Physical Chemistry I. practice

Gyula Samu \& Zoltán Rolik

V.: Ideal mixtures
rolik@mail.bme.hu

Pressure-composition diagram

2 components, 2 phases
Miscible components, ideal solution, vapor is ideal gas

z_{2} : molar fraction of comp. 2 in the total system
x_{2} : molar fraction of comp. 2 in the liquid phase (solution)
y_{2} : molar fraction of comp. 2 in the gas phase (vapor)

Konovalov’s first law, lever rule

$y_{2}=\frac{p_{2}}{p}=\frac{x_{2} \cdot p_{2}^{*}}{p}$
Konovalov's first law for ideal mixtures:
if $p_{1}^{*}<p_{2}^{*}: p_{1}^{*}<p<p_{2}^{*} \rightarrow \frac{p_{2}^{*}}{p}>1, y_{2}>x_{2}$
$n_{1}=\left(n_{g}+n_{l}\right) \cdot z_{1}=n_{g} \cdot y_{1}+n_{l} \cdot x_{1}$
$n_{g} \cdot\left(z_{1}-y_{1}\right)=n_{l} \cdot\left(x_{1}-z_{1}\right)$
Lever rule: $\frac{n_{l}}{n_{g}}=\frac{z_{1}-y_{1}}{x_{1}-z_{1}}$

We can also calculate n_{g} and n_{l} directly

$$
\begin{aligned}
n_{1} & =n_{g} \cdot y_{1}+n_{l} \cdot x_{1}=n_{g} \cdot y_{1}+\left(n-n_{g}\right) \cdot x_{1}=n \cdot x_{1}+n_{g} \cdot\left(y_{1}-x_{1}\right) \\
& \rightarrow \quad \underline{n_{g}=\frac{n_{1}-n \cdot x_{1}}{y_{1}-x_{1}}} \quad \underline{n_{l}=\frac{n_{1}-n \cdot y_{1}}{x_{1}-y_{1}}}
\end{aligned}
$$

Vapor composition

We have an ideal mixture of acetone $(A c)$ and acetonitrile $(A n)$
$\log \left(p_{A c}^{*}\right)=9.36457-\frac{1279.87}{237.50+T}$
$\log \left(p_{A n}^{*}\right)=9.36789-\frac{1397.93}{238.89+T}$
(p in $P a, T$ in ${ }^{\circ} C$; but no dimensions inside \log !)
$T=20^{\circ} C \quad x_{A c}=0.2$
What is the vapor pressure? What is the composition of the vapor?

$$
\begin{aligned}
& p=p_{A c}+p_{A n}=x_{A c} \cdot p_{A c}^{*}+\left(1-x_{A c}\right) \cdot p_{A n}^{*} \\
& y_{A c}=\frac{p_{A c}}{p}=\frac{x_{A c} \cdot p_{A c}^{*}}{p} \quad y_{A n}=\frac{p_{A n}}{p}=\frac{\left(1-x_{A c}\right) \cdot p_{A n}^{*}}{p}
\end{aligned}
$$

Vapor composition

$$
\begin{aligned}
& \log \left(p_{A c}^{*}\right)=9.36457-\frac{1279.87}{237.50+20}=4.39420 \\
& \quad \rightarrow p_{A c}^{*}=10^{4.39420} P a=24786 P a \\
& \log \left(p_{A n}^{*}\right)=9.36789-\frac{1397.93}{238.89+20}=3.96818 \\
& \quad \rightarrow p_{A n}^{*}=10^{3.96818} \mathrm{~Pa}=9294 P a \\
& p=0.2 \cdot 24786 P a+0.8 \cdot 9294 P a=12392 P a \\
& y_{A c}=\frac{0.2 \cdot 24786 P a}{12392 P a}=0.4 \\
& y_{A n}=\frac{0.8 \cdot 9294 P a P a}{12392 P a}=0.6
\end{aligned}
$$

Solution composition

Reverse example: we know that
$y_{A c}=0.4, \quad p_{A c}^{*}=24786 P a, \quad$ and $p_{A n}^{*}=9294 P a$
What is the composition of the solution?
$x_{A c}=\frac{p_{A c}}{p_{A c}^{A}}=\frac{y_{A c} \cdot p}{p_{A c}^{*}} \rightarrow x_{A c}$ and p unknown:
we need another equation with p and $x_{A c}$!

$$
p=x_{A c} \cdot p_{A c}^{*}+\left(1-x_{A c}\right) \cdot p_{A n}^{*}
$$

Expressing p from the first equation: $p=\frac{x_{A c} \cdot p_{A c}^{*}}{y_{A c}}$
From the two equations for p we have

$$
\frac{x_{A c} \cdot p_{A c}^{*}}{y_{A c}}=x_{A c} \cdot p_{A c}^{*}+\left(1-x_{A c}\right) \cdot p_{A n}^{*}
$$

Solution composition

$$
\begin{aligned}
& \frac{x_{A c} \cdot p_{A c}^{*}}{y_{A c}}=x_{A c} \cdot p_{A c}^{*}+\left(1-x_{A c}\right) \cdot p_{A n}^{*} \\
& \quad=x_{A c} \cdot\left(p_{A c}^{*}-p_{A n}^{*}\right)+p_{A n}^{*} \\
& x_{A c} \cdot\left[p_{A c}^{*}-y_{A c} \cdot\left(p_{A c}^{*}-p_{A n}^{*}\right)\right]=p_{A n}^{*} \cdot y_{A c} \\
& x_{A c}=\frac{24786 P a \cdot 0.4}{[24786 P a-0.4 \cdot(24786-9294)]}=0.2 \\
& x_{A n}=1-x_{A c}=0.8
\end{aligned}
$$

Composition of a certain boiling point

What is the composition of the ideal chlorobenzene (cb) bromobenzene (bb) mixture that starts to boil at 100 kPa on $T=140^{\circ} \mathrm{C}$?
$p_{c b}^{*}=125.24 \mathrm{kPa} \quad p_{b b}^{*}=66.10 \mathrm{k} P a$

Start of boiling: almost all of the mixture is liquid: $z_{c b}=x_{c b}$

$$
\begin{aligned}
p= & 100 \mathrm{k} P a=x_{c b} \cdot p_{c b}^{*}+\left(1-x_{c b}\right) \cdot p_{b b}^{*} \\
& =x_{c b}\left(p_{c b}^{*}-p_{b b}^{*}\right)+p_{b b}^{*} \\
& \rightarrow \underline{x_{c b}}=\frac{p-p_{b b}^{*}}{p_{c b}^{*}-p_{b b}^{*}}=\frac{100 \mathrm{kPa-66.10kPa}}{125.24 \mathrm{k} P a-66.10 \mathrm{k} P a}=\underline{0.573} \\
\underline{x_{b b}} & =1-x_{c b}=\underline{0.427}
\end{aligned}
$$

Composition of a certain boiling point

What is the composition of the vapor phase?

$$
\begin{aligned}
& \underline{y_{c b}}=\frac{p_{c b}}{p}=\frac{x_{c b} \cdot p_{c b}^{*}}{p}=\frac{0.573 \cdot 125.24 \mathrm{kPa}}{100 \mathrm{kPPa}}=\underline{0.718} \\
& \underline{y_{b b}}=1-y_{c b}=\underline{0.282}
\end{aligned}
$$

Amount of substance in phases

Let's have 3 mol of the previous mixture at $p=95 \mathrm{kPa}$ with $z_{c b}=0.63$. What is the quantity of the solution and the vapor?
$n_{l}+n_{g}=3 \mathrm{~mol}$
$x_{c b}=\frac{p-p_{b b}^{*}}{p_{c b}^{*}-p_{b b}^{*}}=0.4887$
$\frac{n_{g}}{3 \mathrm{~mol}-n_{g}}=\frac{0.63-0.4887}{0.6443-0.63}=9.8811$
$10.8811 \cdot n_{g}=29.6434 \mathrm{~mol}$
$\underline{n_{g}}=\underline{2.7243 \mathrm{~mol}} \rightarrow \underline{n_{l}}=\underline{0.2757 \mathrm{~mol}}$

