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Transport phenomena
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T1. The laws of diffusion
     If gradients of concentration exist for a 
component, there will be a migration of the particles 
towards a region of lower concentration. This is 
called diffusion.
     Diffusion occurs along the gradient of the 
chemical potential (partial molar Gibbs free energy). 
The definition of chemical potential of component i:

Diffusion is described by Fick’s laws.

(T1)
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dn
dt

=−D⋅A⋅
dc
dx

     
     Fick’s first law (in one dimension). If there is an 
inhomogenity of concentration in direction x, there 
will be a migration of molecules towards the lower 
concentrations. The velocity of the migration of the 
amount of substance through a suface A (which is 
perpendicular to the direction of migration) is 
proportional to
    i) the derivative of the concentration with 

respect to x and 
   ii) the surface area.  

[mol·s-1]

 where D [m2·s-1] is the diffusion coefficient. 

(T2)
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The flux (jn) is defined as the velocity of migration of  
amount of substance through a surface of unit area:

jn=
1
A
⋅
dn
dt

[mol⋅m−2⋅s−1 ]

So Fick’s first law in terms of flux:

jn=−D⋅
dc
dx

     The negative sign in Fick’s first law indicates that 
the direction of the flux is opposite to the  
concentration gradient.

(T3)

(T4)
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     Fick’s first law (in three dimensions). If there is an 
inhomogenity of concentration in all the three (x, y 
and, z) dimensions, the direction of the flux is opposite 
to the gradient of concentration.

jn=−D⋅grad c

grad c=
∂ c
dx

⋅i+
∂ c
dy

⋅j+
∂ c
dz

⋅kwhere

Here, are unit vectors in the directions of 
x, y, and z, respectively. 

(T5)

i, j, and k
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x

dx

A

jn(x) jn(x+dx)

    Derivation of Fick’s second law. Consider a thin 
slice of the solution of cross sectional area A 
between x and x+dx. Its volume is dV = A·dx.

     The change of the amount of substance in unit 
time in the elementary volume is A·[jn(x)-jn(x+dx)].
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The change of concentration:

∂c
∂ t

=
1
dV

⋅A⋅[ jn ( x )− jn ( x+dx ) ]
jn(x+dx) can be expressed as

jn ( x+dx )=jn ( x )+
∂ jn
∂ x

⋅dx

Substituting it into the previous equation:

∂c
∂ t

= 1
A⋅dx

⋅A⋅[ jn ( x )− jn ( x )−
∂ jn
∂ x

⋅dx ]

∂n
∂ t

=A [ jn [ x ]− jn ( x+dx ) ]
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∂c
∂ t

=−
∂ jn
∂ x

Fick’s first law: jn=−D⋅
dc
dx

∂c
∂ t

=D⋅∂2c
∂ x2

This is Fick’s second law in one dimension.

In three dimensions:

∂c
∂ t

=D⋅( ∂2c

∂ x2
+ ∂2c

∂ y 2
+∂2c

∂ z2 )

(T6)

(T7)
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    Fick’s second law shows the relationship between 
the time- and spatial dependence of the 
concentration: ∂c

∂ t
=D⋅∂2c

∂ x2

     According to this equation (T6), if the second 
derivative with respect to x is positive, the 
concentration increases in time. 

       If the second derivative with respect to x is 
negative, the concentration decreases in time.

     The following figure shows how the concentration 
changes in time and space.
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c

x

     In regions where the concentration changes 
linearly with x, there is an inflection, and the 
concentration does not change in time.

     The arrows show how the concentration 
changes in time. 



  The slope of the tangent gives first derivative, 

∂ c
∂ x

Its value decreases until the inflection point. 

     From this point, its value increases, at first, 
it has a negative sign but from the minimum 
point up, its sign is positive.

     The decrease of the first derivative refers to 
the negative sign of the second derivative, 
while its increase means positive sign of   

∂2 c
∂ x2

i.e., the red arrows on the figure point downwards 
and upwards, respectively. See equation T6.
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T2. Steady state diffusion

    In a steady state process, the parameters 
(pressure, temperature, concentrations, etc.) are 
independent of time – they are functions of space 
only.

     Modern industrial production lines work 
continuously, and they approach steady state 
conditions.

     In the following experiment, the diffusion along the 
capillary tube is steady state.
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capillary tube

c1 c2

     The continuous flow of liquids (or gases) in the thick 
tubes ensures the constant concentrations c1 and c2 at 
the two ends of the capillaty tube, respectively.

If c2>c1, there is a diffusion from right to left along 
the capillary.

l

x
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If steady state is attained,

∂c
∂ t

=D⋅∂2c
∂ x2

=0

∂c
∂ t

=0

Therefore, according to Fick’s second law (T6)

Since D  0,
∂2 c
∂ x2

=0 The solution of this differential 
equation is a linear function.

Integrate once,
∂ c
∂ x

=a (constant)

Integrate second time, c=a⋅x+b
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      To determine constants a and b consider the 
boundary conditions:

If x = 0, c = c1    c1 = a·0 + b    b = c1 
If x = l, c = c2      c2 = a·l +c1      a = (c2-c1)/l

So the equation describing the dependence of 
concentration on x:

c=c1+
c2−c1

l
⋅x (T8)
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     The steady state concentration in the capillary

c2

(as function of x)

c1

xl0

c
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    The following diagram shows how steady state is 
reached if there is pure solvent in the capillary initially.

c2

c1

xl0

c

t1

t3

t

t2

t2

t1

0<t1<t2<t3<t
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T3. Heat conduction

     If there is a temperature gradient in a substance, 
there is a heat flow from the point of higher 
temperature to the point of lower temperature.

Heat conduction is the transport of internal energy.

     Let us connect two bodies of different temperature 
through a third body, a bar. The material of the bar is 
the studied substance.  
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SubstanceT1

(const.)

T2

(const.)

Fourier’s law of heat (q) conduction (one dimension): 

dq
dt

=−λ⋅A⋅
dT
dx

where dq/dt is the heat flow in unit 
time through a cross section A, 
dT/dx is the temperature gradient.

insulation

Fourier’s law is very similar to Fick’s first law. 

 [J/(msK)] is the thermal conductivity

(T9)

T1>T2
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In three dimensions:

The heat  flow in unit time and unit cross section is 
called the heat flux jq.  

jq=− λ⋅
dT
dx

Fourier’s law for heat flux: 

jq=
1
A
⋅
dq
dt

[ Joule⋅m−2⋅s−1 ]

jq=− λ⋅grad T

(T10a)

(T10b)
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x

dx

A

jq(x) jq(x+dx)

     An expression similar to Fick’s second law can 
also be derived. Consider a thin slice of the heat 
conductor of cross sectional area A between x and 
x+dx. Its volume is dV = A·dx.
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dQ
dt

=A⋅[ jq ( x )− jq ( x+dx ) ]

jq(x+dx) can be expressed as

jq ( x+dx )=jq ( x )+
∂ jq
∂ x

⋅dx
Substituting it into the previous equation:

dQ
dt

=A⋅[ jq ( x )− jq ( x )−
∂ jq
∂ x

⋅dx ]

The change of the internal energy in unit time in the 
elementary volume is 

Note that dQ/dt is also an infinitesimal quantity.

where       Q=q(x)-q(x+dx)
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dQ
dt

=−A⋅
∂ jq
∂ x

⋅dx Fourier’s law: jq=− λ⋅
dT
dx

dQ
dt

=λ⋅A⋅∂2T
∂ x2

⋅dx

Consider that Adx = dV and dQ = cdmdT; where 
m is the mass, c [J kg-1K-1] is the specific heat:

c⋅dm⋅dT
dt

=λ⋅∂2T
∂ x 2

⋅dV
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    If we substitute dm/dV = (density), we obtain 
the final form: 

In three dimensions:

dT
dt

= λ
ρ⋅c

⋅(∂2T

∂ x2
+∂2T

∂ y2
+ ∂2T

∂ z2 )

dT
dt

= λ
ρ⋅c

⋅∂2T
∂ x2 (T11a)

(T11b)
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     This equation connects the time dependence 
and spatial dependence of the temperature. It is 
similar to Fick’s second law (T6). The 
concentration is replaced by the temperature 
and the diffusion coefficient D is replaced by 
/(·c) where  is the thermal conductivity,  is 
the density and c is the specific heat.

  

∂c
∂ t

=D⋅∂2c
∂ x2 and

dT
dt

= λ
ρ⋅c

⋅∂2T
∂ x2
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4. Viscosity
     Consider two plates at distance  from each other. 
The space in between is filled with a liquid (or a gas). 
One plate is stacionary, the other is moving in 
direction x at a velocity of vx, and a force F acts. 

y

liquid

x

vx

F

stationary plate

moving plate


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   The liquid layer in the proximity of the moving plate is 
attached to it and moves with velocity vx. Similarly, a 
layer is also attached to the stationary plate.

   Between the two plates, the velocity of the liquid 
layers increases gradually from zero to vx as y 
increases from zero to . We assume laminar flow, i. 
e., there is no material flow between the neighboring 
layers. 

     The force F that has to be overcome to move the 
plate is proportional to the area (A), the velocity (vx), 
and inversely proportional to the distance.
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The proportionality factor  is called the viscosity of 
the liquid. The dimension of  is (forcetime)/area.

Fx=−η⋅A⋅
vx

ℓ
=−η⋅A⋅

dvx

dy

This is Newton’s law of viscosity.

The SI unit of  is Pas = kgm-1s-1.

The old (CGS) unit is called Poise.

1 Poise = 1 gcm-1s-1 = 0.1 Pas.

The minus sign expresses that the direction of the 
force arising is opposite to the direction of the 
velocity.

(T12)
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Fx=m⋅ax=m⋅
dvx

dt
=

d (m⋅v x )
dt

=
dp x

dt
=−η⋅A⋅

dv x

dy

     Viscous flow is a transport phenomenon (as 
diffusion and heat conduction)

     It is a transport of momentum (p = m·v) from the 
faster to the slower moving layers as can be seen 
from the following consideration.

     dpx/dt is the transport of momentum in unit time 
in the direction of y. 
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jp=−η⋅
dv x

dy

The unit of flux of momentum is

(kg·m·s-1)·m-2·s-1 = kg·m-1·s-2.

If we divide Fx by the area (A), we obtain the flux 
of momentum (jp). 

(T13)
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     Those liquids that obey Newton’s law are called 
Newtonian liquids. 

    Those liquids that do not obey Newton’s law are 
called non-Newtonian liquids: viscosity depends 
on time (suspensions, like toothpaste or blood).

The mechanism of viscous flow of liquids and gases 
is different. 
Common features:
    a) In both cases each layer performs a viscous 
drag on the adjacent layer.
    b) The viscous flow is associated with a net 
transfer of momentum from a more rapidly moving 
layer to the more slowly moving layer. 
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Differences:

     In a gas, the momentum is transferred by the 
actual flights of molecules between the layers 
(intermolecular collisions). 

     In a liquid, the momentum transfer is due to inter-
molecular attractive forces between the molecules, 
which cause a frictional drag between the moving 
layers. 

     The viscosity of gases increases with 
temperature. The average speed of molecules 
increases and therefore the probability of 
collisions increases. 
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     The viscosity of a liquid decreases with increasing 
temperature. The reciprocal of the viscosity, the 
fluidity, can be expressed by an Arrhenius-type 
expression. 

η=A⋅exp ( ΔE vis

RT )

1
η
=B⋅exp(−ΔEvis

RT )
where Evis and B are constants. Evis is the 
activation energy of the rate process of viscous flow.

The reciprocal of T14 is 

(T15)

(T14)
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The logarithm of viscosity is a linear function of the 
reciprocal of the temperature:

ln 

1/T

ln η=ln A+
ΔEvis

R
× 1

T
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Summary                                                                
     We have discussed three types of transport. 
Notice the similarity of the equations for the fluxes:

jq=− λ⋅
dT
dx

jp=−η⋅
dv x

dy

jn=−D⋅
dc
dxMaterial

Internal 
energy

Momentum

Diffusion   (T4)

Heat conduction 
(T10a)

Viscosity      (T13)
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