Physical Chemistry I. practice

Gyula Samu (Zoltán Rolik)

II.: Ideal gases

rolik@mail.bme.hu

http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem /PysChemBSC1/practice_class_requirements.pdf

Equations for the state changes of ideal gases

	W	Q	ΔU	ΔH	ΔS
Isobaric	$-nR\Delta T$	$nC_{m,p}\Delta T$	$nC_{m,v}\Delta T$	$nC_{m,p}\Delta T$	$nC_{m,p}lnrac{T_2}{T_1}$
Isochor	Ø	$nC_{m,v}\Delta T$	$nC_{m,v}\Delta T$	$nC_{m,p}\Delta T$	$nC_{m,v}lnrac{T_2}{T_1}$
Isothermal	$nRTln\frac{p_2}{p_1}$	$-nRTln\frac{p_2}{p_1}$	Ø	Ø	$-nRln\frac{p_2}{p_1}$
Ad. rev.	$nC_{m,v}\Delta T$	Ø	$nC_{m,v}\Delta T$	$nC_{m,p}\Delta T$	Ø

Isothermal:
$$p_1/p_2 = V_2/V_1$$

Isochor: $p_1/p_2 = T_1/T_2$
Isobaric: $V_1/V_2 = T_1/T_2$

Adiabatic reversible:

$$T_1/T_2 = (V_2/V_1)^{\kappa-1}$$

$$p_1/p_2 = (V_2/V_1)^{\kappa}$$

$$T_1/T_2 = (p_2/p_1)^{\frac{1-\kappa}{\kappa}}$$

$$p_1$$

$$\kappa = \frac{C_{m,p}}{C_{m,v}}$$
$$C_{m,p} - C_{m,v} = R$$
$$pV = nRT$$

Argon

We have 1 m³ argon (ideal gas) with 298 K temperature and $10^6 Pa$ pressure.

We expand it in an adiabatic reversible process to 2 m³.

$$C_{m,p} = 5/2R$$
, $C_{m,v} = 3/2R$

What is the new T and p ?

What is the $W,\;\Delta U,\;{\rm and}\;\Delta H$?

Argon

$$\kappa = \frac{5}{3}$$

$$T_{2} = 298 K \left(\frac{1 m^{3}}{2 m^{3}}\right)^{\frac{2}{3}} = 188 K$$

$$p_{2} = 10^{6} Pa \left(\frac{1 m^{3}}{2 m^{3}}\right)^{\frac{5}{3}} = 3.15 \cdot 10^{6} Pa$$

$$n = \frac{10^{6} Pa}{R 298K} = 403.62 mol$$

$$W = n C_{m,v} \Delta T = -554 kJ$$

$$\Delta U = W$$

$$\Delta H = n C_{m,p} \Delta T = -923 kJ$$

We perform a cycle process with 160 g of O_2 (ideal gas)

- From 20 °C and 0.1 MPa we compress it to 2 MPa in an adiabatic reversible process
- \bullet Then we heat it to 500 $^\circ\text{C}$ in an isochor process
- Then we expand it to 0.1 MPa in an isothermal process
- \bullet Finally we cool it to 20 $^\circ\text{C}$ in an isobaric process

What are W, Q, ΔU , ΔH , and ΔS

- in the four subprocesses?
- in the overall process?

(
$$\kappa=1.4$$
, $M_{O_2}=32~g/mol$)

- Plot the thermodynamic cycle on a p–V diagram and denote the known T, p, and V values!
- Collect the equations needed to answere the questions! Which W, Q, ΔU , ΔH , or ΔS values are zero? What are the unkown p, T, and V values we have to calculate?
- \bullet Calculate $W,~Q,~\Delta U,~\Delta H,~{\rm and}~\Delta S$ for the subprocesses and the whole cycle!
- Check yourself!

1. Ad. rev.
$$1 \to 2$$

 $W_1 = nC_{m,v}(T_2 - T_1)$
 $Q_1 = 0 J$
 $\Delta U_1 = W_1$
 $\Delta H_1 = nC_{m,p}(T_2 - T_1)$
 $\Delta S_1 = 0 J/K$

3. Isothermal $3 \rightarrow 4$ $W_3 = nRT_3ln(p_4/p_3)$ $Q_3 = -W_3$ $\Delta U_3 = 0 J$ $\Delta H_3 = 0 J$ $\Delta S_3 = -nRln(p_4/p_3)$

2. Isochor
$$2 \rightarrow 3$$

 $W_2 = 0 J$
 $Q_2 = nC_{m,v}(T_3 - T_2)$
 $\Delta U_2 = Q_2$
 $\Delta H_1 = nC_{m,p}(T_3 - T_2)$
 $\Delta S_2 = nC_{m,v}ln(T_3/T_2)$

Isobaric
$$4 \rightarrow 1$$

 $W_4 = -nR(T_1 - T_4)$
 $Q_4 = nC_{m,p}(T_1 - T_4)$
 $\Delta U_4 = W_4 + Q_4$
 $\Delta H_4 = Q_4$
 $\Delta S_4 = nC_{m,p}ln(T_1/T_4)$

 $\sum \Delta U_i = 0$, $\sum \Delta H_i = 0$, $\sum \Delta S_i = 0$

n,
$$C_{m,p}$$
, $C_{m,v}$, T_2 , p_3 ?
 $n = \frac{160g}{32g/mol} = 5 \mod$
 $\kappa = 1.4 \rightarrow C_{m,p} = 1.4 \ C_{m,v}$
 $\rightarrow 0.4 \ C_{m,v} = R \rightarrow C_{m,v} = \frac{5}{2}R$, $C_{m,p} = \frac{7}{2}R$
Ad. rev.: $T_2 = 293 \ K \left(\frac{10^5 Pa}{2 \cdot 10^6 Pa}\right)^{\frac{1-1.4}{1.4}} = 690 \ K$
Isochor: $p_3 = 2 \cdot 10^6 Pa \left(\frac{773 \ K}{690 \ K}\right) = 2.24 \cdot 10^6 Pa$

1. Ad. rev.
$$1 \to 2$$

 $W_1 = nC_{m,v}(T_2 - T_1) = 41.3kJ$
 $Q_1 = 0 J$
 $\Delta U_1 = W_1$
 $\Delta H_1 = nC_{m,p}(T_2 - T_1) = 57.8kJ$
 $\Delta S_1 = 0 J/K$

3. Isothermal
$$3 \to 4$$

 $W_3 = nRT_3ln(p_4/p_3) = -99.9kJ$
 $Q_3 = -W_3$
 $\Delta U_3 = 0 J$
 $\Delta H_3 = 0 J$
 $\Delta S_3 = -nRln(p_4/p_3)$
 $= 129.2J/K$
 $\sum W = -34.8kJ, \sum Q = 34.8kJ$

2. Isochor
$$2 \to 3$$

 $W_2 = 0 J$
 $Q_2 = nC_{m,v}(T_3 - T_2) = 8.6kJ$
 $\Delta U_2 = Q_2$
 $\Delta H_1 = nC_{m,p}(T_3 - T_2) = 12.0kJ$
 $\Delta S_2 = nC_{m,v}ln(T_3/T_2) = 11.8J/K$

4. Isobaric
$$4 \to 1$$

 $W_4 = -nR(T_1 - T_4) = 19.9kJ$
 $Q_4 = nC_{m,p}(T_1 - T_4) = -69.8kJ$
 $\Delta U_4 = W_4 + Q_4$
 $\Delta H_4 = Q_4$
 $\Delta S_4 = nC_{m,p}ln(T_1/T_4)$
 $= -141.1J/K$

- Sum of the change of functions of state is 0!
- $\sum Q_i + \sum W_i = 0$

We have 1 *mol* of argon (ideal gas) that is 25 °C and 10⁵ Pa. We heat and compress it to 100 °C and $5 \cdot 10^5 Pa$.

 $C_{m,p} = 5/2R$ and $C_{m,v} = 3/2R$.

What is the total W, Q, ΔU , and ΔH if

a)

- \bullet We first heat it to 100 $^\circ C$ on constant volume
- Then increase the pressure to $5\cdot 10^5~Pa$ on constant temperature?

Plot the process on the p–V diagram!

1. Isochor
$$1 \rightarrow 2$$

 $W_1 = 0 J$
 $Q_1 = nC_{m,v}(T_2 - T_1)$
 $\Delta U_1 = Q_1$
 $\Delta H_1 = nC_{m,p}(T_2 - T_1)$
 $\Delta S_1 = nC_{m,v}ln(T_2/T_1)$

2. Isothermal
$$2 \rightarrow 3$$

 $W_2 = nRT_2ln(p_3/p_2)$
 $Q_2 = -W_2$
 $\Delta U_2 = 0 J$
 $\Delta H_2 = 0 J$
 $\Delta S_2 = -nRln(p_3/p_2)$

Only p_2 is unknown Isochor $1 \rightarrow 2$ $p_2 = 10^5 Pa \left(\frac{373 \ K}{298 \ K}\right)$ $\tilde{=} 1.25 \cdot 10^5 Pa$ $\sum W = 4294 J$ $\sum Q = -3359 J$ $\sum \Delta U = 935 \ J$ $\sum \Delta H = 1559 J$ $\sum \Delta S = -8.71 \ J/K$

We have 1 *mol* of argon (ideal gas) that is 25 °C and 10⁵ *Pa*. We heat and compress it to 100 °C and $5 \cdot 10^5 Pa$.

 $C_{m,p} = 5/2R$ and $C_{m,v} = 3/2R$.

What is the total W, Q, ΔU , and ΔH if

b)

- \bullet We first heat it to 100 $^\circ C$ on constant pressure
- \bullet Then increase the pressure to $5\cdot 10^5~Pa$ on constant temperature?

1. Isobaric $1 \to 2$ $W_1 = -nR(T_2 - T_1)$ $Q_1 = nC_{m,p}(T_2 - T_1)$ $\Delta U_1 = W_1 + Q_1$ $\Delta H_1 = Q_1$ $\Delta S_1 = nC_{m,p}ln(T_2/T_1)$

2. Isothermal $2 \rightarrow 3$ $W_2 = nRT_2ln(p_3/p_2)$ $Q_2 = -W_2$ $\Delta U_2 = 0 J$ $\Delta H_2 = 0 J$ $\Delta S_2 = -nRln(p_3/p_2)$ Every variable is known $\sum W = 4367 J$ $\sum Q = -3432 J$ $\sum \Delta U = 935 J$ $\sum \Delta H = 1559 J$ $\sum \Delta S = -8.71 J/K$

Argon II

We have 1 m³ argon (ideal gas) with 298 K temperature and $10^5 Pa$ pressure.

We compress it in an adiabatic reversible process, then expand it to its original volume in an isothermal process.

Its pressure becomes $2 \cdot 10^5 Pa$.

 $C_{m,p} = 5/2R$, $C_{m,v} = 3/2R$

What is the total change in entropy?

Argon II

In sum, it is an isochor process

 $\Delta S = nC_{m,v}ln(T_3/T_1)$ $n = \frac{p_1V_1}{RT_1} = 40.36 mol$ $T_3 = \frac{p_3V_3}{nR} = 596 K$ $\Delta S = 348.88 J/K$