Mathematical background of Physical Chemistry I

Zoltán Rolik

Budapest University of Technology and Economics,

Department of Physical Chemistry and Materials Science

Exponential functions

e = 2.71828182845904523536028747135266249775724709369995

• Expression 'exponential function' generally refers to e^x

$$e^x = \lim_{n \to \infty} (1 + \frac{x}{n})^n = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

Logarithm

- Inverse of a function: $g(x) = f^{-1}(x)$ if g(f(x)) = x.
- The logarithm is the inverse operation to exponentiation, e.g., $2^{\log_2 x} = x$.
- $\log_2 8 = How many 2s \ do \ we \ multiply \ to \ get \ 8?$

• Plots of logarithm functions:

• Properties of logarithm:

 $\begin{array}{ll} \log \mbox{ of product} & \log_a(xy) = \log_a(x) + \log_a(y) \\ \mbox{log of fraction} & \log_a(x/y) = \log_a(x) - \log_a(y) \\ \mbox{log of exponential} & \log_a(x^y) = y \log_a(x) \\ \mbox{change the base of log} & \log_a(x) = \frac{\log_b(x)}{\log_b(a)} \end{array}$

Sigma and Pi notation

- \sum compactly represents summation of many similar terms: $\sum_i a_i$
- Π is frequently used for product of terms: $\Pi_i a_i$
- Examples

$$\circ \sum_{i=1}^{n} \ln(a_i) = \ln(a_1) + \ln(a_2) + \dots + \ln(a_n)$$

= $\ln(a_1 a_2 \dots a_n) = \ln(\prod_{i=1}^{n} a_i)$
 $\circ e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$

Derivation of single-variable functions

• The derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value).

•
$$f'(x) = f^{(1)}(x) = \frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

• Derivatives of simple functions

f(x)	f'(x)	f(x)	f'(x)
const	0	$\ln x$	1/x
x^2	2x	$\sin x$	$\cos x$
\sqrt{x}	$0.5x^{-0.5}$	$\cos x$	$-\sin x$
x^n	nx^{n-1}	e^x	e^x

• Derivation of combined functions

linearity
$$(af(x) + bg(x))' = af(x)' + bg(x)'$$

product rule $(f(x)g(x))' = f(x)'g(x) + f(x)g(x)'$
quotient rule $\left(\frac{f(x)}{g(x)}\right)' = \frac{f(x)'g(x) - f(x)g(x)'}{g(x)^2}$
chain rule $f(g(x))' = \frac{df(g(x))}{dg(x)}\frac{dg(x)}{dx}$

Second derivatives

• At local minima and maxima of a function the slope is zero: $f'(x_0) = 0$

If the second derivative, $f''(x_0) > 0$, is positive at x_0 it is a minima, if $f''(x_0) < 0$

• it is a maxima. If $f''(x_0) = 0$ the higher derivatives should be investigated (e.g. $f(x) = x^4$ at x = 0).

In general, if f''(x) > 0 the tangent 10 - x3 - 'below' the function, if f''(x) < 0 it is 5

• 'above' the curve. If $f''(x_0) = 0$ (and $f'''(x_0) \neq 0$), x_0 can be an inflection point (e.g. $f(x) = x^3$ at x = 0).

Snowdrop (Hóvirág)

Taylor-series

• Polynomial approximation of a function:

$$f(x) = f(x_0) + \frac{1}{1!} f^{(1)}(x_0)(x - x_0) + \frac{1}{2!} f^{(2)}(x_0)(x - x_0)^2 + \frac{1}{3!} f^{(3)}(x_0)(x - x_0)^3 + \frac{1}{4!} f^{(4)}(x_0)(x - x_0)^4 + \dots,$$

where $f^{(n)}(x) = \frac{d^n f}{dx^n}$.

- Linear approximation: $\Delta f \approx \frac{df}{dx}|_{x=x_0} \Delta x$ $(\Delta x = (x - x_0) \text{ and } \Delta f = f(x) - f(x_0)).$
- If Δx is infinitesimal, than Δx^2 is considered to be zero, and $df = \frac{df}{dx}dx$. It is the differential of f(x).

• Taylor-series:
$$f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(x_0) (x - x_0)^n$$

Partial derivative

• For continuous, well-behaving functions: $\frac{\partial}{\partial y} \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \frac{\partial f}{\partial y}$ (Young-theorem)

Exact differential

• Linear approximation of a function of two variables:

$$\Delta f \approx \frac{\partial f}{\partial x}\Big|_{x,y=x_0,y_0} \Delta x + \frac{\partial f}{\partial y}\Big|_{x,y=x_0,y_0} \Delta y.$$

- The higher order terms contain contributions proportional to Δx^2 , Δy^2 , $\Delta x \Delta y$, $\Delta x \Delta y^2$ etc.
- If Δx and Δy are infinitesimal, than $df = \frac{\partial f}{\partial x}\Big|_{y} dx + \frac{\partial f}{\partial y}\Big|_{x} dy$.

It is called the exact differential of f(x, y).

Indefinite integral

- Reverse of differentiation: if $\frac{dF(x)}{dx} = f(x)$ than $\int f(x)dx = F(x) + C$, where F(x) is the indefinite integral of f(x) and C is an arbitrary constant.
- Indefinite integral of elementary functions:

f(x)	$\int f(x)$	f(x)	$\int f(x)$
x^n	$\frac{x^{n+1}}{n+1}$	$\frac{1}{x}$	ln x
x	$x^{2}/2$	$\cos x$	$\sin x$
e^{ax}	$\frac{1}{a}e^{ax}$	$\sin x$	$-\cos x$
$\ln(x)$	x(ln(x) - 1)	С	cx

• Notation: $\int dx = \int 1 dx$

Definite integral

f(x)

A Y

- The signed area below (plus sign) or above (minus sign) the graph of function f in the interval bounded by a and b: $\int_a^b f(x) dx$.
- Newton-Leibnitz formula: $\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) F(a)$, where F(x) is the indefinite integral of f(x).

