}^{b-1}(1+\delta_{i,b-i})b_{i,b-i} + \sum_{i=1}^{max}(1+\delta_{i,b})b_{i,b}C_{i+b}$$

Smoluchowski - process :

Increase of k - mers by agglomeration of particles of size i and k - i with i = 1, 2 ... k - 1 Decrease of k - mers by agglomeration with particles of size i = 1, 2 ... max

Reverse Smoluchowski - process :

Decrease of k - mers by redispersion to particles of size i and k - i with i = 1, 2 ... k - 1 Increase of k - mers by redispersion to particles of size k and i = 1, 2 ... max