Problems -Physical Chemistry I
NOTE: If the heat capacity (c) is dependent on the temperature:
$Q=\int c(T)^{*} d T$ (if molar heat capacity is given: $Q=\int c(T)^{*} n^{*} d T$)
$\Delta S=\int[c(T) / T]^{*} d T$
2. Using the ideal gas law calculate
a) The mass of the air in a room of $110 \mathrm{~m}^{3}$ volume. The pressure is 1.013 bar, the temperature is $23^{\circ} \mathrm{C}$. The average molar mass of air is $29 \mathrm{~g} / \mathrm{mol}$.
b) The volume of one mol ideal gas at $0^{\circ} \mathrm{C}$ and 1.013 bar.
c) The pressure in a cylinder, which is of $10 \mathrm{dm}^{3}$ volume and contains 0.5 kg nitrogen at $15^{\circ} \mathrm{C}$.
3. $1.0 \mathrm{~mol} \mathrm{~N}_{2}$ and $3.0 \mathrm{~mol} \mathrm{H}_{2}$ are in a container of volume $10.0 \mathrm{dm}^{3}$ at 298 K . Calculate the partial pressures and the total pressure.
4. A perfect gas at $35^{\circ} \mathrm{C}$ is heated at constant pressure until its volume has increased by 18%. What is the final temperature of the gas?
5. The density of aluminium at $20^{\circ} \mathrm{C}$ is $2.70 \mathrm{gcm}^{-3}$ and that of the liquid at $660^{\circ} \mathrm{C}$ is $2.38 \mathrm{gcm}^{-3}$. Calculate the work done on surroundings when 1 kg aluminium is heated under $\mathrm{p}=100 \mathrm{kPa}$ from $20^{\circ} \mathrm{C}$ to $660^{\circ} \mathrm{C}$.
6. Calculate the heat needed for heating two moles of O_{2} (ideal gas) from 25
${ }^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$
a) at 100 kPa constant pressure
b) at constant volume

$$
\mathrm{C}_{\mathrm{mp}}=25.72+12.98 \cdot 10^{-3} \mathrm{~T}-38.6 \cdot 10^{-6} \mathrm{~T}^{2}(\mathrm{~J} / \mathrm{molK})
$$

7. 1 mol liquid benzene is vaporized at its boiling point and the vapor (ideal gas) is heated to $427^{\circ} \mathrm{C}$ at 0.1 MPa constant pressure. Calculate $\Delta \mathrm{H}, \Delta \mathrm{U}, \mathrm{W}$, and Q .

Boiling point: $80^{\circ} \mathrm{C}$. Density of liquid benzene: $0,85 \mathrm{gcm}^{-3}$, heat of vaporization: 30,8 $\mathrm{kJ} / \mathrm{mol}$.

$$
\text { Vapor } \mathrm{C}_{\mathrm{mp}}=-1.195+21.51 \cdot 10^{-3} \mathrm{~T} \quad(\mathrm{~J} / \mathrm{molK})
$$

8. A vessel containing 200 g water is heated for 5 minutes with a 10.0 W $(\mathrm{W}=\mathrm{J} / \mathrm{s})$ heater. The temperature increases by $1.5^{\circ} \mathrm{C}$. Calculate the heat capacity of the empty vessel. The specific heat capacity of water is $4.18 \mathrm{~J} /(\mathrm{gK})$
9. 2 mol ideal gas is compressed from 50 kPa to 200 kPa at a constant temperature of 200 K . Calculate the work, the heat and ΔU if the process is reversible.
10. Calculate the work if 5 mol ideal gas is heated from $0^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C}$ at a constant pressure of $10^{5} \mathrm{~Pa}$.
11. 1 mol argon (one atomic ideal gas, $\mathrm{C}_{\mathrm{mv}}=3 / 2 \mathrm{R}$) of $25^{\circ} \mathrm{C}$ and $10^{5} \mathrm{~Pa}$ is heated to $100{ }^{\circ} \mathrm{C}$ and the pressure is increased to $5^{*} 10^{5} \mathrm{~Pa}$ in three different ways. Calculate $\mathrm{W}, \mathrm{Q}, \Delta \mathrm{H}$ and $\Delta \mathrm{U}$ in each case.
a) First it is heated up from $25{ }^{\circ} \mathrm{C}$ to $100{ }^{\circ} \mathrm{C}$ at constant volume, then the pressure is increased to $5^{*} 10^{5} \mathrm{~Pa}$ at constant temperature.
b) First it is heated up from $25{ }^{\circ} \mathrm{C}$ to $100{ }^{\circ} \mathrm{C}$ at constant pressure, then the pressure is increased from $10^{5} \mathrm{~Pa}$ to $5^{*} 10^{5}$ at constant temperature.
c) First it is compressed from $10^{5} \mathrm{~Pa}$ to $5^{*} 10^{5} \mathrm{~Pa}$ at constant temperature, then the temperature is increased from $25^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ at constant pressure.
12. The following cyclic process is performed on 1 mol argon.
a) It is heated from $25^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ at 5 bar constant pressure,
b) it is expanded from 5 bar to 1 bar at $100^{\circ} \mathrm{C}$,
c) it is cooled to $25^{\circ} \mathrm{C}$ at one bar
d) finally it is compressed at $25^{\circ} \mathrm{C}$ to 5 bar.

Calculate the heat, the work, the change of internal energy and the change of enthalpy in each step and in the whole cyclic process.
13. 4 mol nitrogen of $25^{\circ} \mathrm{C}$ and 1 bar pressure is compressed adiabatically (and reversibly) to 5 bar and then it is cooled down to $25^{\circ} \mathrm{C}$ at 5 bar constant pressure. Calculate $\mathrm{W}, \mathrm{Q}, \Delta \mathrm{U}, \Delta \mathrm{H}$ in each step. (Ideal gas, reversible processes, C_{mp} $=31.1 \mathrm{~J} /(\mathrm{molK})$, const.)
14. There is $1 \mathrm{dm}^{3}$ ideal gas in a cylinder with piston at $1.2^{*} 10^{5} \mathrm{~Pa}$ and 298 K . It is expanded adiabatically (and reversibly) to $10^{5} \mathrm{~Pa}$, then the piston is fixed in its position and the gas is heated to its original temperature. After the second step the pressure of the gas is $1.076 * 10^{5} \mathrm{~Pa}$. Calculate κ.
(Help: logarithm change of base rule: $\log _{\mathrm{b}} \mathrm{x}=\left[\log _{\mathrm{k}} \mathrm{x}\right] /\left[\log _{\mathrm{k}} \mathrm{b}\right]$)
15. 1 mol nitrogen (ideal gas) of 373 K is adiabatically (and reversibly) expanded until its temperature decreases to 273 K . Calculate the work if the initial pressure is

```
    a)}1\mp@subsup{0}{}{6}\textrm{Pa
    b) 5*10}\mp@subsup{}{}{5}\textrm{Pa}\mathrm{ .
C
```

16. The pressure of a one atomic ideal gas $\left(C_{m v}=3 / 2 R\right)$ is increased by a factor of five in an adiabatic reversible process. Calculate the final temperature if the initial temperature is 298 K .
17. Calculate the change of internal energy of 100 g nitrogen of 273 K temperature and p^{0} pressure if
a) the pressure is inreased to 151.95 kPa by heating at constant volume,
b) the temperature is increased to $100^{\circ} \mathrm{C}$ at constant pressure.
(Ideal gas, $\mathrm{C}_{\mathrm{mp}}=30.418+2.544^{*} 10^{-3} * \mathrm{~T}-0.238^{*} 10^{6} \mathrm{~T}^{-2}$)
18. Calculate the change of molar internal energy of ethyl ether ($M=74$ $\mathrm{g} / \mathrm{mol}$) if it is evaporated at $1.013^{*} 10^{5} \mathrm{~Pa}$. The boiling point at this pressure is $34.5^{\circ} \mathrm{C}$, the density of the liquid is $0.697 \mathrm{kgdm}^{-3}$, that of the vapor is $3.16^{*} 10^{-3} \mathrm{kgdm}^{-3}$ at the boiling point. The molar heat of vaporization is $26.7 \mathrm{~kJ} / \mathrm{mol}$.
19. One mol nitrogen is expanded from $0.01 \mathrm{~m}^{3}$ to $0.02 \mathrm{~m}^{3}$ at a constant temperature of $125{ }^{\circ} \mathrm{C}$. Calculate the heat, the work and the change of internal energy. (Ideal gas)
20. One mol nitrogen (ideal gas) is cooled at constant volume from $125{ }^{\circ} \mathrm{C}$ to $28.6^{\circ} \mathrm{C}$. How much heat has to be extracted? How much is the change of internal energy? (Ideal gas, $\mathrm{C}_{\mathrm{mp}}=30.418+2.544^{*} 10^{-3 *} \mathrm{~T}-0.238^{*} 10^{6} \mathrm{~T}^{-2}$.)
21. One mol nitrogen (ideal gas) is compressed adiabatically (and reversibly) from $0.02 \mathrm{~m}^{3}$ to $0.01 \mathrm{~m}^{3}$. The final temperature is $125{ }^{\circ} \mathrm{C}$. Calculate the initial temperature. Calculate the work and the change of internal energy. $\kappa=1.40$. Assume that C_{mp} and C_{mv} are constants.
22. The steps of the previous three problems are parts of a cyclic process. Plot it in a p-V diagram. Calculate the heat and work in the overall cyclic process.
23. 1 mol solid tin of 450 K temperature is added adiabatically to 10 mol liquid tin of 600 K . Calculate the change of entropy if equilibrium is attained. The average molar heat capacity of solid tin is $30.7 \mathrm{~J} /(\mathrm{molK})$, that of liquid tin is $29.0 \mathrm{~J} /(\mathrm{molK})$, the melting point is 505 K , the enthalpy of fusion is $7.01 \mathrm{~kJ} / \mathrm{mol}$.
24. Calculate $\Delta \mathrm{S}$ when 90 g ice at 0 K is mixed with 18 g steam at $100^{\circ} \mathrm{C}$ and 1 bar pressure and the system comes to equilibrium in an adiabatic enclosure. The heat of vaporization of water at $100^{\circ} \mathrm{C}$ is $41.4 \mathrm{~kJ} / \mathrm{mol}$, the heat of fusion of ice at $0{ }^{\circ} \mathrm{C}$ is $6.02 \mathrm{~kJ} / \mathrm{mol}$, the average molar heat capacity of water is $75.312 \mathrm{~J} /(\mathrm{molK})$.
25. Calculate the change of entropy if 2 mol nitrogen is heated from $27^{\circ} \mathrm{C}$ to $127^{\circ} \mathrm{C}$ at constant pressure. $\mathrm{C}_{\mathrm{mp}}=27.3+5.23 \cdot 10^{-3} \mathrm{~T}-0.04 \cdot 10^{-7} \mathrm{~T}^{2}$
26. Calculate $\Delta \mathrm{S}$ when $1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ is heated from 263 K to 283 K at 100 kPa . $\mathrm{C}_{\mathrm{mp}}($ ice $)=2.09+0.126 \mathrm{~T}^{(}\left(\mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right) \mathrm{C}_{\mathrm{mp}}($ water $)=75.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \Delta \mathrm{H}_{\mathrm{f}}=6000 \mathrm{Jmol}^{-1}$.
27. 3 mol nitrogen (ideal gas) is compressed from 1.2 bar to 4.1 bar at 300 K constant temperature. Calculate the change of entropy.
28. The following cyclic process is performed on 160 g oxygen
29. From $20^{\circ} \mathrm{C}$ and 0.1 MPa it is compressed adiabatically (and reversibly) to 2 MPa ,
30. It is heated in an isochor process to $500^{\circ} \mathrm{C}$,
31. It is expanded in an isothermal process to 0.1 MPa ,
32. Finally it is cooled down in an isobaric process to $20^{\circ} \mathrm{C}$.

Calculate $\mathrm{W}, \mathrm{Q}, \Delta \mathrm{U}, \Delta \mathrm{H}, \Delta \mathrm{S}$ in each step and in the whole cycle.
$\kappa=1.4$. The molar heat capacity can be taken independent of temperature.
37.2 kg saturated steam of $200^{\circ} \mathrm{C}$ temperature is expanded isothermally to 50 kPa . Calculate $\Delta \mathrm{U}, \Delta \mathrm{H}$, and $\Delta \mathrm{S}$.
38. Saturated steam of 2 Ma pressure is expanded adiabatically through a throttle to a pressure of 0.15 MPa . What is the temperature of the expanded gas and how much is the change of enthalpy?
39. $600 \mathrm{dm}^{3}$ saturated steam of 3 MPa is is expanded adiabatically through a throttle to a pressure of 200 kPa and then it is used for heating in an isobaric process until 30 per cent of the steam condenses. Calculate the heat.
40. 1 kg saturated steam of 2 MPa is closed in a cylinder with a piston and then it is compressed adiabatically and reversibly to 8 MPa . Relate this work to that of of an ideal adiabatic compressor.
41. 30 kg damp steam containing 40 per cent water at 0.5 MPa is heated to $300^{\circ} \mathrm{C}$ at constant volume. Calculate the heat.
42. Steam overheated (compared to the saturation temperature) by 20 K at 1 MPa pressure is first expanded adiabatically and reversibly to 0.1 MPa then it is used for heating at constant pressure until its water content reaches 60 per cent. How many m^{3} steam of initial state has to be used if we need 60000 kJ for heating?
43. $4.5 \mathrm{~m}^{3}$ steam overheated (compared to the saturation temperature) by 50 K at 0.1 MPa is first compressed adiabatically and reversibly to 0.5 MPa , then it is cooled at constant pressure until its 5 per cent consdenses, finally it is expanded through a throttle to 0.1 MPa . Calculate the compression work and the heat of cooling. Determine the final temperature and water content.
44. 10 kg saturated steam at $250^{\circ} \mathrm{C}$ is expanded isothermally. Calculate the work if the heat is 9 MJ .
45. For the operation of a steady state chemical reactor, $10 \mathrm{~kJ} / \mathrm{s}$ heat is needed. For the production of heat, steam overheated (compared to the saturation temperature) by 20 K at 1 MPa pressure is available. First the steam is adiabatically expanded through a throttle so that in the second step the heat exchange takes place in an isobaric process by the end of which $120^{\circ} \mathrm{C}$ damp steam of 75% water content leaves the system. Calculate how many m^{3} initial (overheated) steam has to be used in an hour.
46. Calculate the heat of evaporation of benzene. The boiling point at 101.3 kPa is $80.1^{\circ} \mathrm{C} . \mathrm{dt} / \mathrm{dp}=0.320 \mathrm{~K} / \mathrm{kPa}, \quad \rho_{\mathrm{I}}=0.8144 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}, \rho_{\mathrm{V}}=0.002741 \cdot 10^{3}$ $\mathrm{kg} / \mathrm{m}^{3}$ at $80.1^{\circ} \mathrm{C}$.
50. The vapour pressure of n-octane is 26660 Pa at $83.52{ }^{\circ} \mathrm{C}$ and 39990 Pa at $95.16^{\circ} \mathrm{C}$. Calculate the vapour pressure at $90^{\circ} \mathrm{C}$.
51. The normal boiling point of diethyl ether is 307.6 K . Ether is to be stored in aluminium drums that can withstand a pressure of $10^{3} \mathrm{kPa}$. What is the maximum temperature to which the drums of ether could be exposed?
57. At $140{ }^{\circ} \mathrm{C}$ the vapour pressure of chlorobenzene is 125.24 kPa , that of bromobenzene is 66.1 kPa . What is the composition of a solution which has a boiling point of $140^{\circ} \mathrm{C}$ at 100 kPa ? What is the composition of the vapour?
58. 65 mol benzene and 35 mol toluene are in a vessel. The temperature is $70^{\circ} \mathrm{C}$ and the pressure is 53.3 kPa . How many moles are altogether in the vapour phase? Calculate the volume of the vapour phase (ideal gases). $\mathrm{p}_{\mathrm{B}}{ }^{*}=72.0 \mathrm{kPa}$, $\mathrm{pT}^{*}=27.5 \mathrm{kPa}$
60. A vessel of $40 \mathrm{dm}^{3}$ volume contains a vapour mixture of hexane and octane, in which the mole fraction of hexane is 0.700 . The temperature is $150{ }^{\circ} \mathrm{C}$., the pressure is 200 kPa . The system is cooled down to $80^{\circ} \mathrm{C}$ while some of the vapour is condensed and an equilibrium pressure of 94.25 kPa sets in . How many moles of hexane are there in the liquid phase? At $80^{\circ} \mathrm{C}$ the vapour pressure of hexane is 141.55 kPa , that of octane is 23.29 kPa .

