Physical Chemistry I. practice

Gyula Samu (Zoltán Rolik)

II.: Ideal gases
rolik@mail.bme.hu

http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem
/PysChemBSC1/practice_class_requirements.pdf

Equations for the state changes of ideal gases

	W	Q	ΔU	ΔH	ΔS
Isobaric	$-n R \Delta T$	$n C_{m, p} \Delta T$	$n C_{m, v} \Delta T$	$n C_{m, p} \Delta T$	$n C_{m, p} \ln \frac{T_{2}}{T_{1}}$
Isochor	\emptyset	$n C_{m, v} \Delta T$	$n C_{m, v} \Delta T$	$n C_{m, p} \Delta T$	$n C_{m, v} \ln \frac{T_{2}}{T_{1}}$
Isothermal	$n R T \ln \frac{p_{2}}{p_{1}}$	$-n R T \ln \frac{p_{2}}{p_{1}}$	\emptyset	\emptyset	$-n R \ln \frac{p_{2}}{p_{1}}$
Ad. rev.	$n C_{m, v} \Delta T$	\emptyset	$n C_{m, v} \Delta T$	$n C_{m, p} \Delta T$	\emptyset

Isothermal: $p_{1} / p_{2}=V_{2} / V_{1}$
Isochor: $p_{1} / p_{2}=T_{1} / T_{2}$
Isobaric: $V_{1} / V_{2}=T_{1} / T_{2}$

Adiabatic reversible:

$$
\begin{aligned}
& T_{1} / T_{2}=\left(V_{2} / V_{1}\right)^{\kappa-1} \\
& p_{1} / p_{2}=\left(V_{2} / V_{1}\right)^{\kappa} \\
& T_{1} / T_{2}=\left(p_{2} / p_{1}\right)^{\frac{1-\kappa}{\kappa}}
\end{aligned}
$$

$$
\begin{aligned}
& \kappa=\frac{C_{m, p}}{C_{m, v}} \\
& C_{m, p}-C_{m, v}=R \\
& p V=n R T
\end{aligned}
$$

Argon

We have $1 \mathrm{~m}^{3}$ argon (ideal gas) with 298 K temperature and $10^{6} \mathrm{~Pa}$ pressure.

We expand it in an adiabatic reversible process to $2 \mathrm{~m}^{3}$.
$C_{m, p}=5 / 2 R, C_{m, v}=3 / 2 R$
What is the new T and p ?
What is the $W, \Delta U$, and ΔH ?

Argon

$$
\kappa=\frac{5}{3}
$$

$T_{2}=298 K\left(\frac{1 m^{3}}{2 m^{3}}\right)^{\frac{2}{3}}=188 K$
$p_{2}=10^{6} P a\left(\frac{1 \mathrm{~m}^{3}}{2 \mathrm{~m}^{3}}\right)^{\frac{5}{3}}=3.15 \cdot 10^{6} P a$
$n=\frac{10^{6} \mathrm{~Pa}}{R 298 K}=403.62 \mathrm{~mol}$
$W=n C_{m, v} \Delta T=-554 k J$
$\Delta U=W$
$\Delta H=n C_{m, p} \Delta T=-923 k J$

Thermodynamic cycle

We perform a cycle process with 160 g of O_{2} (ideal gas)

- From $20{ }^{\circ} \mathrm{C}$ and 0.1 MPa we compress it to 2 MPa in an adiabatic reversible process
- Then we heat it to $500^{\circ} \mathrm{C}$ in an isochor process
- Then we expand it to 0.1 MPa in an isothermal process
- Finally we cool it to $20^{\circ} \mathrm{C}$ in an isobaric process

What are $W, Q, \Delta U, \Delta H$, and ΔS

- in the four subprocesses?
- in the overall process?

$$
\left(\kappa=1.4, M_{O_{2}}=32 \mathrm{~g} / \mathrm{mol}\right)
$$

Thermodynamic cycle

- Plot the thermodynamic cycle on a $\mathrm{p}-\mathrm{V}$ diagram and denote the known T , p , and V values!
- Collect the equations needed to answere the questions! Which $W, Q, \Delta U, \Delta H$, or ΔS values are zero? What are the unkown p, T, and V values we have to calculate?
- Calculate $W, Q, \Delta U, \Delta H$, and ΔS for the subprocesses and the whole cycle!
- Check yourself!

Thermodynamic cycle

1. Ad. rev. $1 \rightarrow 2$
$W_{1}=n C_{m, v}\left(T_{2}-T_{1}\right)$
$Q_{1}=0 \mathrm{~J}$
$\Delta U_{1}=W_{1}$
$\Delta H_{1}=n C_{m, p}\left(T_{2}-T_{1}\right)$
$\Delta S_{1}=0 \mathrm{~J} / \mathrm{K}$
2. Isothermal $3 \rightarrow 4$

$$
\begin{aligned}
& W_{3}=n R T_{3} \ln \left(p_{4} / p_{3}\right) \\
& Q_{3}=-W_{3} \\
& \Delta U_{3}=0 \mathrm{~J} \\
& \Delta H_{3}=0 \mathrm{~J} \\
& \Delta S_{3}=-n R \ln \left(p_{4} / p_{3}\right)
\end{aligned}
$$

2. Isochor $2 \rightarrow 3$

$$
W_{2}=0 J
$$

$$
Q_{2}=n C_{m, v}\left(T_{3}-T_{2}\right)
$$

$$
\Delta U_{2}=Q_{2}
$$

$$
\Delta H_{1}=n C_{m, p}\left(T_{3}-T_{2}\right)
$$

$$
\Delta S_{2}=n C_{m, v} \ln \left(T_{3} / T_{2}\right)
$$

Isobaric $4 \rightarrow 1$

$$
\begin{aligned}
& W_{4}=-n R\left(T_{1}-T_{4}\right) \\
& Q_{4}=n C_{m, p}\left(T_{1}-T_{4}\right) \\
& \Delta U_{4}=W_{4}+Q_{4} \\
& \Delta H_{4}=Q_{4} \\
& \Delta S_{4}=n C_{m, p} \ln \left(T_{1} / T_{4}\right)
\end{aligned}
$$

$\sum \Delta U_{i}=0, \sum \Delta H_{i}=0, \sum \Delta S_{i}=0$

Thermodynamic cycle

$n, C_{m, p}, C_{m, v}, T_{2}, p_{3} ?$
$n=\frac{160 \mathrm{~g}}{32 \mathrm{~g} / \mathrm{mol}}=5 \mathrm{~mol}$
$\kappa=1.4 \rightarrow C_{m, p}=1.4 C_{m, v}$
$\rightarrow 0.4 C_{m, v}=R \rightarrow C_{m, v}=\frac{5}{2} R, C_{m, p}=\frac{7}{2} R$
Ad. rev.: $T_{2}=293 K\left(\frac{10^{5} P a}{2 \cdot 10^{6} P a}\right)^{\frac{1-1.4}{1.4}} \cong 690 K$
Isochor: $p_{3}=2 \cdot 10^{6} P a\left(\frac{773 K}{690 K}\right)=2.24 \cdot 10^{6} P a$

Thermodynamic cycle

1. Ad. rev. $1 \rightarrow 2$
$W_{1}=n C_{m, v}\left(T_{2}-T_{1}\right)=41.3 k J$
$Q_{1}=0 J$
$\Delta U_{1}=W_{1}$
$\Delta H_{1}=n C_{m, p}\left(T_{2}-T_{1}\right)=57.8 k J$
$\Delta S_{1}=0 \mathrm{~J} / \mathrm{K}$
2. Isothermal $3 \rightarrow 4$
$W_{3}=n R T_{3} \ln \left(p_{4} / p_{3}\right)=-99.9 k J$
$Q_{3}=-W_{3}$
$\Delta U_{3}=0 J$
$\Delta H_{3}=0 \mathrm{~J}$
$\Delta S_{3}=-n R \ln \left(p_{4} / p_{3}\right)$
$=129.2 \mathrm{~J} / \mathrm{K}$
$\sum W=-34.8 k J, \sum Q=34.8 k J$
3. Isochor $2 \rightarrow 3$

$$
W_{2}=0 J
$$

$$
Q_{2}=n C_{m, v}\left(T_{3}-T_{2}\right)=8.6 k J
$$

$$
\Delta U_{2}=Q_{2}
$$

$$
\Delta H_{1}=n C_{m, p}\left(T_{3}-T_{2}\right)=12.0 k J
$$

$$
\Delta S_{2}=n C_{m, v} \ln \left(T_{3} / T_{2}\right)=11.8 J / K
$$

4. Isobaric $4 \rightarrow 1$

$$
\begin{aligned}
& W_{4}=-n R\left(T_{1}-T_{4}\right)=19.9 k J \\
& Q_{4}=n C_{m, p}\left(T_{1}-T_{4}\right)=-69.8 k J \\
& \Delta U_{4}=W_{4}+Q_{4} \\
& \Delta H_{4}=Q_{4} \\
& \Delta S_{4}=n C_{m, p} \ln \left(T_{1} / T_{4}\right) \\
& =-141.1 \mathrm{~J} / K
\end{aligned}
$$

Thermodynamic cycle

- Sum of the change of functions of state is 0 !
- $\sum Q_{i}+\sum W_{i}=0$

Different routes

We have 1 mol of argon (ideal gas) that is $25^{\circ} \mathrm{C}$ and $10^{5} \mathrm{~Pa}$.
We heat and compress it to $100^{\circ} \mathrm{C}$ and $5 \cdot 10^{5} \mathrm{~Pa}$.
$C_{m, p}=5 / 2 R$ and $C_{m, v}=3 / 2 R$.
What is the total $W, Q, \Delta U$, and ΔH if
a)

- We first heat it to $100^{\circ} \mathrm{C}$ on constant volume
- Then increase the pressure to $5 \cdot 10^{5} \mathrm{~Pa}$ on constant temperature?

Plot the process on the $\mathrm{p}-\mathrm{V}$ diagram!

Different routes

1. Isochor $1 \rightarrow 2$
$W_{1}=0 J$
$Q_{1}=n C_{m, v}\left(T_{2}-T_{1}\right)$
$\Delta U_{1}=Q_{1}$
$\Delta H_{1}=n C_{m, p}\left(T_{2}-T_{1}\right)$
$\Delta S_{1}=n C_{m, v} \ln \left(T_{2} / T_{1}\right)$
2. Isothermal $2 \rightarrow 3$
$W_{2}=n R T_{2} \ln \left(p_{3} / p_{2}\right)$
$Q_{2}=-W_{2}$
$\Delta U_{2}=0 \mathrm{~J}$
$\Delta H_{2}=0 \mathrm{~J}$
$\Delta S_{2}=-n R \ln \left(p_{3} / p_{2}\right)$

Only p_{2} is unknown
Isochor $1 \rightarrow 2$
$p_{2}=10^{5} P a\left(\frac{373 K}{298 K}\right)$
$\simeq 1.25 \cdot 10^{5} \mathrm{~Pa}$
$\sum W=4294 J$
$\sum Q=-3359 J$
$\sum \Delta U=935 J$
$\sum \Delta H=1559 J$
$\sum \Delta S=-8.71 J / K$

Different routes

We have 1 mol of argon (ideal gas) that is $25^{\circ} \mathrm{C}$ and $10^{5} \mathrm{~Pa}$.
We heat and compress it to $100{ }^{\circ} \mathrm{C}$ and $5 \cdot 10^{5} \mathrm{~Pa}$.
$C_{m, p}=5 / 2 R$ and $C_{m, v}=3 / 2 R$.
What is the total $W, Q, \Delta U$, and ΔH if
b)

- We first heat it to $10{ }^{\circ} \mathrm{C}$ on constant pressure
- Then increase the pressure to $5 \cdot 10^{5} P a$ on constant temperature?

Different routes

1. Isobaric $1 \rightarrow 2$
$W_{1}=-n R\left(T_{2}-T_{1}\right)$
$Q_{1}=n C_{m, p}\left(T_{2}-T_{1}\right)$
$\Delta U_{1}=W_{1}+Q_{1}$
$\Delta H_{1}=Q_{1}$
$\Delta S_{1}=n C_{m, p} \ln \left(T_{2} / T_{1}\right)$
2. Isothermal $2 \rightarrow 3$
$W_{2}=n R T_{2} \ln \left(p_{3} / p_{2}\right)$
$Q_{2}=-W_{2}$
$\Delta U_{2}=0 \mathrm{~J}$
$\Delta H_{2}=0 \mathrm{~J}$
$\Delta S_{2}=-n R \ln \left(p_{3} / p_{2}\right)$

$$
\begin{aligned}
& \text { Every variable is known } \\
& \sum W=4367 J \\
& \sum Q=-3432 J \\
& \sum \Delta U=935 J \\
& \sum \Delta H=1559 J \\
& \sum \Delta S=-8.71 J / K
\end{aligned}
$$

Argon II

We have $1 \mathrm{~m}^{3}$ argon (ideal gas) with 298 K temperature and $10^{5} \mathrm{~Pa}$ pressure.

We compress it in an adiabatic reversible process, then expand it to its original volume in an isothermal process.

Its pressure becomes $2 \cdot 10^{5} \mathrm{~Pa}$.
$C_{m, p}=5 / 2 R, C_{m, v}=3 / 2 R$
What is the total change in entropy?

Argon II

In sum, it is an isochor process
$\Delta S=n C_{m, v} \ln \left(T_{3} / T_{1}\right)$
$n=\frac{p_{1} V_{1}}{R T_{1}}=40.36 \mathrm{~mol}$
$T_{3}=\frac{p_{3} V_{3}}{n R}=596 \mathrm{~K}$
$\Delta S=348.88 J / K$

