



1









|             | E <sub>ads</sub> J/mol |
|-------------|------------------------|
| Ar/graphite |                        |
| $\bullet$   | 7315                   |
| $\bigcirc$  | 7145                   |
| $\bigcirc$  | 7145                   |
| Ar/KCI      |                        |
| CI 🔶 CI     | 6646                   |
| K           | 6061                   |
| CI          | 5308                   |
| CI — K      | 5476                   |





| PHYSISORPTION                                                                                                                         | CHEMISORPTION                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| WEAK, LONG RANGE BONDING<br>Van der Waals interactions                                                                                | STRONG, SHORT RANGE BONDING<br>Chemical bonding involved.                                                         |
| NOT SURFACE SPECIFIC<br>Physisorption takes place between all<br>molecules on any surface providing the<br>temperature is low enough. | SURFACE SPECIFIC<br>E.g. Chemisorption of hydrogen takes place of<br>transition metals but not on gold or mercury |
| ΔH <sub>ads</sub> = 5 50 kJ mol-1                                                                                                     | ΔH <sub>ads</sub> = 50 500 kJ mol <sup>-1</sup>                                                                   |
| Non activated with equilibrium achieved<br>relatively quickly. Increasing temperature<br>always reduces surface coverage.             | Can be activated, in which case equilibrium ca<br>be slow and increasing temperature can favor<br>adsorption.     |
| No surface reactions.                                                                                                                 | Surface reactions may take place: Dissociatio reconstruction, catalysis.                                          |
| MULTILAYER ADSORPTION                                                                                                                 | MONOLAYER ADSORPTION                                                                                              |









| Rate of desorption (1st order)                  |                                                                     |                                                              |  |
|-------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|--|
| $k_d = Ae^{-\frac{E_d^{act}}{RT}}$              | $t_{1/2} = \frac{\ln 2}{k_d} = \frac{\ln 2}{A} e^{\frac{E_c^2}{R}}$ | $\frac{\frac{act}{d}}{2T} = \tau_0 e^{\frac{E_d^{act}}{RT}}$ |  |
| Residence time<br><i>Ed<sup>act</sup></i> ,kJ/n | nol $	au_0 = \frac{\ln 2}{A}$ , s                                   |                                                              |  |
| 0.4                                             | 6·10 <sup>-14</sup>                                                 |                                                              |  |
| 4.0                                             | 2.7·10 <sup>-13</sup>                                               | typical                                                      |  |
| 40                                              | 1.6·10 <sup>-6</sup>                                                |                                                              |  |
| 60                                              | 9·10 <sup>-3</sup>                                                  |                                                              |  |
| 80                                              | 50                                                                  |                                                              |  |
| 100                                             | 3·10⁵                                                               |                                                              |  |
| 120                                             | 2·10 <sup>9</sup>                                                   |                                                              |  |
| $\tau_0 = f(\Theta) \qquad \thicksim$           | covered site<br>lateral interaction v                               | vith the neighbou <sup>1</sup> 5                             |  |