Physical Chemistry I. practice

Gyula Samu & Zoltán Rolik

V.: Ideal mixtures

rolik@mail.bme.hu

Pressure-composition diagram

2 components, 2 phases Miscible components, ideal solution, vapor is ideal gas

Dalton's law:

$$p = p_1 + p_2$$
, $p_1 = y_1 \cdot p$, $p_2 = y_2 \cdot p$

Raoult's law:

$$p_1 = x_1 \cdot p_1^*, \ p_2 = x_2 \cdot p_2^*$$

 p_1^* , p_2^* : eq. vapor pressure of comp. 1 and 2

$$y_2 = \frac{p_2}{p} = \frac{x_2 \cdot p_2^*}{p}$$

$$z_1 + z_2 = x_1 + x_2 = y_1 + y_2 = 1$$

 z_2 : molar fraction of comp. 2 in the total system

 x_2 : molar fraction of comp. 2 in the liquid phase (solution)

 y_2 : molar fraction of comp. 2 in the gas phase (vapor)

Konovalov's first law, lever rule

$$y_2 = \frac{p_2}{p} = \frac{x_2 \cdot p_2^*}{p}$$

Konovalov's first law for ideal mixtures:

if
$$p_1^* < p_2^*$$
: $p_1^* $\rightarrow \frac{p_2^*}{p} > 1$, $y_2 > x_2$$

$$n_1 = (n_g + n_l) \cdot z_1 = n_g \cdot y_1 + n_l \cdot x_1$$

$$n_g \cdot (z_1 - y_1) = n_l \cdot (x_1 - z_1)$$

Lever rule: $\frac{n_l}{n_g} = \frac{z_1 - y_1}{x_1 - z_1}$

We can also calculate n_q and n_l directly

$$n_1 = n_g \cdot y_1 + n_l \cdot x_1 = n_g \cdot y_1 + (n - n_g) \cdot x_1 = n \cdot x_1 + n_g \cdot (y_1 - x_1)$$

$$\underline{n_g = \frac{n_1 - n \cdot x_1}{y_1 - x_1}} \qquad \underline{n_l = \frac{n_1 - n \cdot y_1}{x_1 - y_1}}$$

Vapor composition

We have an ideal mixture of acetone (Ac) and acetonitrile (An)

$$log(p_{Ac}^*) = 9.36457 - \frac{1279.87}{237.50 + T}$$

$$log(p_{An}^*) = 9.36789 - \frac{1397.93}{238.89+T}$$

(p in Pa, T in ${}^{\circ}C$; but no dimensions inside log!)

$$T = 20^{\circ}C \qquad x_{Ac} = 0.2$$

What is the vapor pressure? What is the composition of the vapor?

$$p = p_{Ac} + p_{An} = x_{Ac} \cdot p_{Ac}^* + (1 - x_{Ac}) \cdot p_{An}^*$$
$$y_{Ac} = \frac{p_{Ac}}{p} = \frac{x_{Ac} \cdot p_{Ac}^*}{p} \qquad y_{An} = \frac{p_{An}}{p} = \frac{(1 - x_{Ac}) \cdot p_{An}^*}{p}$$

Vapor composition

$$log(p_{Ac}^*) = 9.36457 - \frac{1279.87}{237.50 + 20} = 4.39420$$
$$\rightarrow p_{Ac}^* = 10^{4.39420} Pa = 24786 \ Pa$$

$$log(p_{An}^*) = 9.36789 - \frac{1397.93}{238.89+20} = 3.96818$$

 $\rightarrow p_{An}^* = 10^{3.96818} Pa = 9294 \ Pa$

$$p = 0.2 \cdot 24786 \ Pa + 0.8 \cdot 9294 \ Pa = 12392 \ Pa$$

$$y_{Ac} = \frac{0.2 \cdot 24786 \ Pa}{12392 \ Pa} = 0.4$$

$$y_{An} = \frac{0.8 \cdot 9294 \ Pa \ Pa}{12392 \ Pa} = 0.6$$

Solution composition

Reverse example: we know that

$$y_{Ac} = 0.4$$
, $p_{Ac}^* = 24786 \ Pa$, and $p_{An}^* = 9294 \ Pa$

What is the composition of the solution?

$$x_{Ac} = \frac{p_{Ac}}{p_{Ac}^*} = \frac{y_{Ac} \cdot p}{p_{Ac}^*} \to x_{Ac}$$
 and p unknown:

we need another equation with p and x_{Ac} !

$$p = x_{Ac} \cdot p_{Ac}^* + (1 - x_{Ac}) \cdot p_{An}^*$$

Expressing p from the first equation: $p = \frac{x_{Ac} \cdot p_{Ac}^*}{y_{Ac}}$

From the two equations for p we have

$$\frac{x_{Ac} \cdot p_{Ac}^*}{y_{Ac}} = x_{Ac} \cdot p_{Ac}^* + (1 - x_{Ac}) \cdot p_{An}^*$$

Solution composition

$$\frac{x_{Ac} \cdot p_{Ac}^*}{y_{Ac}} = x_{Ac} \cdot p_{Ac}^* + (1 - x_{Ac}) \cdot p_{An}^*$$

$$= x_{Ac} \cdot (p_{Ac}^* - p_{An}^*) + p_{An}^*$$

$$x_{Ac} \cdot [p_{Ac}^* - y_{Ac} \cdot (p_{Ac}^* - p_{An}^*)] = p_{An}^* \cdot y_{Ac}$$

$$x_{Ac} = \frac{24786 \ Pa \cdot 0.4}{[24786 \ Pa - 0.4 \cdot (24786 - 9294)]} = 0.2$$

$$x_{An} = 1 - x_{Ac} = 0.8$$

Composition of a certain boiling point

What is the composition of the ideal chlorobenzene (cb) - bromobenzene (bb) mixture that starts to boil at 100 kPa on $T=140^{\circ}C$?

$$p_{cb}^* = 125.24 \text{ kPa}$$
 $p_{bb}^* = 66.10 \text{ kPa}$

Start of boiling: almost all of the mixture is liquid: $z_{cb} = x_{cb}$

$$p = 100 \text{ k}Pa = x_{cb} \cdot p_{cb}^* + (1 - x_{cb}) \cdot p_{bb}^*$$

$$= x_{cb}(p_{cb}^* - p_{bb}^*) + p_{bb}^*$$

$$\to \underline{x_{cb}} = \frac{p - p_{bb}^*}{p_{cb}^* - p_{bb}^*} = \frac{100 \text{ k}Pa - 66.10 \text{ k}Pa}{125.24 \text{ k}Pa - 66.10 \text{ k}Pa} = \underline{0.573}$$

$$\underline{x_{bb}} = 1 - x_{cb} = \underline{0.427}$$

Composition of a certain boiling point

What is the composition of the vapor phase?

Amount of substance in phases

Let's have $3 \ mol$ of the previous mixture at $p = 95 \ \mathrm{k}Pa$ with $z_{cb} = 0.63$. What is the quantity of the solution and the vapor?

$$n_l + n_g = 3 \mod \frac{n_g}{n_l} = \frac{z_{cb} - x_{cb}}{y_{cb} - z_{cb}} = \frac{n_g}{3 \mod - n_g}$$

$$x_{cb} = \frac{p - p_{bb}^*}{p_{cb}^* - p_{bb}^*} = 0.4887 \qquad y_{cb} = \frac{x_{cb} \cdot p_{cb}^*}{p} = 0.6443$$

$$\frac{n_g}{3 \mod - n_g} = \frac{0.63 - 0.4887}{0.6443 - 0.63} = 9.8811$$

$$n_g = \underline{2.7243 \ mol} \rightarrow \underline{n_l} = \underline{0.2757 \ mol}$$

 $10.8811 \cdot n_a = 29.6434 \ mol$