THERMODYNAMICS

It is able to explain/predict

- direction
- equilibrium
- factors influencing the way to equilibrium

Follow the interactions during the chemical reactions

NO TIME SCALE !!!!
THE INTERNAL ENERGY

The energy of the system

$$
\begin{aligned}
& E=E_{p o t}+E_{k i n}+U \\
& E_{p o t}=m \cdot g \cdot h \\
& E_{k i n}=\frac{1}{2} m \cdot v^{2}
\end{aligned}
$$

The internal energy

chemical structure
(e.g. nucleus, chem. bonds)
thermal energy
intermolecular interactions

The absolute value of the internal energy U cannot be determined only its change ΔU

Characterisation of the macroscopic state of the system

The state of a thermodynamic system is characterized by the collection of measurable physical properties.
amount of substance: mass (m, g), chemical mass ($n, m o l$)
volume (V, m^{3})
pressure (p, Pa)
temperature (T, K)
concentration (c, mol/L; $x,-$)
energy
State equation: relationship between the characteristics
e.g.: $p V=n R T$
$R=8.314 \mathrm{~J} / \mathrm{molK}$
also diagrams, tables

Classification of thermodynamic quantities:

Extensive quantities:
depend on the extent of the system and are additive:
mass (m)
volume (V)
internal energy (U), etc.
Intensive quantities:
do not depend on the extent of the system and are not additive :
temperature (T)
pressure (p)
concentration (c)

CHANGES

A system is in thermodynamic equilibrium if none of the state functions are changing. In equilibrium no macroscopic processes take place. Dynamic!!!!!!!

In a non-equilibrium system the state functions change in time, the system tends to be in equilibrium.

Meta-stable state: the state is not of minimal energy, energy is necessary for crossing an energy barrier.

A reversible change is one that can be reversed by an infinitesimal modification of one variable. A reversible process is performed through the same equilibrium positions from the initial state to the final state as from the final state to the initial state.

The following processes are frequently studied:
isothermal ($T=$ const.)
isobaric ($p=$ const.)
isochoric ($V=$ const.)
adiabatic ($Q=0$)

State function: a property of a system that depends only on the current state of the system, not on the way in which the system acquired that state (independent of path). A state function describes the equilibrium state of a system.
Important state functions in thermodynamics:
U - internal energy
H-enthalpy
S - entropy
A - Helmholtz free energy
G-Gibbs free energy

$$
U, H, A, G
$$

S
change: Δ, d; joule, J; kJ J/K
Process functions: their values depend on the specific transition (or path) between two equilibrium states.

$$
W, Q
$$

change: $d W, d Q ;$ joule, J; kJ

The FIRST LAW OF THERMODYNAMICS the conservation of energy

Isolated system:	$d U=0$	
Closed system	$d U=d Q+d W$	If no work:

Convention: the system is in the focus
U state function, Q and W process function

Processes at constant volume are well characterized by the internal energy. In chemistry (and in the environment) constant pressure is more frequent than constant volume. Therefore we define a state function which is suitable for describing processes at constant pressure:

$$
H \equiv U+p V \quad \text { enthalpy }
$$

THE CHARACTERSITICS OF THE ENTHALPY FUNCTION

Extensive quantity (depends on the amount of the material)

State function: similarly to the internal energy U only its change ΔH is known, not the absolute value

$$
\Delta H=H_{f}-H_{i}=\int_{f}^{i} d H
$$

It can be deduced that in isobaric conditions ($p=$ const.)
if only pV work takes place:

$$
d H=d Q
$$

if other types of work:

$$
d H=d Q+d W_{1}+d W_{2}+d W_{3}+\ldots
$$

1) HEAT

The heat is the transport of energy (without material transport) through the boundary of a system. The driving force is the gradient of the temperature.
The heat (like the work) is not a state function. We have to specify the path.
A) Heating, cooling

$$
\begin{aligned}
& Q=n \cdot \int_{T_{1}}^{T_{2}} C_{m} d T \\
& C_{m}: \text { molar heat capacity }
\end{aligned}
$$

Most frequently heating and cooling are performed either at constant pressure or at constant volume:

$$
Q_{p}=n \int_{T_{1}}^{T_{2}} C_{m p} d T
$$

$$
Q_{v}=n \int_{T_{1}}^{T_{2}} C_{m v} d T
$$

$C_{m p}>C_{m V}$ because heating at constant pressure is accompanied by $p V$ work.
The difference is the most significant in case of gases

$$
\text { If } C_{m} \neq f(T) \quad Q=n \cdot C_{m} \cdot \Delta T
$$

e.g., isobaric heating/cooling

$$
\Delta H=Q_{p}=n \int C_{m, p}(T) \cdot d T
$$

The molar heat capacity is generally expressed as a polynom:

$$
C_{m, p}=a+b T+c T^{-2}+d \cdot T^{2}
$$

After substituting into the integral expression
$\Delta H=n\left[a\left(T_{2}-T_{1}\right)+\frac{b}{2}\left(T_{2}^{2}-T_{1}^{2}\right)-c\left(T_{2}^{-1}-T_{1}^{-1}\right)+\frac{d}{3}\left(T_{2}^{3}-T_{1}^{3}\right)\right]$
B) Phase transition: isobaric+isothermic

Heat of.... (latent heat)
evaporation - condensation
melting

- freezing
sublimation - condensation
Molar heat of...
e.g.: molar enthalpy (=heat) of vaporisation; symbol: ΔH_{m} (vap)
C) Chemical reaction

2. WORK: in general the work can be expressed as the product of an intensive quantity and the change of an extensive quantity:

Type	Intensive	Extensive	Elementary
of work	quantity	quantity	work
pV	Pressure $(-p)$	Volume V	$d W=-\mathrm{pdV}$
Surface	Surface tension (γ)	Surface (A)	$\mathrm{dW}=\gamma \mathrm{d} A$
Electric	Potential (φ)	Charge (q)	$\mathrm{dW}=\varphi \mathrm{d} q$

The work is an energy transport through the boundary of the system. The driving force (or potential function) is the gradient of the intensive parameter belonging to the process.

CAN WE UTILIZE THE full ENTHALPY?

\square
H-TS

TOTAL STORED ENERGY

ENERGY STORED BY THE RANDOM MOTION
OF THE MOLECULES

Entropy (S) measure of the disorder

$$
Q_{r e v}=T \cdot S \quad[S]=\mathrm{J} / \mathrm{K}
$$

Each interaction can be characterized by an entropy change

State function, extensive
$d Q_{r e v}=T \cdot d S$
$S=n S_{m}$
if only pV is performed: $\quad \Delta S=\frac{Q_{r e v}}{T}=\frac{\Delta H}{18}$

at $T=0 \mathrm{~K} S_{\text {thermal }}=0$ (no motion), but the atoms might be disordered: $\mathrm{S}_{\text {configuration }}>0$
The entropy of pure perfect crystals at 0 K is identical (3rd law).

$$
S(0) \equiv 0
$$

The entropy unlike U and H has an absolute scale.

If only pV work occurs: $\quad \Delta S=\frac{Q_{r e v}}{T}=\frac{\Delta H}{T}$

Phase transitions: (isothermal-isobaric processes)

$$
\begin{array}{|lc}
\Delta S(\text { melt })=\frac{\Delta H(\text { melt })}{T_{\text {melt }}} & \Delta S(e v)=\frac{\Delta H(e v)}{T_{b}} \\
s, 4 & S \downarrow \\
\begin{array}{ll}
\text { heating } & \text { cooling } \\
\text { melting } & \text { freezing } \\
\text { evaporation } & \text { condensation } \\
\text { expansion } & \text { compression } \\
\text { Disorder } 4 & \text { Disorder } \downarrow
\end{array}
\end{array}
$$

Heat inpute: more disordered motion

Work input: order

Evaporation entropies at normal boiling point

	$\Delta \mathrm{S}(\mathrm{ev}), \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
bromine	88.6
benzene	87.2
carbon tetrachloride	85.9
cyclohexane	85.1
hydrogen sulphide	87.9
ammonia	97.4
water	109.1
mercury	94.2

p-dependent
standard molar entropy
standard pressure ($1 \mathrm{bar}=100000 \mathrm{~Pa}=0.986 \mathrm{~atm}$)

Direction of natural processes

(spontaneity of processes)

- - $\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$
- - gases fill the space available
- - hot objects cool to the temperature of their environment
Processes in nature: energy dissipation
Ordered \longrightarrow Disordered
? Which of the energetically "legal" (conform with the 1st law of TD) will spontaneously take place?

Understanding the chemical processes and their equilibrium

22

In isolated systems in spontaneous processes the change of entropy is positive: $\Delta S \geq 0$

It can be proved that if a spontaneous process occurs in an isolated system, S increases (2nd law).
The equilibrium is reach when entropy has a maximum

If thesytem is not isolated:

$$
\Delta S_{\text {system }}+\Delta S_{\text {environment }} \geq 0
$$

The total entropy change of a process:
$\Delta S_{\text {total }}=\Delta S_{\text {system }}+\Delta S_{\text {environment }}$

Direction of change

At constant temperature and pressure in a closed system if the process is spontaneous, G keeps decreasing, as long as the equilibrium is reached (the minimum of the G function) (unless no other work but pV)) .
! Spo
Spontaneity \Leftrightarrow rate of reaction
$G_{m, \text { graphite }}-G_{m, \text { diamond }}=-3 k^{2 \xi} / \mathrm{mol}$

GIBBS' PHASE RULE

$$
F=C+P-2
$$

in non-reactive multi-component heterogeneous systems where the components
and phases are in thermodynamic equilibrium with each other, the degrees of freedom The number of thermodynamic equilibrium with each other, the degrees
The number of degrees of freedom F is the number of independent in
as temparature or pressure that can be varied simultaneously and arbitrarily without determining one another.

Phase

form of matter that is
homogeneous in chemical
composition and physical state
Typical phases are solids, liquids and gases.
\& physical state !
Phase boundary
Component, C
chemically independent
constituents of the system
one-component system: a system involving one pure chemical
two-component system: mixtures of water and ethanol (two chemically independent components)

CHEMICAL EQUILIBRIUM

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2}=2 \mathrm{NH}_{3}
$$

Generally: v is the stoichiometric factor, M is the chemical formula, k is for reactants, + is for products:

$$
\sum v_{k} M_{k}=\Sigma v_{t} M_{t}
$$

Each compound can be
characterized with a Gibbs energy
Thus, similarly to the heat of
reactions, the Gibbs energy of the
chemical reaction is
$\Delta_{r} G=\Sigma v_{t} G_{t}-\Sigma v_{k} G_{k} \quad p$ and T cons

Spontaneous change: $\Delta_{r} G<0, p$ and T const. In equilibrium: $\Delta_{r} G=0, p$ and T const.

When is a reaction thermodynamically feasible?

Relationship of standard Gibbs energy and equilibrium consta

$$
\Delta_{r} G^{\varnothing}=-R T \ln K
$$

$\Delta_{r} G^{\varnothing}$ the standard Gibbs energy of the chemical reaction
 $=1$ bar); temperature is not fixed but most data are available at 298 K

$$
K=\frac{\Pi a_{t, e}^{v t}}{\Pi a_{k, e}^{v k}} \approx \frac{\Pi c_{t, e}^{v t}}{\Pi c_{k, e}^{v k}} \quad a=c \gamma \quad \begin{aligned}
& \text { a: (chemical) aktivity } \\
& \gamma: \text { activity coefficient }
\end{aligned}
$$

$e^{\text {: equilibrium composition }}$
The equilibrium constant is a very important quantity in thermodynamics.
It characterizes several types of equilibria of chemical reactions
~ in gas, liquid, and solid-liquid phases;
~ in different types of reactions between neutral and charged reactants

The equilibrium constant can be expressed using several parameters like pressure, mole fraction, (chemical) concentration, molality.

Relationship between thermodynamic K and macroscopic parameters (how can we calculate K from measured data)
thermodynamic K
ideal gas

$$
\begin{array}{l|l}
\hline K=K_{y} \cdot K_{c} \cdot\left(c^{0}\right)^{-\Delta v} & K_{\gamma}=\frac{\Pi^{c} \gamma_{B}{ }^{V_{s}}}{\Pi^{c} \gamma_{A}{ }^{N_{x}}} \text { es } K_{c}=\frac{\Pi c_{B}^{V_{B}}}{\Pi c_{A}^{v_{A}}} \\
\hline \hline
\end{array}
$$

solutions
When is a reaction thermodynamically feasible?
$\Delta_{r} G=\Delta_{r} H-T \Delta_{r} S \quad \Delta_{r} G^{\sigma}=-R T \ln K$

Efficient product formation: $K \gg 1, K>10^{3}$

How can we influence K ?

1. Pressure? $\quad \Delta_{r} G^{\varnothing}=-R T \ln K \quad$ As G^{\varnothing} is defined at standard
2. Temperature?

$$
\begin{gathered}
\Delta_{r} G^{\varnothing}=\Delta_{r} H^{\varnothing}-T \Delta_{r} S^{\varnothing}=-R T \ln K \\
\ln K=-\frac{\Delta_{r} G^{\varnothing}}{R T}=-\frac{\Delta_{r} H^{\varnothing}}{R T}+\frac{\Delta_{r} S^{\varnothing}}{R} \\
\ln K^{\prime}=-\frac{\Delta_{r} G^{\varnothing}}{R T^{\prime}}=-\frac{\Delta_{r} H^{\varnothing}}{R T^{\prime}}+\frac{\Delta_{r} S^{\varnothing}}{R} \\
\ln \frac{K^{\prime}}{K}=\frac{\Delta_{r} H^{\varnothing}}{R T}\left(\frac{1}{T}-\frac{1}{T^{\prime}}\right)
\end{gathered}
$$

[^0]$$
\ln \frac{K^{\prime}}{K}=\frac{\Delta_{r} H^{\varnothing}}{R}\left(\frac{1}{T}-\frac{1}{T^{\prime}}\right)
$$
endothermic reactions (heat is absorbed form the environment, i.e., $\Delta_{r} H^{-}>0$) the right hand side is positive, so $\ln K-\ln K>0$ with increasing temperature.

exothermic reactions (heat is released to the environment, i.e., $\left.\Delta_{r} H^{(\epsilon}<0\right)$ so $\ln K-\ln K<0$ with increasing temperature

Le Chatelier-Brown Principle: The equilibrium shifts towards the endothermic direction if the temperature is raised, and into the exothermic direction if the temperature is lowered. For exothermic reactions low temperature favours the equilibrium but at too low temperatures the rate of reaction becomes very low. An optimum temperature has to be found.

3. Catalysis

Reaction Progress

Only the activation energy is influenced.
As ΔG is a state function, this has no influence either on its value, or on K.

Influence of external conditions on equilibrium composition

$$
K=\frac{\Pi a_{t, e}^{v t}}{\Pi a_{k, e}^{v k}} \approx \frac{\Pi c_{t, e}^{v}}{\Pi c_{k, e}^{v}}
$$

Taking advantage to Le Chatelier-Brown Principle:
If the equilibrium concentration is modified, the system intends to reestablish the equilibrium

Manipulation with pressure
Reactions where the volume decreases at constant pressure ($\Delta v<0$) are to be performed at high pressure.
E.g. $\mathrm{N}_{2}+3 \mathrm{H}_{2}=2 \mathrm{NH}_{3} \quad \Delta v=-2$

Several hundred bars are used.

Reactions where the volume increases at constant pressure ($\Delta v>0$) are to be performed at low pressure or in presence of an inert gas.

EXERCISE 1

Problem:

The entropy of evaporation of cyclohexane at its normal boiling point ($1 \mathrm{~atm}, 197.3^{\circ} \mathrm{C}$) is $85.1 \mathrm{~J} /(\mathrm{molK})$. Calculate its heat of evaporation at this temperature.

Solution:

EXERCISE 2

Problem:
The boiling point of nitrogen is $-196^{\circ} \mathrm{C}$.
Estimate the change of entropy if 15 liter of liquid nitrogen is evaporated at atmospheric pressure?
The density of the liquid nitrogen is $0.81 \mathrm{~g} / \mathrm{cm}^{3}$?
What will be the sign of the change and explain why.
Solution:

```
EXERCISE 3
Problem:
How much heat should be removed from the system if we
intend to cool 5m}\mp@subsup{\textrm{m}}{}{3}\mathrm{ ethane gas from }14\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to }3\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ ?
The temperature dependence of the molar heat can
be neglected.
Solution:```


[^0]:    It is the standard reaction enthalpy
    ( $\sim$ heat of the rection)
    that determines
    the temperature dependence of $K$

