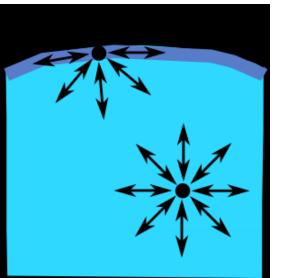
Homework 3 Deadline of submission: 8 April

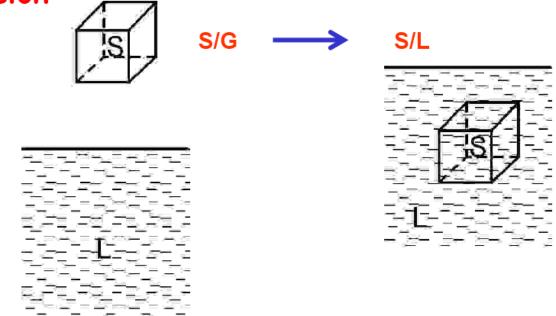
You use the same dataset.

- 1. As it was shown in the last week material (#6) the limits of the Kelvin equation define the limits of the pore size marking the mesopore range.
- From the Kelvin equation calculate the relative pressure values corresponding to the narrowest and widest mesopores. The surface tension of liquid nitrogen is 8.94 mN/m. You can calculate the molar volume of nitrogen from the density of liquid nitrogen given in homework 1. (0.808 g/cm³). The contact angle is 0.
- 3. Using your isotherm data, calculate te pore volume corresponding to the mesopore range, supposing that all the gas adsorbed is in liquid form.


Adsorption at S/L interface

S+L

Applications/use:


solvent purification, e.g. with molecular sieves water treatment decolorisation dyeing washing separation techniques (liquid chromatography)

separation techniques (liquid chromatog surface characterisation

TEXT: Physical chemisty of surfaces Part 2

PURE (SINGLE COMPONENT) LIQUID:

heat of immersion: $q_w = h_{S/L} - h_S$

orientation on the surface

Multicomponent liquid phase

Players:

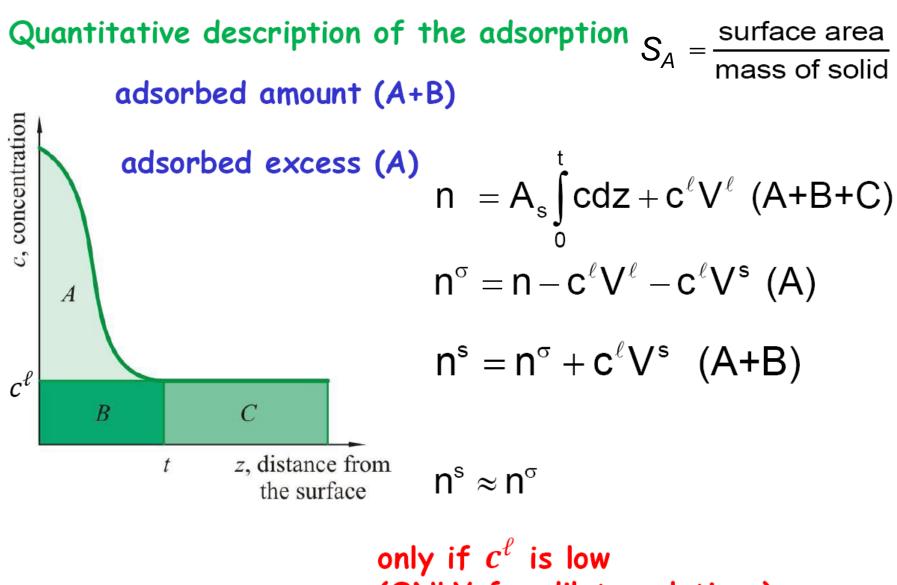
dissolved material	(B)
solvent	(A)
surface site	(5)

Interactions: A - A; B - B; A - S; B - S

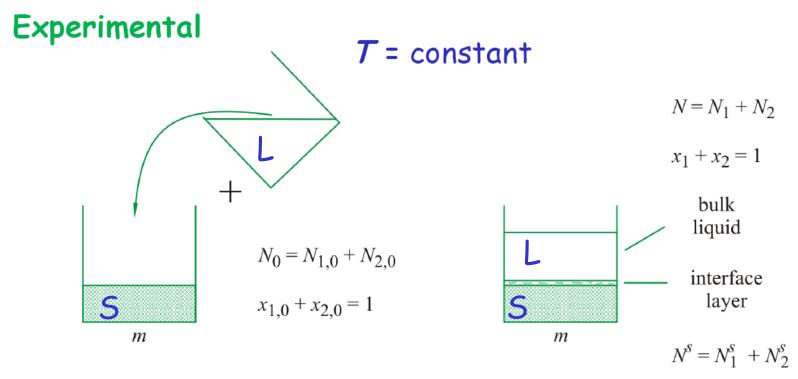
Mechanism:

wetting sorption mixing exchange 1) non-electrolytes or weak electrolytes

dispersive/hydrophobic/H-bond/van der Waals interactions


competition

Mechanism of S/L adsorption


 $\beta A^{L} + B^{s} \iff \beta A^{s} + B^{L} \text{ exchange}$ $\beta = \frac{a_{m,B}}{a_{m,A}} \text{ Cross sectional area of B and A}$

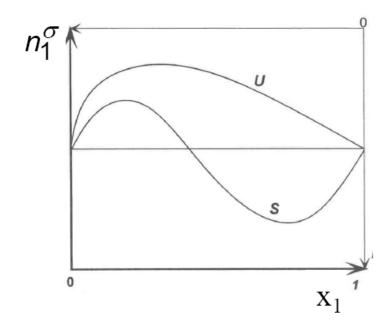
2) electrolytes

electrostatic interactions (attraction, repulsion)

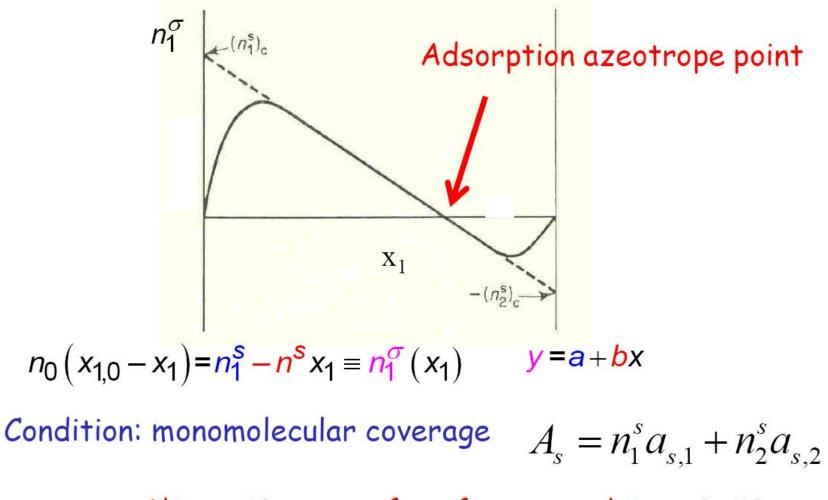
(ONLY for dilute solutions)

$$n_i = \frac{N_i}{m}$$

$$x_1^s + x_2^s = 1$$


Material balance for component 1:

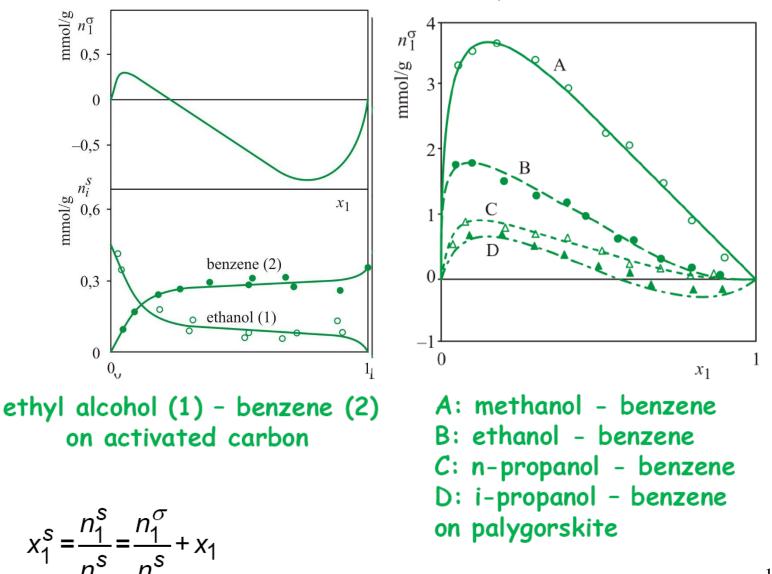
$$\begin{split} n_{0}x_{1,0} &= n_{1}^{s} + \left(n_{0} - n^{s}\right)x_{1} \\ n_{0}\left(x_{1,0} - x_{1}\right) &= n_{1}^{s} - n^{s}x_{1} \\ n_{1}^{\sigma} &\equiv n_{1}^{s} - n^{s}x_{1} = n_{0}\left(x_{1,0} - x_{1}\right) & \text{Adsorbed excess} \\ \end{split}$$


*COMPLETELY MISCIBLE LIQUIDS (non-electrolytes or weak electrolytes)

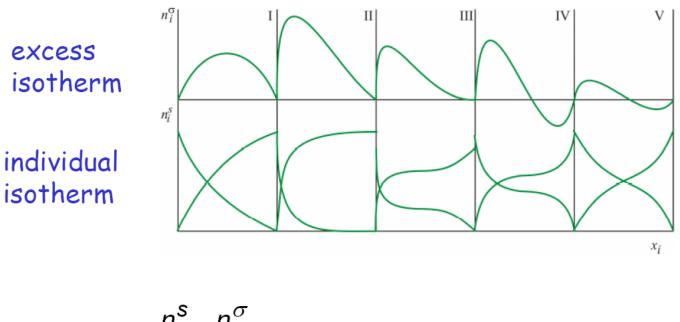
$$n_0(x_{1,0} - x_1) = n_1^s - n^s x_1 \equiv n_1^\sigma(x_1)$$
 T = constant

excess isotherm

Analysis of the isotherms having a linear section



Alternative way of surface area determination


Molar cross sectional area of pure liquids

liquid	cross sectional area,	
	m²/mmol	
methanol	94	
ethanol	120	
butanol	172	
benzene	180	
cyclohexane	208	
heptane	256	
toluene	206	

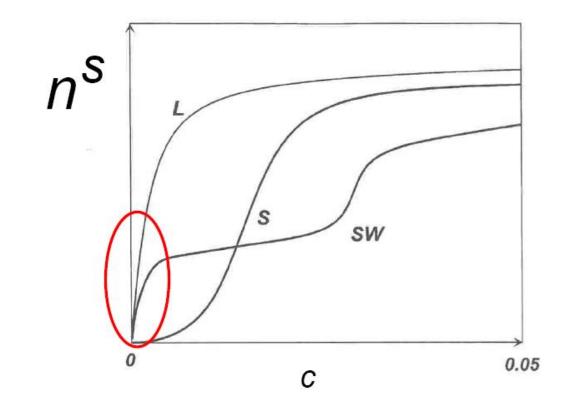
The isotherm simultaneously characterizes the solid surface and the binary liquid

The individual isotherm (the total adsorbed amount of each component) can be calculated?

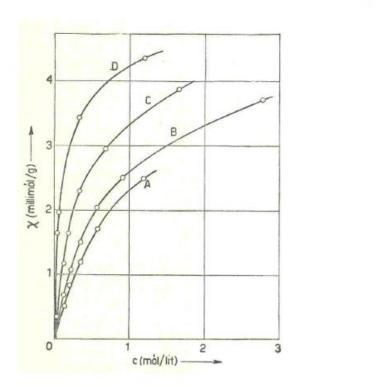
$$x_1^s = \frac{n_1^s}{n^s} = \frac{n_1^o}{n^s} + x_1$$
 $n_i^s = n_i^o + n^s x_i$

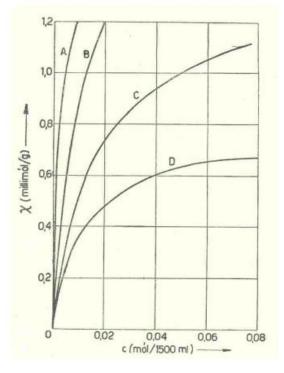
12

*DILUTE NON-ELECTROLYTES OR WEAK ELECTROLYTES

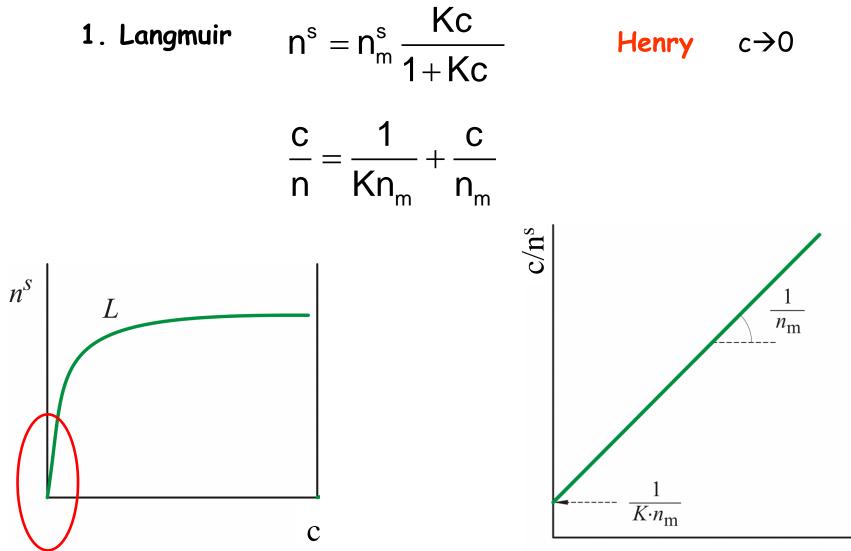

$$n_i^s = n_i^\sigma + n^s x_i$$
$$x_i \to 0 \quad n^\sigma \approx n^s$$

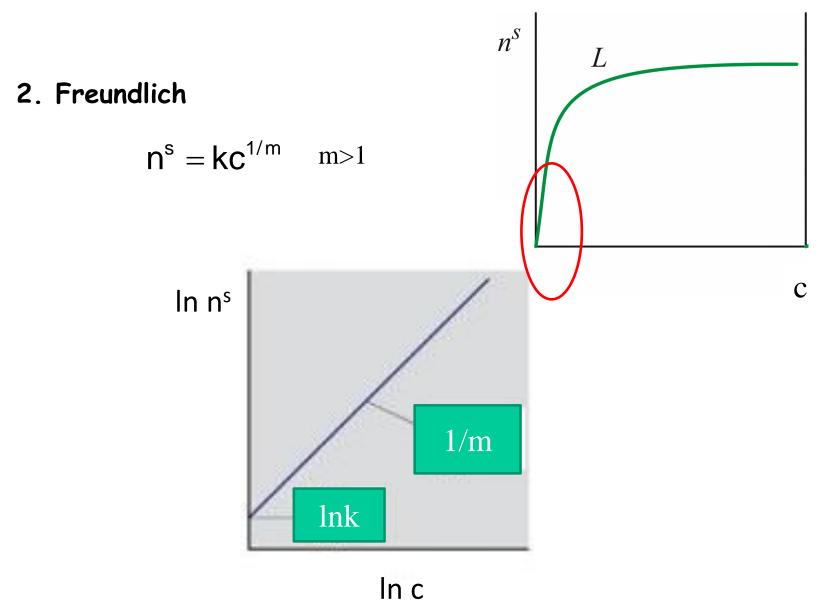
Experimental:


$$n^{s} = rac{c_{0}V_{0} - c_{e}V_{e}}{m} = rac{(c_{0} - c_{e})V}{m}$$


Swelling?

A: formic acid B: acetic acid C: propionic acid D: butyric acid




From water on activated carbon

From toluene on silica

Oriented adsorption

Models

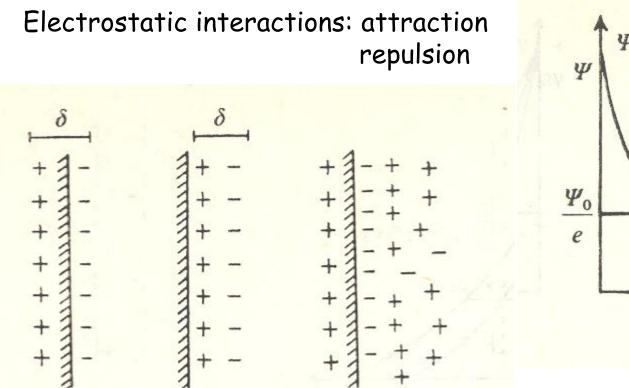
- 3. Complex models: surface heterogeneity
- bi-Langmuir

$$n^{s} = \frac{a_{1}c_{e}}{1 + b_{1}c_{e}} + \frac{a_{2}c_{e}}{1 + b_{2}c_{e}}$$

-adsorption sites on the solid with two different energies

or

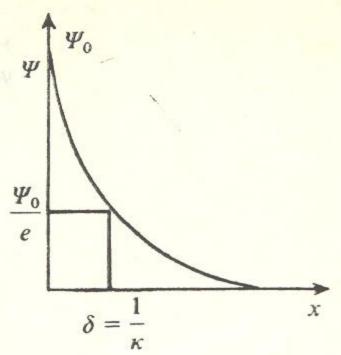
the adsorptive has two kinds of binding sites
 e.g. - chiral molecules
 - proteins


- competitive Langmuir

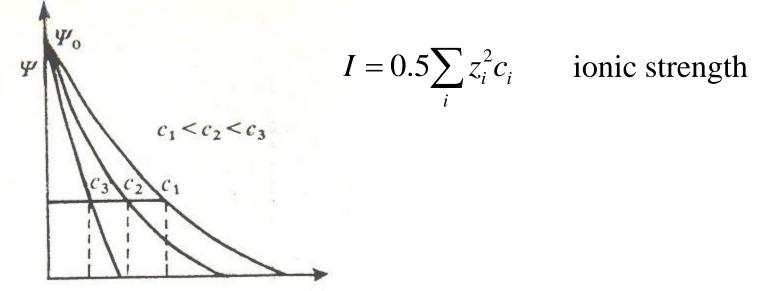
$$n_i^s = n_{m,i}^s \frac{K_i c_{i,e}}{1 + \sum K_i c_{i,e}}$$

Competitive adsorption for the same sites

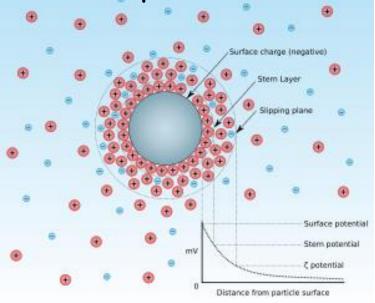
n_m and K from single component Langmuir parameters


* Ionic systems

The role of the counterion


Thickness of the electric double-layer $\boldsymbol{\delta}$

Brownian motion *Diffuse double-layer Stern-layer*



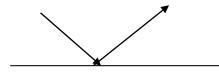
- $\Psi = \Psi_0 \, \mathbf{e}^{-\kappa \mathbf{x}}$ $\kappa = \operatorname{konst} \cdot \mathbf{z} \sqrt{\mathbf{c}}$
- z the charge of the counterion (symmetric electrolites) 1/κ: fictive thickness

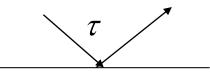
The thickness of the double-layer is influenced by the concentration of the ions

Surface potential: electrokinetic potential or ζ - potential

$$\zeta = \frac{q}{4\pi\varepsilon r}$$

q: surface charge density
ε: permittivity of the medium
r: radius of the spherical particle

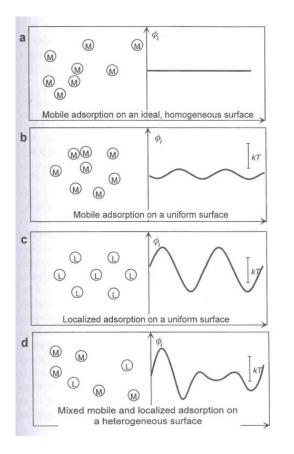

Zeta potential [mV] from 0 to ±5, from ±10 to ±30 from ±30 to ±40 from ±40 to ±60 more than ±61 Stability behavior of the colloid Rapid coagulation or flocculation Incipient instability Moderate stability Good stability Excellent stability


Dynamics of surface processes

TEXT: Physical chemisty of surfaces Part 3 p. 77- 81

Interactions with the surface

- Difference in the binding energies of the different sites
- Occupied and unoccupied sites $\rightarrow \Delta c \rightarrow$ diffusion



random vibration energy > E_{ads}

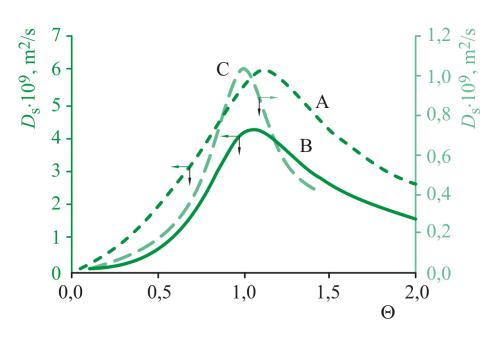
$$D = D_0 e^{-\frac{E_{diff}}{RT}}$$

Affecting parameters?

Mobility on surface (surface diffusion)

Non-localized diffusion $E^{act} \leq RT$

E.g.: H_2 on metal surface (generally as H)

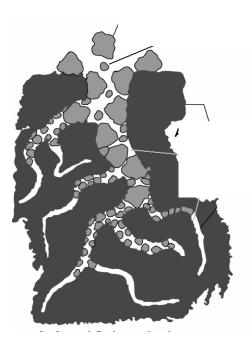

Localized adsorption $E^{act} > RT$ Activated diffusion

Low activation energy between high adsorption energy sites

typically
$$E^{act} = 0.1 \div 0.8 E_{ads}$$

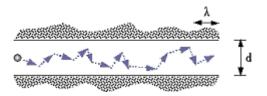
	E _{ads} J/mol
Ar/graphite	
	7315
	7145
	7145
Ar/KCI	
CI — CI	6646
K	6061
CI	5308
CI — K	5476

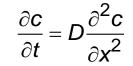
Further factors influencing surface mobility

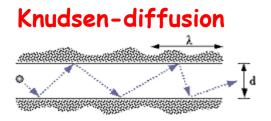

A: argon/silica 89 K B: argon/silica 77 K C: N₂/amorphous carbon 77 K

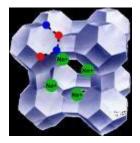
Properties of the chemicals Temperature Coverage

Low q θ : random walk for time τ ideig, 2D gas Θ increases \rightarrow liquid like properties

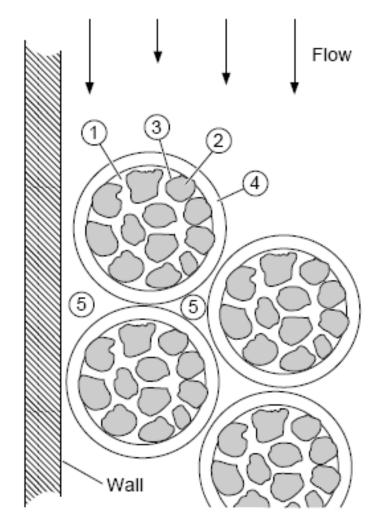

~Activation energy follows the adsorption energy


Mechanisms





Molecular (Fick) diffusion (Brownian motion)


Knudsen number:

Kn= λ/d

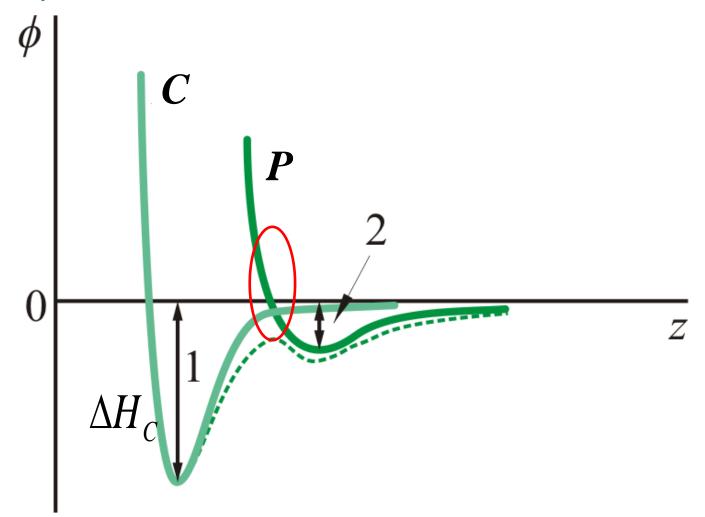
Kn<< 1 viscous flow Kn>> 1 Knudsen flow

	transp	oort type		pore dia (nm			
viscous fl molecula		on		>20 >10			
Knudsen					100		
		gurational) (diffusion	<1.5	Ac	tivated olmer)	diffusion
Solid Diffusion	Surface (Volmer) Diffusion	Knudsen Diffusion	Free (Molecular) Diffusion				
		t.			Diffus	ion	D, m²/s
02 + +CH4	and the	2 1	v por		Fick	(10 ⁻⁵ - 10 ⁻⁴
1	0 1	² 10 ³	104	10 ⁵ [<i>AE</i>]	Knuds	en	10-6
		Porewidth	0.1 · 1 [<u>cm 2</u>] sec]	20 °C	Volm	er	10-7

Transport mechanisms in porous materials

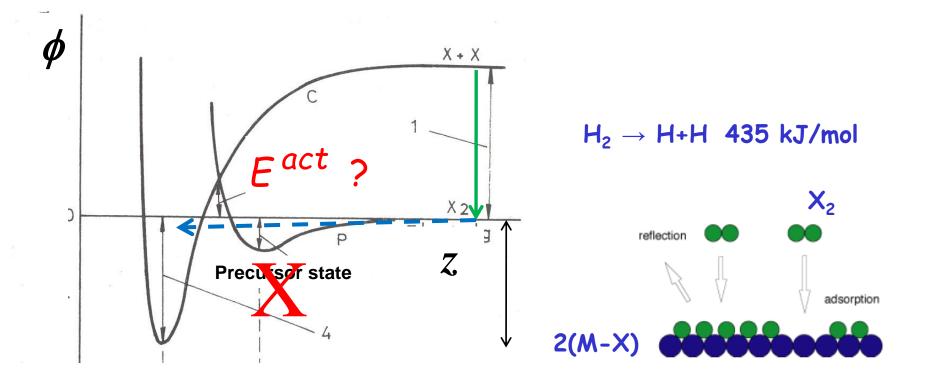
- 1 diffusion in pores
- 2 solid diffusion
- 3 reaction/soprion at phase boundary
- 4 free transport on the surface
- 5 mixing in the fluid phase

CHEMISORPTION


TEXT: Physical chemisty of surfaces Part 3 p. 81-

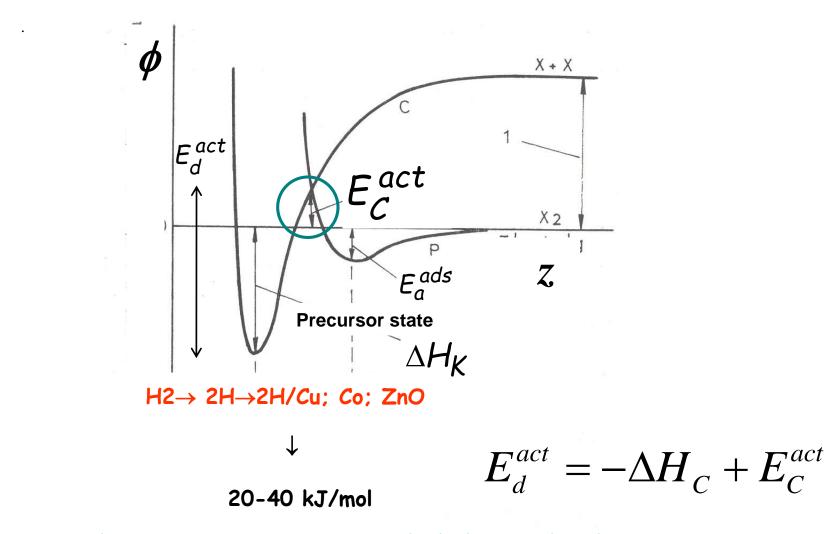
Physisorption vs Chemisorption

PHYSISORPTION	CHEMISORPTION
WEAK, LONG RANGE BONDING	STRONG, SHORT RANGE BONDING
Van der Waals interactions	Chemical bonding involved.
NOT SURFACE SPECIFIC	SURFACE SPECIFIC
Physisorption takes place between all molecules on any surface providing the temperature is low enough.	E.g. Chemisorption of hydrogen takes place on transition metals but not on gold or mercury.
ΔH _{ads} = 5 50 kJ mol-1	ΔH _{ads} = 50 500 kJ mol ⁻¹
Non activated with equilibrium achieved relatively quickly. Increasing temperature always reduces surface coverage.	Can be activated, in which case equilibrium can be slow and increasing temperature can favour adsorption.
No surface reactions.	Surface reactions may take place: Dissociation, reconstruction, catalysis.
MULTILAYER ADSORPTION	MONOLAYER ADSORPTION


Electron transfer

Chemisorption

1. Non-activated chemisorption molecular O2/carbon; H2/carbon; Cl2/carbon; ethylene/silver


$$E_d^{act} = -\Delta H_C$$
³³

2. Dissociative chemisorption

- H_2 , Hlg_2 , O_2 on metal surface
- a. Direct
- b. Through precursor state

b) Through a precursor state

chemi vs physi: rate is not necessarily helps to decide

$$k=Ae^{\frac{E^{act}}{RT}}$$
 35

Rate of desorption (1st order)

$$k_{d} = Ae^{-\frac{E_{d}^{act}}{RT}} \qquad t_{1/2} = \frac{\ln 2}{k_{d}} = \frac{\ln 2}{A}e^{\frac{E_{d}^{act}}{RT}} = \tau_{0}e^{\frac{E_{d}^{act}}{RT}}$$

Residence time

$ au_0 = \frac{\ln 2}{A}, s$
6·10 ⁻¹⁴
2,7·10 ⁻¹³
1,6·10 ⁻⁶
9·10 ⁻³
50
3·10 ⁵
2·10 ⁹

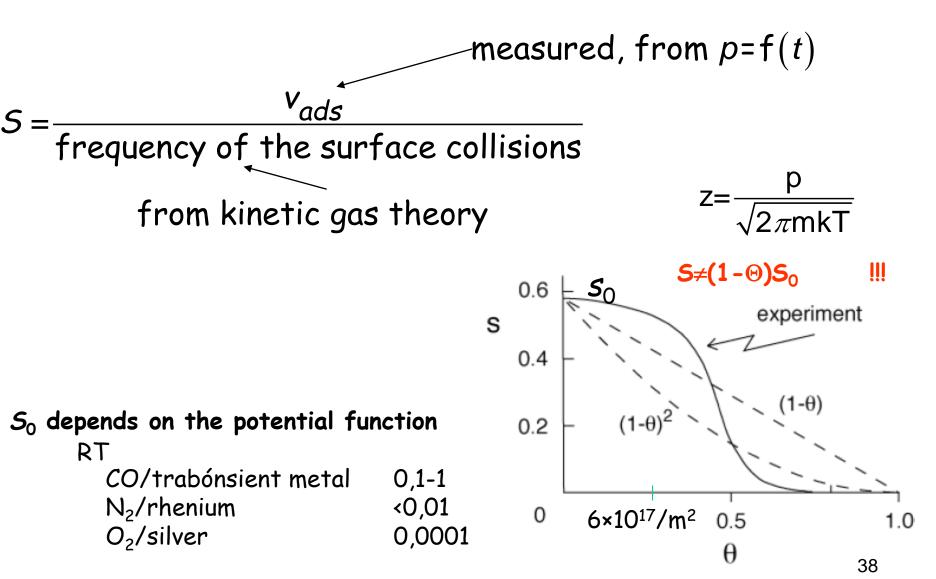
 $\tau_0 = f(\Theta)$

~ covered site ~ lateral interaction with the neighbour

Rate of the surface reactions

number of collisions: z

 \bigcirc


$$z = \frac{p}{\sqrt{2\pi m k T}}$$

 $\begin{array}{ll} 10^{18} - 10^{19} \ \text{surface atom/m}^2 \\ \text{Ambient pressure, } 25 \ ^{\circ}C & 3 \times 10^{27} \ \text{collisions/m}^2 \text{s} \\ & \text{on a single surface site} & \rightarrow \sim 10^8 \ \text{collisions/s} \\ 10^{-6} \ \text{torr} & 4 \times 10^{18} \ \text{m}^{-2} \text{s}^{-1} & 1 \ \text{collision/s} \end{array}$

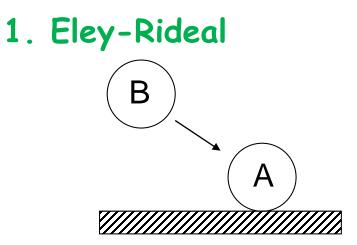
 V_{ads} = frequency of collisions x sticking probability

sticking probability, S

dissipation of the energy of the particle colliding

Heterogeneous catalysis

homogeneous ↔ heterogeneous


Influences only the rate but not the equilibrium:

Reaction path with reduced activation energy

Important for industry

process	reagents	catalyst	product
Ammonia synth.	$N_2 + H_2$	Al ₂ O ₃	NH ₃
(Haber-Bosch)		supported	
		iron oxides	
Ethylene oxide	$C_2H_4+O_2$	Al ₂ O ₃	C ₂ H ₄ O
synth.		supported	
		silver	
Desulphurization	$H_2 + R_2 S$	Al ₂ O ₃	$RH + H_2S$
of mineral oil		supported	
		Mo-Co	
Polymerization of	propylene	MgCl ₂	polypropylene
olephines		supported	39
(Ziegler-Natta)		TiCl ₃	

Mechanism of the surface reactions

$$A(g)+S(s) \rightleftharpoons AS(s)$$
$$AS(s)+B(g) \rightarrow \text{product}$$
$$v=kp_B \cdot \Theta_A$$

if $\Theta_A = f(p_A)$ Langmuir

$$v = \frac{kKp_A p_B}{1 + Kp_A}$$

1) low
$$p_A$$
: K p_A «1
2) high p_A : K p_A »1 $v \approx kp_B$

Eley-Rideal mechanism, examples

reagent	catalyst	product
$CO_2 + H_2(s)$		H ₂ O + CO
$C_2H_2 + H_2(s)$	Fe or Ni	C₂H₄
2 NH ₃ + ½ O ₂ (s)	Pt	N ₂ + 3 H ₂ O
$C_2H_4 + \frac{1}{2}O_2(s)$		H ₂ COCH ₂

2. Langmuir - Hinshelwood

adsorption to the surface diffusion reaction desorption

Face
$$A(g)+S(s) \rightleftharpoons AS(s)$$

 $B(g)+S(s) \rightleftharpoons BS(s)$
 $AS(s)+BS(s) \rightarrow product(g)$

$$\Theta_{A} + \Theta_{B} + \Theta_{free} = 1 \qquad \mathbf{V} = \mathbf{k} \cdot \Theta_{A} \cdot \Theta_{B}$$

Langmuir
$$\Theta_A = \frac{K_A p_A}{1 + K_A p_A + K_B p_B}$$
 $\Theta_B = \frac{K_B p_B}{1 + K_A p_A + K_B p_B}$

$$v = \frac{kK_A p_A K_B p_B}{\left(1 + K_A p_A + K_B p_B\right)^2}$$

complex T-dependenace

$$v = \frac{kK_A p_A K_B p_B}{\left(1 + K_A p_A + K_B p_B\right)^2}$$

a) Both A and B adsorb weakly

$$v = kK_A p_A K_B p_B$$

b) B adsorbs weakly

$$v = \frac{kK_A p_A K_B p_B}{\left(1 + K_A p_A\right)^2}$$

c) A adsorbs very strongly

$$v = \frac{kK_B p_B}{1 + K_A p_A}$$

Examples for Langmuir – Hinshelwood mechanism

reagents	catalyst	product
2 CO + O ₂	Pt	2CO ₂
CO + 2H ₂	ZnO	CH ₃ OH
$C_2H_4 + H_2$	Cu	C ₂ H ₆
$N_2O + H_2$	Pt	$N_2 + H_2O$
$C_2H_4 + \frac{1}{2}O_2$	Pd	CH₃CHO
CO + OH	Pt	CO ₂ + H ⁺ + e ⁻