Physical Chemistry I. practice

Gyula Samu \& Zoltán Rolik

III.: Thermal equilibrium \& real gases
rolik@mail.bme.hu

Thermal equilibrium

We have a system of $90 \mathrm{~g}, 0^{\circ} \mathrm{C}$ ice and $18 \mathrm{~g}, 100{ }^{\circ} \mathrm{C}$ water vapor. The system reaches equilibrium without exchanging heat with the enviroment (adiabatic) and at constant pressure (1 bar). What are the equilibrium T and the total ΔS ?

Values of molar heat of vaporization and molar heat of fusion are

$$
\begin{aligned}
& \lambda_{v}=41.4 \mathrm{~kJ} / \mathrm{mol} \\
& \lambda_{f}=6.02 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

The molar heat capacity of the liquid is

$$
C_{m}=75.312 \mathrm{~J} /(\mathrm{mol} \mathrm{~K})
$$

and we can suppose that it is temperature independent.

Thermal equilibrium

Oth step: What processes will take place?
Melting of ice: $n_{\text {ice }} \cdot \lambda_{f}=5 \mathrm{~mol} \cdot 6.02 \mathrm{~kJ} / \mathrm{mol}=\underline{30.1} \mathrm{~kJ}$
Condenstaion of vapor: $n_{\text {vapor }} \cdot \lambda_{v}=1 \mathrm{~mol} \cdot \underline{-41.4} \mathrm{~kJ} / \mathrm{mol}$
\rightarrow There remains some vapor after all of the ice melted
Heating up the water from the ice from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$:
$n_{\text {ice }} \cdot C_{m} \cdot \Delta T=5 \mathrm{~mol} \cdot 75.312 \mathrm{~J} /(\mathrm{mol} \mathrm{K}) \cdot(373 \mathrm{~K}-273 \mathrm{~K})=\underline{37.656} \mathrm{~kJ}$
Condensation of remaining vapor: $(-41.4 k J+30.1 k J)=\underline{-11.3} k J$
\rightarrow Not enough to heat the liquid to $100^{\circ} \mathrm{C}$
\rightarrow The condensated vapor will cool further and the melted ice warm further
\rightarrow Equilibrium system is liquid water with $0^{\circ} \mathrm{C}<T_{e q}<100^{\circ} \mathrm{C}$

Thermal equilibrium

The system is adiabatically separated: $Q=0$
$Q=Q_{\text {ice }}+Q_{\text {vapor }}=0$
$Q_{\text {ice }}=n_{\text {ice }} \cdot \lambda_{f}+n_{\text {ice }} \cdot C_{m} \cdot\left(T_{e q}-273 K\right)$
$Q_{\text {vapor }}=-n_{\text {vapor }} \cdot \lambda_{v}+n_{\text {vapor }} \cdot C_{m} \cdot\left(T_{e q}-373 K\right)$
$0=5 \mathrm{~mol} \cdot 6.02 \cdot 10^{3} \mathrm{~J} / \mathrm{mol}$
$+5 \mathrm{~mol} \cdot 75.312 \mathrm{~J} /(\mathrm{mol} \mathrm{K}) \cdot\left(T_{e q}-273 \mathrm{~K}\right)$
$-1 \mathrm{~mol} \cdot 41.4 \cdot 10^{3} \mathrm{~J} / \mathrm{mol}$
$+1 \mathrm{~mol} \cdot 75.312 \mathrm{~J} /(\mathrm{mol} \mathrm{K}) \cdot\left(373 \mathrm{~K}-T_{e q}\right)$
$\rightarrow T_{e q}=314.7 \mathrm{~K}=41.7{ }^{\circ} \mathrm{C}$

Thermal equilibrium

Change in entropy? $\mathrm{d} S=\frac{\delta Q_{\text {rev }}}{T}$
Phase change: $\Delta S=\frac{\Delta H_{p . c .}}{T_{p . c .}}=\frac{n \cdot \lambda}{T_{p . c .}}$.
Heating $/$ cooling: $\Delta S=\int_{T_{1}}^{T_{2}} \frac{n \cdot C_{m}}{T} \cdot \mathrm{~d} T=n \cdot C_{m} \cdot \ln \frac{T_{2}}{T_{1}}$

Melting of ice: $\Delta S_{\text {ice } \rightarrow \text { liq. }}=\frac{5 \mathrm{~mol} \cdot 6.02 \cdot 10^{3} \mathrm{~J} / \mathrm{mol}}{273 \mathrm{~K}}$
Heating of liquid from the ice:
$\Delta S_{\text {liq. } 0^{\circ} \mathrm{C} \rightarrow \text { liq. } 41.7^{\circ} \mathrm{C}}=5 \mathrm{~mol} \cdot 75.312 \mathrm{~J} /(\mathrm{mol} \mathrm{K}) \cdot \ln \frac{314.7 \mathrm{~K}}{273 \mathrm{~K}}$
Condensation of vapor: $\Delta S_{\text {vap. } \rightarrow \mathrm{liq} .}=\frac{1 \mathrm{~mol} \cdot\left(-41.4 \cdot 10^{3} \mathrm{~J} / \mathrm{mol}\right)}{373 \mathrm{~K}}$
Cooling of liquid from the vapor:
$\Delta S_{\text {liq. } 100^{\circ} \mathrm{C} \rightarrow \text { liq. } 41.7^{\circ} \mathrm{C}}=1 \mathrm{~mol} \cdot 75.312 \mathrm{~J} /(\mathrm{mol} \mathrm{K}) \cdot \ln \frac{314.7 \mathrm{~K}}{373 \mathrm{~K}}$

Thermal equilibrium

$\sum \Delta S=40 J / K$

What if we have $n_{\text {vapor }}=0.01 \mathrm{~mol}$ and $n_{\text {ice }}=5 \mathrm{~mol}$?
(1 bar, adiabatic, $T_{\text {ice }}=0^{\circ} \mathrm{C}, T_{\text {vapor }}=100^{\circ} \mathrm{C}$)
Condensation of vapor: $0.01 \mathrm{~mol} \cdot\left(-41.4 \cdot 10^{3} \mathrm{~J} / \mathrm{mol}\right)=\underline{-414} \mathrm{~J}$
Cooling of liquid from vapor to $0^{\circ} \mathrm{C}$:
$0.01 \mathrm{~mol} \cdot 75.312 \mathrm{~J} /(\mathrm{mol} \mathrm{K}) \cdot(273 \mathrm{~K}-373 \mathrm{~K}) \bumpeq \underline{=} \underline{-75} \mathrm{~J}$
Melting of ice: $30100 \mathrm{~J} \rightarrow$ Not all ice will melt!
Equilibrium: $0^{\circ} \mathrm{C}$, ice/liquid system
How much of the ice melts? $\Delta S=$?

Thermal equilibrium

$$
Q=0 J=Q_{\text {ice }}+Q_{\text {vapor }} ; \Delta T_{\text {vap. }}=-100 \mathrm{~K}
$$

$$
\Delta n_{\text {ice }} \cdot \lambda_{f}-n_{\text {vap. }} \cdot \lambda_{v}+C_{m} \cdot n_{\text {vap. }} \cdot \Delta T_{\text {vap. }}=0 J
$$

$$
\rightarrow \Delta n_{\text {ice }}=0.08 \mathrm{~mol}
$$

$$
\Delta S=\frac{\Delta n_{\text {ice }} \cdot \lambda_{f}}{T_{\text {melt. }}}-\frac{n_{\text {vap. }} \cdot \lambda_{v}}{T_{\text {boil. }}}+C_{m} \cdot n_{\text {vap. }} \cdot \ln \frac{T_{\text {melt }}}{T_{\text {boil. }}}
$$

$$
\rightarrow \Delta S=0.419 J / K
$$

Real systems: water T-s diagram

Real systems: water T-s diagram

$\Delta U=m \cdot \Delta u=W+Q=m \cdot[\Delta h-\Delta(p v)]$

Isochor: $\Delta V=0$
$W=0 J$
$Q=m \cdot \Delta u=m \cdot(\Delta h-v \Delta p)$
Isothermal: $\Delta T=0$
$Q=m \cdot T \cdot \Delta s$
$W=\Delta U-Q$
Adiabatic throttle: $\Delta H=0$
$Q=0 J$
$W=\Delta U=-m \cdot \Delta(p v)$

Isobaric: $\Delta p=0$
$W=-m \cdot p \cdot \Delta v$
$Q=m \cdot \Delta h$
Adiabatic reversible: $\Delta S=0$
$Q=0 J$
$W=\Delta U$
Ideal compressor: $W=\Delta H$

$$
\begin{aligned}
& W=m \cdot \Delta h \\
& Q=\Delta U-W=-m \cdot \Delta(p v)
\end{aligned}
$$

Real systems: adiabatic reversible

We have 1 kg saturated water vapor in a cylinder with a piston. In an adiabatic reversible process we compress it from 2 MPa to 8 MPa .

What is the work? What percentage is this of the work of an ideal compressor?

Real systems: adiabatic reversible

We have 1 kg saturated water vapor in a cylinder with a piston.
In an adiabatic reversible process we compress it from 2 MPa to 8 MPa .
What is the work? What percentage is this of the work of an ideal compressor?

$$
\begin{array}{ll}
\begin{array}{ll}
W=m \cdot\left[\left(h_{2}-h_{1}\right)-\left(p_{2} v_{2}-p_{1} v_{1}\right)\right] \\
& p_{1}=2 \mathrm{MPa}=2 \cdot 10^{6} P a
\end{array} & p_{2}=8 \mathrm{MPa}=8 \cdot 10^{6} P a \\
\quad v_{1}=10^{-1} \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} & v_{2}=3.5 \cdot 10^{-2} \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \\
\quad h_{1}=2.8 \cdot 10^{6} \frac{\mathrm{~J}}{\mathrm{~kg}} & h_{2}=3.1 \cdot 10^{6} \frac{\mathrm{~J}}{\mathrm{~kg}} \\
\begin{aligned}
& W=1 \mathrm{k} g \cdot\left[0.3 \cdot 10^{6} \frac{\mathrm{~J}}{\mathrm{~kg}}-\left(2.8 \cdot 10^{5} \frac{\mathrm{~J}}{\mathrm{~kg}}-2 \cdot 10^{5} \frac{\mathrm{~J}}{\mathrm{~kg}}\right)\right] \\
&=2.2 \cdot 10^{5} \mathrm{~J}=220 \mathrm{~kJ}
\end{aligned} \\
\begin{array}{l}
W_{i d}=m \cdot\left(h_{2}-h_{1}\right)=300 \mathrm{~kJ} \rightarrow \frac{\mathrm{~W}}{W_{i d}} \cdot 100 \%=73 \%
\end{array}
\end{array}
$$

Real systems: cycle

We have 2 g water vapor with $T_{1}=160^{\circ} \mathrm{C}$ and $V_{1}=10 \mathrm{~d} m^{3}$. We

- Decrease its pressure to 10 kPa in an isothermal process
- Then we compress it in an adiabatic reversible process
- Then we return it into its orignal state in an isobaric process
$\Delta U, \Delta S, Q$?

Real systems: cycle

Real systems: cycle

$$
\begin{array}{ll}
v_{1}=\frac{10 \mathrm{~d} m^{3}}{2 g}=5 \frac{\mathrm{~m}^{3}}{\mathrm{k} g} & \text { Isothermal } \\
p_{1}=0.04 \mathrm{M} P a=4 \cdot 10^{4} P a & \Delta S_{1}=m \cdot\left(s_{2}-s_{1}\right)=1.3 \frac{J}{K} \\
h_{1}=2.8 \cdot 10^{6} \frac{\mathrm{~J}}{\mathrm{~kg}} & Q_{1}=T_{1} \cdot \Delta S_{1}=563 \mathrm{~J}\left(T_{1} \mathrm{in} \mathrm{~K} \mathrm{!!!}\right) \\
s_{1}=8.1 \cdot 10^{3} \frac{\mathrm{~J}}{\mathrm{k} g K} & \Delta U_{1}=m \cdot\left[\left(h_{2}-h_{1}\right)-\left(p_{2} v_{2}-p_{1} v_{1}\right)\right]=0 \mathrm{~J} \\
v_{2}=2 \cdot 10 \frac{\mathrm{~m}^{3}}{\mathrm{k} g} & \text { Adiabatic reversible } \\
p_{2}=0.01 \mathrm{MPa}=10^{4} P a & \Delta S_{2}=0 \frac{\mathrm{~J}}{K} \\
h_{2}=2.8 \cdot 10^{6} \frac{\mathrm{~J}}{\mathrm{k} g} & Q_{2}=0 \mathrm{~J} \\
s_{2}=8.75 \cdot 10^{3} \frac{\mathrm{~J}}{\mathrm{k} g K} & \Delta U_{2}=m \cdot\left[\left(h_{3}-h_{2}\right)-\left(p_{3} v_{3}-p_{2} v_{2}\right)\right]=500 \mathrm{~J} \\
v_{3}=7.5 \frac{\mathrm{~m}^{3}}{\mathrm{k} g} & \text { Isobaric } \\
p_{3}=0.04 \mathrm{MPa}=4 \cdot 10^{4} P a & \Delta S_{3}=-\Delta S_{1}=-1.3 \frac{J}{K} \\
h_{3}=3.15 \cdot 10^{6} \frac{\mathrm{~J}}{\mathrm{~kg}} & Q_{3}=m \cdot\left(h_{1}-h_{3}\right)=-700 \mathrm{~J} \\
s_{3}=8.75 \cdot 10^{3} \frac{J}{\mathrm{k} g K} & \Delta U_{3}=W_{3}+Q_{3} \\
& =-m \cdot p_{3} \cdot\left(v_{1}-v_{3}\right)-700 \mathrm{~J}=-500 \mathrm{~J}
\end{array}
$$

Real systems: heating with steam

We have $V_{1}=600 \mathrm{~d} m^{3}, p_{1}=3 \mathrm{MPa}$ saturated vapor. We

- Expand it through an adiabatic throttle to 200 kPa
- Then we use it for heating in isobaric circumstances, until 30% of the vapor condensates
$Q=$?

Real systems: heating with steam

$Q_{1}=0 J$ (adiabatic)
$Q_{2}=\Delta H_{2}=m \cdot\left(h_{3}-h_{2}\right)$ (isobaric)
$h_{3}=2.05 \cdot 10^{6} \mathrm{~J} / \mathrm{k} g$
$h_{2}=h_{1}=2.8 \cdot 10^{6} \mathrm{~J} / \mathrm{k} g$
$m=$? We have to calculate it from V_{1}
$v_{1}=7.5 \cdot 10^{-2} \mathrm{~m}^{3} / \mathrm{k} g \rightarrow m=V_{1} / v_{1}=\frac{6 \cdot 10^{-1} \mathrm{~mm}}{} \frac{3}{7.5 \cdot 10^{-2} m^{3} / \mathrm{k} g}=8 \mathrm{~kg}$
$Q=Q_{1}+Q_{2}=8 \mathrm{~kg} \cdot\left(-0.75 \cdot 10^{6} \mathrm{~J} / \mathrm{kg}\right)=-6 \cdot 10^{6} \mathrm{~J}$

