# BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS 

DEPARTMENT OF PHYSICAL CHEMISTRY AND MATERIAL SCIENCE

FERENC BILLES

## PHYSICAL CHEMISTRY 1. <br> Compendium and problem book

BUDAPEST, 2013

## 1. FUNDAMENTALS OF THERMODYNAMICS

## PHYSICAL CHEMISTRY

studied the changes in chemicals systems applying physical methods.
SYSTEM is the part of the world which we have a special interest in.
Chemical system: ensemble of atoms and molecules.
They may be investigated form:

- phenomenological view, i.e., one regards the system as continuous material;
- particle view, the system is regarded as ensemble of discrete particles.


## THERMODYNAMICS

Phenomenological method, it is the quantitative description of chemical and physical processes, through the study of the energy transitions during these processes.
Two types of energy changes are distinguished in these processes::

- work (W), the system works (its energy decreases), or an external system works on it. (its energy increases);
- heat ( $Q$ ) transport to the environment (it decreases) or receiving from it (it increases).


## ENERGY

Working ability of the system.

## WORK

Physical definition:

$$
\begin{equation*}
\mathrm{W}=\int \mathbf{F} . \mathrm{d} \mathbf{r} \tag{1}
\end{equation*}
$$

$\mathbf{F}$ : force, dr: displacement
Result: The result of the work maybe visible as change in position or form (expansion work, deformation work), or invisible internal change in the system energy (electric, magnetic, atomic, molecular). The expansion work has stressed importance in thermodynamics

$$
\begin{equation*}
W=-\int p d V \tag{2}
\end{equation*}
$$

p is the pressure (more precisely, the external pressure that can be substituted with the pressure of the system if the change is reversible), V is the volume. The system works if its volume increases, that means, its energy decreases.. The works, other than expansion works are called useful (or other) works.

## HEAT

If the system receives (adsorbs) or emits energy, than this change in energy causes change in phase, in temperature, or produces chemical reaction.

## SYSTEM

The investigated part of the world we are interested in. A system is open, if mass transfer is possible trough its boundaries. If neither energy nor mass transport is possible through the boundaries, the system is isolated. If mass transport is not but energy one is possible through the boundaries, the system is closed. If heat transport is possible trough the walls of the system, the system is diathermic, otherwise adiabatic. The wall is the physical boundary of the system.

| system | mass transfer | heat transfer |
| :--- | :--- | :--- |


| open | + |  |
| :---: | :---: | :---: |
| isolated | - | - |
| closed | - | + |
| diathermic |  | through walls: + |
| adiabatic |  | through walls: - |

## PROCESS

It should be a chemical reaction or a physical change in state of the system. If the process products heat (the energy of the system decreases) it is called exothermal, otherwise, if it adsorbs heat (the system energy increases), it is an endothermic process.

## INTERNAL ENERGY

It is the sum of the kinetic and potential energy of all particles (atoms, molecules) of the system. The thermodynamics studies and describes their changes during the processes (with phenomenological tools):

$$
\begin{equation*}
\Delta U=W+Q \tag{3}
\end{equation*}
$$

This is the first low of thermodynamics, expressing the law of the energy conservation. The internal energy, the total energy of the system can be expressed formally as the full work and heat investigated in to the system:
$U=W+Q$

## PHYSICOCHEMICAL PROPERTIES

A physicochemical property is extensive, if its quantity depends on the extent of the system (like energy, mass or volume) and is additive, and it is intensive, if it does not depend on the extent of the system and is not additive (temperature, pressure, concentration)

## STATE PARAMETER

These are the physical properties of the system (continuum) that are measurable direct and describe the physical state of the system: pressure, temperature, volume and composition.

## STATE FUNCTION

A function, that describes the dependence of the physical quantities on the state parameters, (internal energy, enthalpy, entropy, see below). Its value depends during the process only on the initial and final states of the system and is independent of the path.

## PATH FUNCTION

A function describing the dependence of the physical quantity on the state parameters but depends on the path of the process (work, heat).

## EQUILIBRIUM

The thermodynamic equilibrium is a state of the system where macroscopic processes do not take place, the system parameters do not change in time. If the system is in a non-equilibrium state the system tends to come into an equilibrium state. Meta-stabile state: the system is not in a minimal energy state, energy is necessary for crossing an energy barrier ("frozen" system).

## REVERSIBILITY

A reversible change is one that can be reversed by an infinitesimal modification of one variable.

A reversible process is performed through the same equilibrium positions from the initial state to the final state as from the final state to the initial state.

## EQUATION OF STATE

It is a relationship among the state variables of the system in equilibrium.

## ENTHALPY

Subtracting the expansion work from the internal energy for processes proceeding at constant pressure the result is the sum of the heat and the useful work, the change in enthalpy. The enthalpy is a state function. Thermodynamics applies this function for the description of processes at constant pressure. The change of the enthalpy during a process is

$$
\begin{equation*}
\Delta H=\Delta U+p \cdot \Delta V=Q_{p} \tag{5}
\end{equation*}
$$

is equal to heat at transfer at constant pressure $\mathrm{Q}_{\mathrm{p}}$, if there is not work of or on the system. The definition of the enthalpy is
$H=U+p . V$

## IDEAL GAS

It follows the equation of state

$$
\begin{equation*}
\mathrm{pV}=\mathrm{nRT} \tag{7}
\end{equation*}
$$

R is the gas constant, $8.313 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}, \mathrm{~T}$ is the absolute temperature, n is the quantity of the gas in mols.

PROCESS TYPES (equations for ideal gas)
Isothermal: the temperature is constant.

$$
\begin{equation*}
\Delta U=0 \text { and } \Delta H=0 \tag{8}
\end{equation*}
$$

Isobaric: the pressure is constant

$$
\begin{equation*}
Q=\Delta H \quad W=-p \cdot \Delta V \tag{9}
\end{equation*}
$$

Isochor: the volume is constant

$$
\begin{equation*}
\mathrm{W}=0 \quad \mathrm{Q}=\Delta \mathrm{U} \tag{10}
\end{equation*}
$$

Adiabatic: there is not heat transfer across the system walls

$$
\begin{equation*}
Q=0 \text { i.e. } \tag{11}
\end{equation*}
$$

$W=\Delta U$

Change in phase:

$$
\begin{array}{lr}
\Delta T=0 & \Delta p=0 \\
Q=\Delta H & W=-p . \Delta V \tag{14}
\end{array}
$$

## HEAT CAPACITY

It is the energy necessary for the unit change of the temperature of the material.
If it refers to unit mass, it is the specific heat capacity (C), for unit mol, it is called molar heat capacity $\left(\mathrm{C}_{\mathrm{m}}\right)$. The value of heat capacity depends on the conditions of measurement. The change in temperature $m$ ay be proceed at constant pressure ( $\mathrm{C}_{\mathrm{p}}$, or $\mathrm{C}_{\mathrm{m}}$, resp.) or at constant volume ( $\mathrm{C}_{\mathrm{V}}$ or $\mathrm{C}_{\mathrm{mV}}$, resp.).
Since both U and H are state functions, for arbitrary process

$$
\begin{equation*}
\Delta U=n \int C_{m V} d T \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\Delta H=n \int C_{m p} d T \tag{16}
\end{equation*}
$$

For isochor process
$Q=\Delta U=n \int C_{m V} d T$
For isobaric process

$$
\begin{equation*}
Q=\Delta H=n \int C_{m p} d T \tag{18}
\end{equation*}
$$

For adiabatic process
$Q=0$

For ideal gas as working material according to (7)
For isothermal process
$\Delta U=\Delta H=0$
$W=-Q=n \cdot R \cdot T \ln \left(\frac{p_{2}}{p_{1}}\right)=-n \cdot R \cdot T \cdot \ln \left(\frac{V_{2}}{V_{1}}\right)$
For isobaric process
$W=-n \cdot R \cdot\left(T_{2}-T_{1}\right)$
For isochor process

$$
\begin{equation*}
\mathrm{W}=0 \quad \mathrm{Q}=\Delta \mathrm{U}=\mathrm{n} \int \mathrm{C}_{\mathrm{mV}} \mathrm{dT} \tag{23}
\end{equation*}
$$

For adiabatic process

$$
\begin{align*}
& W=\Delta U=n \cdot \int C_{m V} d T \quad \mathrm{Q}=0  \tag{24}\\
& \text { p. } \mathrm{V}^{\kappa}=\text { const. } \quad \text { T. } \cdot \mathrm{p}^{\frac{1-\kappa}{\kappa}}=\text { const. } \quad \mathrm{TV}^{\kappa-1}=\text { const. } . \tag{25}
\end{align*}
$$

with $\kappa=\frac{C_{m p}}{C_{m V}}$

Theoretical values, although good approaches for ideal gases:

$$
\begin{equation*}
C_{m p}-C_{m V}=R \tag{27}
\end{equation*}
$$

For one atomic ideal gas

$$
\begin{equation*}
C_{m V}=\frac{3}{2} R \tag{28}
\end{equation*}
$$

For two atomic ideal gas:

$$
\begin{equation*}
C_{m V}=\frac{5}{2} R \tag{29}
\end{equation*}
$$

One $\frac{1}{2} R$ of $\mathrm{C}_{\mathrm{mV}}$ belongs to each degree of freedom of the molecule (ideal case). An N -atomic molecule has 3 N degrees of freedom ( 3 coordinates for each atom). Three of them are rotations (rotation around the three perpendicular axes in space), for linear molecules only two; three of them are translations (movements in the three directions of space). All other degrees of freedom are vibrations of the molecule.

PROBLEMS
(You can use the expressions of Table 1)
Please, pay attention! The following marks are used:
"." or "*"" for multiplication, "," for decimalization
E1. What is the work product, $\Delta \mathrm{H}$ and $\Delta \mathrm{U}$, if 1 mol ideal gas is expanded in a piston to fivefold? During the expansion the temperature is constant, $25^{\circ} \mathrm{C}$.

Ideal gas, isothermal, process, consequently $\Delta \mathrm{U}=0$, i.e. $\mathrm{W}=-\mathrm{Q}$. Ideal gas, so $\Delta \mathrm{H}=0$. The work is $W=-Q=-n R T \cdot \ln \left(\frac{V_{2}}{V_{1}}\right)$.
The number of mols, the temperature and the volume ratio is given, $\mathrm{R}=8,314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$,
$W=-Q=-1.8,314.298 \cdot \ln (5)=-3987,5 \mathrm{~J}$
The flowchart of the process in $\mathrm{p}-\mathrm{V}$ diagram is (the $\mathrm{T}=$ constant curve is a hyperbola since $\mathrm{p}=\frac{\mathrm{nRT}}{\mathrm{V}}$ )


E2. What is the work product if 5 mol ideal gas is heated from $0^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C}$ at $10^{5} \mathrm{~Pa}$ constant pressure?

Ideal , isobaric process, i.e. $\mathrm{Q}=\Delta \mathrm{H}$ and
$W=-n \cdot R\left(T_{2}-T_{1}\right)$
Therefore
$W=-5.8,314(798-298)=-20785 J$
The flowchart of the process in $\mathrm{p}-\mathrm{V}$ diagram is


E3. The temperature of 1 mol argon (ideal gas) is $25^{\circ} \mathrm{C}$ and its pressure is $10^{5} \mathrm{~Pa}$. It will be heated to $100^{\circ} \mathrm{C}$ and its pressure will be increased to $5.10^{5} \mathrm{~Pa}$. What is the work (W), the heat $(\mathrm{Q}), \Delta \mathrm{H}$ and $\Delta \mathrm{U}$ as well, along the following three paths (see figure, $\mathrm{a}, \mathrm{b}, \mathrm{c}$ ), if friction does not exist.


$$
\mathrm{T}_{1}=25+273=298 \mathrm{~K}, \mathrm{~T}_{2}=100+273=373 \mathrm{~K} .
$$

a.)the system is heated at constant volume from $25^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$, then the pressure is increased in a cylindrical piston to $5.10^{5} \mathrm{~Pa}$ at constant temperature..
a1. Isochor process, $\mathrm{W}_{\mathrm{a} 1}=0 . \Delta \mathrm{V}_{\mathrm{a} 1}=0$.
One-atomic ideal gas, $\mathrm{C}_{\mathrm{mV}}=3 / 2 \mathrm{R}$
$Q=\Delta U=n \int C_{m V} d T$, here $Q=\Delta U=n \int \frac{3}{2} R \cdot d T=\frac{3}{2} n \cdot R\left(T_{2}-T_{1}\right)$, i.e.
$\mathrm{Q}_{\mathrm{a} 1}=\Delta \mathrm{U}_{\mathrm{a} 1}=\frac{3}{2} \mathrm{n} \cdot \mathrm{R}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=1,5 \cdot 1 \cdot 8,314 \cdot(373-298)=936 \mathrm{~J}$
$\Delta H=n \int C_{m p} d T \quad$ itt $\quad \Delta H_{a 1}=n \int \frac{5}{2} R d T=\frac{5}{2} n \cdot R\left(T_{2}-T_{1}\right)$, i.e.
$\Delta \mathrm{H}_{\mathrm{a} 1}=\frac{5}{2} \mathrm{n} \cdot \mathrm{R}\left(\mathrm{T}_{2}-\mathrm{T}_{2}\right)=\frac{5}{2} \cdot 1 \cdot 8,314 \cdot(373-298)=1559 \mathrm{~J}$
The new pressure is $\mathrm{p}_{2}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}} \mathrm{p}_{1}=\frac{373}{298} 1.10^{5}=1,252.10^{5} \mathrm{~Pa}$
a2. Isothermal process with pressure change of an ideal gas, i.e. $\Delta \mathrm{U}=0, \Delta \mathrm{H}=0$.
$W=-Q=n R T \cdot \ln \left(\frac{p_{3}}{p_{2}}\right)$. Therefore
$\mathrm{Q}_{\mathrm{a} 2}=-1.8,314.373 \cdot \ln \left(\frac{5 \cdot 10^{5}}{1,252 \cdot 10^{5}}\right)=-4294 \mathrm{~J}$
$\mathrm{W}_{\mathrm{a} 2}=4294 \mathrm{~J}$
Summing up:
$\mathrm{W}_{\mathrm{a}}=0+4294=4294 \mathrm{~J}$
$\mathrm{Q}_{\mathrm{a}}=936-4294=-3358 \mathrm{~J}$
$\Delta \mathrm{U}_{\mathrm{a}}=935+0=936 \mathrm{~J}$
$\Delta \mathrm{H}_{\mathrm{a}}=1559+0=1559 \mathrm{~J}$
$\mathrm{W}_{\mathrm{a}}+\mathrm{Q}_{\mathrm{a}}=936 \mathrm{~J}=\Delta \mathrm{U}_{\mathrm{a}}$
b.) The gas is heated in a cylindrical piston at constant pressure from $25^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$, then its pressure is increased to $5.10^{5} \mathrm{~Pa}$ at constant temperature.
b1. Isobaric process, $Q=\Delta H=n \int C_{m p} d T, W=-p . \Delta V$
$\mathrm{Q}_{\mathrm{b} 1}=\mathrm{n} \int \mathrm{C}_{\mathrm{mp}} \mathrm{dT} \quad$ here $\quad \mathrm{Q}_{\mathrm{b} 1}=\mathrm{n} \int \frac{5}{2} \mathrm{R} \cdot \mathrm{dT}=\frac{5}{2} \mathrm{n} . \mathrm{R} .\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$, i.e.
$Q_{b 1}=\Delta H_{b 1}=\frac{5}{2} \cdot 1 \cdot 8,314(373-298)=1559 J$
$W_{b 1}=-n \cdot R\left(T_{2}-T_{1}\right)=-1 \cdot 10^{5} .8,314 .(375-298)=-623 J$
$\Delta U_{b 1}=W_{b 1}+Q_{b 1}=-623+1559=936 J$
b2. Isothermal process, with pressure change, for ideal gas $\Delta \mathrm{U}=0, \Delta \mathrm{H}=0$.
$W=-Q=n R T \cdot \ln \left(\frac{p_{3}}{p_{2}}\right)$.
$\mathrm{p}_{2}=\mathrm{p}_{1}$
$Q_{b 2}=-1.8,314.373 \cdot \ln \left(\frac{5.10^{5}}{1.10^{5}}\right)=-4991 \mathrm{~J}$
$\mathrm{W}_{\mathrm{b} 2}=4991 \mathrm{~J}$
Summing up:
$\mathrm{W}_{\mathrm{b}}=-623+4991=4368 \mathrm{~J}$
$\mathrm{Q}_{\mathrm{b}}=1559-4991=-3432 \mathrm{~J}$
$\Delta \mathrm{U}_{\mathrm{b}}=936+0=936 \mathrm{~J}$
$\Delta \mathrm{H}_{\mathrm{b}}=1559+0=1559 \mathrm{~J}$
c.) The work gas is compressed at $25 \mathrm{C}^{0}$ in a cylindrical piston to $5.10^{5} \mathrm{~Pa}$, then the temperature is increased from $25 \mathrm{C}^{0}$ to $100 \mathrm{C}^{0}$ at constant pressure..
c1. Isothermal process with pressure change, for the ideal gas $\Delta \mathrm{U}=0, \Delta \mathrm{H}=0$.
$W=-Q=n R T \cdot \ln \left(\frac{p_{2}}{p_{1}}\right)$
$Q_{c 1}=-1.8,314.298 \cdot \ln \left(\frac{5.10^{5}}{1.10^{5}}\right)=-3987 J$
$\mathrm{W}_{\mathrm{cl}}=3987 \mathrm{~J}$
c2. Isobaric process, $Q=\Delta H=n \int C_{m p} d T, \mathrm{~W}=-\mathrm{p} . \Delta \mathrm{V}$
$\mathrm{Q}_{\mathrm{c} 2}=\mathrm{n} \int \mathrm{C}_{\mathrm{mp}} \mathrm{dT}$ here $\mathrm{Q}_{\mathrm{c} 2}=\mathrm{n} \int \frac{5}{2} \mathrm{R} \cdot \mathrm{dT}=\frac{5}{2} \mathrm{n} . \mathrm{R} \cdot\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$, i.e.
$Q_{c 2}=\Delta H_{c 2}=\frac{5}{2} \cdot 1 \cdot 8,314(373-298)=1559 J$
$W_{c 2}=-n \cdot R \cdot\left(T_{2}-T_{1}\right)=-1.8,314(373-298)=-623 J$
$\Delta \mathrm{U}_{\mathrm{c} 2}=\mathrm{W}_{\mathrm{c} 2}+\mathrm{Q}_{\mathrm{c} 2}=-623+1559=936 \mathrm{~J}$

Summing up,
$\mathrm{W}_{\mathrm{c}}=3987-623=3364 \mathrm{~J}$
$\mathrm{Q}_{\mathrm{c}}=-3987+1559=-2428 \mathrm{~J}$
$\Delta \mathrm{U}_{\mathrm{c}}=0+936=936 \mathrm{~J}$
$\Delta \mathrm{H}_{\mathrm{c}}=0+1559=1559 \mathrm{~J}$
Comparing the results for the three processes the values of U and H are the same, since they are state functions and their values are independent of the process path. In contrary to these W and $Q$ are path functions, therefore their values depend oon the path between the initial and the final states.

E4. The pressure of 5 mol nitrogen (ideal gas) is $10.10^{5} \mathrm{~Pa}$, its temperature is $227^{\circ} \mathrm{C}$. It is cooled to $27^{\circ} \mathrm{C}$, and adiabatic expanded to $3.10^{5} \mathrm{~Pa} .$. What is the change of $\mathrm{H}, \mathrm{U}, \mathrm{W}$ and Q during the full process?
$\mathrm{C}_{\mathrm{mV}}=\frac{5}{2} \mathrm{R} \quad \mathrm{C}_{\mathrm{mp}}=\frac{7}{2} \mathrm{R} \quad \kappa=1,4$
isochor

$$
\begin{aligned}
& \Delta \mathrm{H}=\mathrm{nC}_{\mathrm{mp}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)=5 * 3,5 * 8,314 *(300-500)=-29099 \mathrm{~J} \\
& \Delta \mathrm{U}=\mathrm{nC}_{\mathrm{mV}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)=5 * 2,5 * 8,314 *(300-500)=-20785 \mathrm{~J} \\
& \Delta \mathrm{~S}=\mathrm{nC}_{\mathrm{mV}} \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)=5 * 2,5 * 8,314 * \ln \left(\frac{300}{500}\right)=-53,087553 \mathrm{~J} / \mathrm{K} \\
& \mathrm{~W}=0 \\
& \mathrm{Q}=\Delta \mathrm{U}=-20785 \mathrm{~J}
\end{aligned}
$$

## adiabatic

$$
\mathrm{p}_{2}=\mathrm{p}_{1} \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}=10.10^{5} \frac{300}{500}=6.10^{5} \mathrm{~Pa}
$$

$$
\mathrm{T}_{3}=\mathrm{T}_{2}\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{3}}\right)^{\frac{1-\kappa}{\kappa}}=300\left(\frac{6.10^{5}}{3.10^{5}}\right)^{\frac{-0,4}{1,4}}=246,1 \mathrm{~K}
$$

$$
\Delta \mathrm{H}=\mathrm{nC}_{\mathrm{mp}}\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right)=5 * 3,5 * 8,314 *(246,1-300)=-7842,2 \mathrm{~J}
$$

$$
\Delta \mathrm{U}=\mathrm{nC}_{\mathrm{mV}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)=5 * 2,5 * 8,314 *(246,1-300)=-5601,6 \mathrm{~J}
$$

$$
\Delta \mathrm{S}=0
$$

$$
\mathrm{W}=\Delta \mathrm{U}=-5601,6 \mathrm{~J}
$$

$$
\mathrm{Q}=0
$$

For the full process:
$\Delta \mathrm{H}=-29099-7842,2=-36941,2 \mathrm{~J}$
$\Delta \mathrm{U}=-20785-5601,6=-26386,6 \mathrm{~J}$
$\Delta \mathrm{S}=-53,09+0=-53,09 \mathrm{~J} / \mathrm{K}$
$\mathrm{W}=0-5601,6=-5601,6 \mathrm{~J}$
$\mathrm{Q}=-20785+0=-20785 \mathrm{~J}$

## FURTHER PROBLEMS

E5. The pressure of, $1 \mathrm{~m}^{3}$ argon (ideal gas) is $10^{6} \mathrm{~Pa}$, its temperature is 298 K . It is expanded adiabatic and reversible in a piston to $2 \mathrm{~m}^{3}$. What are the p and T in the final state? What is the work and the change in the internal energy and the enthalpy?
( $T=188 \mathrm{~K}, p=3,15.10^{5} \mathrm{~Pa} ; W=\Delta U=-554 \mathrm{~kJ}, \Delta H=-925 \mathrm{~kJ}$ )
E6. $1 \mathrm{dm}^{3}$ ideal gas is in a piston. Its pressure is $1,2.10^{5} \mathrm{~Pa}$, the temperature is 298 K . It is expanding to $10^{5} \mathrm{~Pa}$, the piston is fixed and the gas is heated to the final temperature. The observed pressure is $1,076.10^{5} \mathrm{~Pa}$. What is the $C_{\mathrm{p}} / C_{\mathrm{V}}$ value of the gas? ( $\kappa=1,672$ ).

E7. 1 mol ideal nitrogen gas is expanded on adiabatic reversible path from 373 K to 273 K . What is the work if the initial pressure is $10^{6} \mathrm{~Pa}$, and $5.10^{5} \mathrm{~Pa}$, respectively? ( $\Delta U=-2059 \mathrm{~J}$ in both cases)

E8. What is the difference in internal energy of 10 mol hydrogen (ideal gas) at 20 kPa pressure and at 700 K (initial state) and its final state at 5 kPa and 500 K ? It is possible to carry out the same process also in two steps, the first is adiabatic, the second one is isothermal. What are the changes in the internal energy during these two steps? $C_{\mathrm{mp}}=$ $28,66 \mathrm{~J} /(\mathrm{mol} . \mathrm{K})$, regard it independent of temperature! $\left(\Delta U=-40,692 \mathrm{~kJ}, \Delta U_{1}=-47,243 \mathrm{~kJ}, \Delta U_{2}=6,551 \mathrm{~kJ}\right)$.

E9. 1 mol argon (ideal gas) is work gas of the cycle process presented in the figure. $C_{\mathrm{mp}}=$ $20,785 \mathrm{~J} / \mathrm{mol} . \mathrm{K}$. Fill the table!


| Process | Type | $Q(\mathrm{~kJ} / \mathrm{mol})$ | $W(\mathrm{~kJ} / \mathrm{mol})$ | $\Delta U(\mathrm{~kJ} / \mathrm{mol})$ | $\Delta S(\mathrm{~kJ} / \mathrm{mol})$ |
| :---: | :--- | :--- | :--- | :--- | :--- |
| A |  |  |  |  |  |
| B |  |  |  |  |  |
| C |  |  |  |  |  |
| cycle |  |  |  |  |  |

[A.) isochor, $Q=3,405 \mathrm{~kJ} / \mathrm{mol}, W=0, \Delta U=3,405 \mathrm{~kJ} / \mathrm{mol}, \Delta S=8,644 \mathrm{~J} /(\mathrm{mol} . \mathrm{K})$,
B.) isothermal, $Q=3,147 \mathrm{~kJ} / \mathrm{mol}, W=-3,147 \mathrm{~kJ} / \mathrm{mol}, \Delta U=0, \Delta \mathrm{~S}=5,763 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$,
C.) isobaric, $Q=-5,674 \mathrm{~kJ} / \mathrm{mol}, W=2,270 \mathrm{~kJ} / \mathrm{mol}, \Delta U=-3,405 \mathrm{~kJ} / \mathrm{mol}, \Delta S=-14,407$ J/(mol.K)
Full cycle: $Q=0,878 \mathrm{~kJ} / \mathrm{mol}, W=-0,877 \mathrm{~kJ} / \mathrm{mol}, \Delta U=0, \Delta S=0$.]

E10. 1 mol nitrogen (ideal gas) is compressed on a reversible adiabatic path from $0,02 \mathrm{~m}^{3}$ to $0,01 \mathrm{~m}^{3}$. The final temperature is $125^{\circ} \mathrm{C}$. Calculate the initial temperature! What was the work and the change of the internal energy? $\kappa=1,40$.
( $T=301,6 \mathrm{~K}, \Delta U=W=2025,5 \mathrm{~J}$ )

## 2. THE SECOND LAW OF THERMODYAMICS

## THE SECOND LAW

The processes have direction, they strive from the non-equilibrium state for the equilibrium state (spontaneous process). The return to the final state needs investing of work. The process is irreversible.
In other words, it is impossible to carry out a process resulting only heat transfer from the environment and converting it quantitatively to work (Planck's theorem).

## ENTROPY

We look for a state function (extensive quantity) that describes, similarly to the expansion work, the heat appearing or disappearing during a reversible process. An intensive quantity is necessary to it. Multiplying this intensive quantity with the change of the state function, the result should be the reversible heat. The state function is the entropy ( S ), the intensive quantity is the temperature.

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{rev}}=\int \mathrm{TdS} \tag{30}
\end{equation*}
$$

The definition of the entropy change is:

$$
\begin{equation*}
\Delta \mathrm{S}=\int \frac{\delta \mathrm{Q}_{\mathrm{rev}}}{\mathrm{~T}} \tag{31}
\end{equation*}
$$

In spontaneous processes

$$
\begin{equation*}
\mathrm{dS} \geq \frac{\delta \mathrm{Q}_{\mathrm{rev}}}{\mathrm{~T}} \quad(\delta Q \text { is not a total differential, therefore } \delta \text { is used instead of } \mathrm{d}) \tag{32}
\end{equation*}
$$

The entropy is the measure of the process irreversibility.

## HELMHOTZ FREE ENERGY

Subtracting the reversible heat from the internal energy, the result is the expression of the isochor reversible work. The Helmhotz free energy is the generalization of this expression, a state function
$\mathrm{A}=\mathrm{U}-\mathrm{TS}$
Its change during a process:

$$
\begin{equation*}
\Delta \mathrm{A}=\Delta \mathrm{U}-\Delta(\mathrm{TS}) \tag{34}
\end{equation*}
$$

as long as the change of the $U$ function is simply calculable, the second member left needs even the absolute value of the entropy

$$
\begin{equation*}
\Delta(\mathrm{TS})=\mathrm{T}_{2} \mathrm{~S}_{2}-\mathrm{T}_{1} \mathrm{~S}_{1} \tag{35}
\end{equation*}
$$

## GIBBS FREE ENERGY

The expression of the isobaric reversible useful work is the result of the subtraction of the
reversible heat from the enthalpy. The generalization of this function is again a state function, the Gibbs free energy
$\mathrm{G}=\mathrm{H}-\mathrm{TS}$
Its change during a process

$$
\Delta \mathrm{G}=\Delta \mathrm{H}-\Delta(\mathrm{TS})
$$

Similarly to (35) for these calculations is the absolute value of the entropy necessary.
The general equation for e.g. enthalpy with consideration of the increasing temperature of a solid sample up to its vapour phase.

$$
\begin{equation*}
\mathrm{H}_{\mathrm{m}}^{0}(\mathrm{~T})=\int_{298}^{\mathrm{T}_{\mathrm{m}}} \mathrm{C}_{\mathrm{mp}}^{\mathrm{s}} \mathrm{dt}+\Delta \mathrm{H}_{\mathrm{m}}^{0}(\text { fusion })+\int_{\mathrm{T}_{\mathrm{m}}}^{\mathrm{T}_{\mathrm{b}}} \mathrm{C}_{\mathrm{mp}}^{1} \mathrm{dT}+\Delta \mathrm{H}_{\mathrm{m}}^{0} \text { (evaporation) }+\int_{\mathrm{T}_{\mathrm{b}}}^{\mathrm{T}} \mathrm{C}_{\mathrm{mp}}^{\mathrm{g}} d T \tag{38}
\end{equation*}
$$

## How to use Table 2?

Definition of a dimensionless quantity:

$$
\begin{equation*}
X=T / 1000 \mathrm{~K} \tag{39}
\end{equation*}
$$

For the molar heat capacity:

$$
\begin{equation*}
C_{m}^{0}=a+b X+c X^{-2}+d X^{2} \tag{40}
\end{equation*}
$$

The molar enthalpy is:

$$
\begin{equation*}
H_{m}^{0}=10^{3}\left[H(+)+a X+\frac{b}{2} X^{2}-c X^{-1}+\frac{d}{3} X^{3}\right] \tag{41}
\end{equation*}
$$

The molar entropy is:

$$
\begin{equation*}
S_{m}^{0}=S(+)+a \ln \left(\frac{T}{\mathrm{~K}}\right)+b X-\frac{c}{2} X^{-2}+\frac{d}{2} X^{2} \quad\left(\mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right) \tag{42}
\end{equation*}
$$

The molar Gibbs free energy is:

$$
\begin{equation*}
\mu_{0}=10^{3}\left[H(+)-S(+) X-a X\left(\ln \frac{T}{\mathrm{~K}}-1\right)-\frac{b}{2} X^{2}-\frac{c}{2} X^{-1}-\frac{d}{6} X^{3}\right] \quad\left(\mathrm{Jmol}^{-1}\right) \tag{43}
\end{equation*}
$$

## EXERCISES

> | Please, pay attention! The following marks are used: |
| :--- |
| "." Or ""*" for multiplication, "," for decimalization |

F1. 2 mol oxygen $\left(\mathrm{O}_{2}\right.$, $)$ is heated from $27^{\circ} \mathrm{C}$ to $727^{\circ} \mathrm{C}$ at $10^{5} \mathrm{~Pa}$ constant pressure. Calculate the changes of the enthalpy, the entropy, the Gibbs free energy and the molar heat capacity during the process! Use the data of Table 2. Compare the results to the corresponding data for ideal gas!.

Recalculation of temperatures from ${ }^{\circ} \mathrm{C}$ to K
$\mathrm{T}_{1}=27+273=300 \mathrm{~K}, \mathrm{~T}_{2}=727+273=1000 \mathrm{~K}$
According to Table 2

$$
\begin{aligned}
& H_{m}^{0}=10^{3}\left[H(+)+a X+\frac{b}{2} X^{2}-\frac{c}{X}+\frac{d}{3} X^{3}\right] \text { Jmol }^{-1} \quad X=10^{-3} T / K \\
& S_{m}^{0}=S(+)+a \ln T+b \cdot X-\frac{c}{2} \frac{1}{X^{2}}+\frac{d}{2} X^{2} \quad \mathrm{Jmol}^{-1} K^{-1} \\
& C_{m}^{0}=a+b X+c \frac{1}{X^{2}}+d X^{2} \quad \mathrm{Jmol}^{-1} K^{-1} \\
& G=H-T S \\
& \Delta G=\Delta H-\Delta(T S)
\end{aligned}
$$

The data for oxygen (g) in Table 2 are as follows:
$a=29,1540 \quad b=6,4770 \quad c=-0,1840 \quad d=-1,0170 \quad H(+)=-9,4890 \quad S(+)=36,1660$
$X\left(T_{2}\right)=1000 / 1000=1 \quad X\left(T_{1}\right)=300 / 1000=0,3$
$\mathrm{H}_{\mathrm{m}}^{0}(1000)=10^{3}\left[-9,4890+29,1450 * 1+0,5 * 6,4770^{*} 1^{2}-\frac{-0,1840}{1}+\frac{-1,0170}{3} * 1^{3}=227485 \mathrm{Jmol}^{-1}\right]$
$\mathrm{H}_{\mathrm{m}}^{0}(300)=10^{3}\left[-9,4890+29,1450 * 0,3+0,5 * 6,4770 * 0,3^{2}-\frac{-0,1840}{0,3}+\frac{-1,0170}{3} * 0,3^{3}=152,8 \mathrm{Jmol}^{-1}\right]$
$\Delta \mathrm{H}^{0}=\mathrm{n}\left[\mathrm{H}_{\mathrm{m}}^{0}(1000)-\mathrm{H}_{\mathrm{m}}^{0}(300)\right]=2 *(22748,5-152,8)=45191 \mathrm{~J}=45,19 \mathrm{~kJ}$
$\mathrm{S}_{\mathrm{m}}^{0}(1000)=36,1660+29,1540+\ln (1000)+6,4470^{*} 1-\frac{-0,1840}{2 * 1^{2}}+\frac{-1,0170}{2} * 1^{2}=244,5652 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
$\mathrm{S}_{\mathrm{m}}^{0}(300)=36,1660+29,1540+\ln (300)+6,4470 * 0,3-\frac{-0,1840}{2 * 0,3^{2}}+\frac{-1,0170}{2} * 0,3^{2}=210,1575 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$

$$
\begin{aligned}
& \Delta \mathrm{S}^{0}=\mathrm{n}\left[\mathrm{~S}_{\mathrm{m}}^{0}(1000)-\mathrm{S}_{\mathrm{m}}^{0}(300)\right]=2 *(244,5652-210,1575)=68,154 \mathrm{JK}^{-1} \\
& \mathrm{C}_{\mathrm{m}}^{0}(1000)=29,1540+6,4770 * 1+\frac{-0,1840}{1^{2}}+(-1.0170) * 1^{2}=34,4300 \quad \mathrm{Jmol}^{-1} \mathrm{~K}^{-1} \\
& \mathrm{C}_{\mathrm{m}}^{0}(300)=29,1540+6,4770 * 0,3+\frac{-0,1840}{0,3^{2}}+(-1.0170) * 0,3^{2}=28,9611 \quad \mathrm{Jmol}^{-1} \mathrm{~K}^{-1} \\
& \mathrm{G}_{\mathrm{m}}^{0}(1000)=227845-1000 * 244,5652=-221816,7 \mathrm{Jmol}^{-1} \\
& \mathrm{G}_{\mathrm{m}}^{0}(300)=152,8-300 * 210,1575=-62894,5 \quad \mathrm{Jmol}^{-1} \\
& \Delta \mathrm{G}^{0}=\mathrm{n}\left[\mathrm{G}_{\mathrm{m}}^{0}(1000)-\mathrm{G}_{\mathrm{m}}^{0}(300)\right]=2 *[(-221816,7)-(-62894,5)]=-317845 \quad \mathrm{~J}=-317,85 \quad \mathrm{~kJ}
\end{aligned}
$$

Considering the oxygen gas ideal and the molar heat capacity independent of the temperature, then we

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{m}}^{0}=\frac{7}{2} \mathrm{R}=3,5 * 8,314=29,099 \quad \mathrm{Jmol}^{-1} \mathrm{~K}^{-1} \\
& \Delta \mathrm{H}^{0}=\mathrm{nC}_{\mathrm{m}}^{0}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)=2 * 29,099(1000-300)=40738,6 \quad \mathrm{~J}=40,74 \quad \mathrm{~kJ} \\
& \Delta \mathrm{~S}^{0}=\mathrm{n} \int_{\mathrm{T}_{1}}^{\mathrm{T}} \frac{\mathrm{C}_{\mathrm{m}}^{0}}{\mathrm{~T}} \mathrm{dT}=\mathrm{nC}_{\mathrm{m}}^{0} \ln \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}=2 * 29,099 * \ln \frac{1000}{300}=70,07 \quad \mathrm{JK}^{-1}
\end{aligned}
$$

The Gibbs free energy calculations need the values of the absolute entropies from Table 2,
$\Delta G^{0}=\Delta H^{0}-\left(T_{2} S_{2}-T_{l} S_{l}\right)=20370-(1000 * 489,13-300 * 420,32)=-342665,6 \quad J=-342,67 \mathrm{~kJ}$

Summerizing:

|  | $\Delta H^{0} / k J$ | $\Delta S^{0} / J K^{-l}$ | $\Delta G^{0} / k J$ | $C_{m}^{0} / \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$ |
| :--- | :---: | :---: | :---: | :---: |
| Tabnle 2 | 45,19 | 68,15 | $-317,85$ | $300 \mathrm{~K}: 28,69 ; 100 \mathrm{~K}: 34,43$ |
| Ideal gas | 40,74 | 70,07 | $-342,67$ | 29,10 |

F2. The following reversible cycle process is performed with 160 g oxygen (ideal gas):
1.) It is adiabatic and reversible compressed from $20^{\circ} \mathrm{C}$ and $0,1 \mathrm{Mpa}$ to 2 Mpa ;
2.) then heated in isochor process to $500^{\circ} \mathrm{C}$;
3.) following, it is expanded to $0,1 \mathrm{Mpa}$ in isothermal process;
4.) at last, it is heated to $20^{\circ} \mathrm{C}$ in isobaric process. .

What are the values of $\mathrm{W}, \mathrm{Q}, \Delta \mathrm{U}, \Delta \mathrm{H}, \Delta \mathrm{S}, \Delta \mathrm{G}, \Delta \mathrm{A}$ in the individual steps and in the full process? Consider the specific heat capacity independent of the temperature!


Initial data:
$\mathrm{T}_{\mathrm{o}}=293,15 \mathrm{~K}<\mathrm{T}_{1}<\mathrm{T}_{2}=773,15 \mathrm{~K}$
$\mathrm{p}_{\mathrm{o}}=0,1 \mathrm{Mpa}<\mathrm{p}_{1}<\mathrm{p}_{2}=2 \mathrm{Mpa}$
1.) Adabatic and reversible process: $\mathrm{Q}=0$, therefore $\Delta \mathrm{S}=0$, and $\Delta \mathrm{U}=\mathrm{W}$.

Change in internal energy: $\Delta \mathrm{U}=\mathrm{n} \int \mathrm{C}_{\mathrm{mV}} \mathrm{dT}$ here $\Delta \mathrm{U}=\mathrm{n} \int \frac{5}{2} \mathrm{RdT}=\mathrm{n} \frac{5}{2} \mathrm{R}\left(\mathrm{T}_{1}-\mathrm{T}_{0}\right)$ (2 atomic ideal gas, $\mathrm{C}_{\mathrm{mV}}=\frac{5}{2} \mathrm{R}$ ).

$$
\mathrm{T}_{0}=20,0+273,15=293,15 \mathrm{~K} \quad \mathrm{n}=\frac{160}{32}=5 \mathrm{~mol}
$$

Calculation of the $T_{1}$ temperature:
$T_{1}=T_{0}\left(\frac{p_{0}}{p_{1}}\right)^{\frac{1-\kappa}{\kappa}}$
$\left[\mathrm{pV}^{\mathrm{k}}=\right.$ const.; $\quad \mathrm{TV}^{\kappa-1}=$ const.; $\quad \mathrm{Tp}^{\frac{1-\kappa}{\kappa}}=$ const. $]$

2 atomic ideal gas: $\kappa=\frac{C_{m p}}{C_{m v}}=\frac{\frac{7}{2} R}{\frac{5}{2} R}=\frac{7}{5} \quad\left(C_{m p}-C_{m v}=R\right.$, ideal gas )
$T_{1}=T_{0}\left(\frac{p_{0}}{p_{1}}\right)^{\frac{1-\frac{7}{5}}{\frac{7}{5}}}=293,15\left(\frac{0,1 \cdot 10^{6}}{2.10^{6}}\right)^{-\frac{2}{7}}=293,15.0,05^{-\frac{2}{7}}=293,15 * 2,3535=689,94 \mathrm{~K}$
$\Delta U=n \frac{5}{2} R\left(T_{1}-T_{0}\right)=5 * 2,5 * 8,314 *(689,94-293,15)=41237 J$
Change in enthalpy: $\Delta \mathrm{H}=\mathrm{n} \int \mathrm{C}_{\mathrm{mp}} \mathrm{dT} \quad$ here $\quad \Delta \mathrm{H}=\mathrm{n} \int \frac{7}{2} \mathrm{RdT}=\mathrm{n} \frac{7}{2} \mathrm{R}\left(\mathrm{T}_{1}-\mathrm{T}_{0}\right)$ $\Delta H=n \frac{7}{2} R\left(T_{1}-T_{0}\right)=5 * 3,5 * 8,314 *(689,94-293,15)=57731 J$

Change in Helmhotz free energy: $\Delta \mathrm{A}=\Delta \mathrm{U}-\Delta(\mathrm{T} . \mathrm{S}) \quad$ here $\quad \Delta \mathrm{A}=\Delta \mathrm{U}-\mathrm{nS}_{0}\left(\mathrm{~T}_{1}-\mathrm{T}_{0}\right)$
Change in Gibbs free energy: $\Delta \mathrm{G}=\Delta \mathrm{H}-\Delta(\mathrm{T} . \mathrm{S})$ here $\quad \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{nS}_{0}\left(\mathrm{~T}_{1}-\mathrm{T}_{0}\right)$
The entropy $(S)$ is for these calculations:
From Table 2, $\mathrm{O}_{2}$ : $S_{m}^{0}(298)=205,146 \mathrm{kJ}. \mathrm{Mol}^{-1} \mathrm{~K}^{-1}$
Subscript $m$ refers to molar quantity, the superscript zero refers to the standard pressure.

The following function is necessary for other temperatures:

$$
\begin{equation*}
S_{m}^{0}=S(+)+a \ln T+b \cdot X-\frac{c}{2} \frac{1}{X^{2}}+\frac{d}{2} X^{2} \quad\left(X=10^{-3} T / K\right) \tag{38}
\end{equation*}
$$

The result is in $\mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$ units, in case of applying the constants for oxygen from Table 2. . For 293,15 K
$S_{m, 0}^{0}(293,15)=S_{m, 1}=36,116+29,154 * \ln 293,15+6,477 \cdot 10^{-3} * \cdot 293,15-\frac{-0,184}{2} * \frac{10^{6}}{293,15^{2}}+\frac{-1,017}{2} * \frac{293,15^{2}}{10^{6}}=$ $=36,116+165,615+1,899+1,071-0,046=204,656 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$

Since the pressure is not the standard (i.e. not $10^{5} \mathrm{~Pa}$ ), we assume the independence of entropy from the pressure:

$$
\begin{aligned}
& \Delta A=\Delta U-n S_{m, 0}^{0}\left(T_{l}-T_{0}\right)=41237-5 * 204,656 *(689,94-293,15)=-364790 J \\
& \Delta G=\Delta H-n S_{m, 0}^{0}\left(T_{l}-T_{0}\right)=57723-5 * 204,656 *(689,94-293,15)=-348304 J
\end{aligned}
$$

2.) Isochor process, $\mathrm{t}_{2}=500{ }^{\circ} \mathrm{C}, \mathrm{W}=0, \mathrm{Q}=\Delta \mathrm{U}$
$T_{2}=500+273,15=773,15 \mathrm{~K} \quad p_{2}=p_{1} \frac{T_{2}}{T_{1}}=2.10^{6} * \frac{773,15}{689,94}=2,2422.10^{6} \mathrm{~Pa}$
Change in internal energy: $\Delta \mathrm{U}=\mathrm{n} \int \mathrm{C}_{\mathrm{mv}} \mathrm{dT} \quad$ here $\quad \Delta \mathrm{U}=\mathrm{n} \int \frac{5}{2} \mathrm{RdT}=\mathrm{n} \frac{5}{2} \mathrm{R}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
$\Delta U=n \frac{5}{2} R\left(T_{2}-T_{1}\right)=5 * 2,5 * 8,314 *(773,15-689,94)=8647,6 J$
Change in enthalpy:: $\Delta \mathrm{H}=\mathrm{n} \int \mathrm{C}_{\mathrm{mp}} \mathrm{dT} \quad$ here $\quad \Delta \mathrm{H}=\mathrm{n} \int \frac{7}{2} \mathrm{RdT}=\mathrm{n} \frac{7}{2} \mathrm{R}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
$\Delta H=n \frac{7}{2} R\left(T_{2}-T_{1}\right)=5 * 3,5 * 8,314 *(773,15-689,94)=12106,6 J$
Change in Helmhotz free energy: $\Delta \mathrm{A}=\Delta \mathrm{U}-\Delta(\mathrm{T} . \mathrm{S}) \quad$ here $\quad \Delta \mathrm{A}=\Delta \mathrm{U}-\mathrm{n}\left(\mathrm{S}_{\mathrm{m}, 2} \mathrm{~T}_{2}-\mathrm{S}_{\mathrm{m}, 1} \mathrm{~T}_{1}\right)$
Change in Gibbs free energy: $\Delta \mathrm{G}=\Delta \mathrm{H}-\Delta(\mathrm{T} . \mathrm{S}) \quad$ here $\quad \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{n}\left(\mathrm{S}_{\mathrm{m}, 2} \mathrm{~T}_{2}-\mathrm{S}_{\mathrm{m}, 1} \mathrm{~T}_{1}\right)$
Calculation of the entropy: the entropy of the initial state of the partial process 2 is equal to entropy of the initial state of the partial process 1 , the temperature is $689,94 \mathrm{~K}$,
$S_{I}=S_{0}=5 * 204,656=1023,280 J K^{-1}$
The change in entropy is
$\Delta S=n \cdot C_{m V} \cdot \ln \frac{T_{2}}{T_{1}}=n \cdot \frac{5}{2} R \cdot \ln \frac{T_{2}}{T_{1}}=5 * 2,5 * 8,314 * \ln \frac{773,15}{689,94}=103,925 * 0,113863=11,834 \mathrm{JK}^{-1}$
Therefore
$S_{2}=1023,280+11,834=1035,114 J K^{-1}$
$S_{2} T_{2}-S_{1} T_{1}=1035,114 * 773,15-1023,280 * 689,94=800298,4-706001,8=94296,6 \mathrm{~J}$
Applying this result:
$\Delta \mathrm{A}=\Delta \mathrm{U}-\Delta(\mathrm{T} . \mathrm{S}) \quad$ here $\quad \Delta \mathrm{A}=\Delta \mathrm{U}-\left(\mathrm{S}_{2} \mathrm{~T}_{2}-\mathrm{S}_{1} \mathrm{~T}_{1}\right)$
$\Delta A=\Delta U-\left(S_{2} T_{2}-S_{1} T_{1}\right)=8647,6-94296,6=-85649,6 J$
$\Delta \mathrm{G}=\Delta \mathrm{H}-\Delta(\mathrm{T} . \mathrm{S}) \quad$ here $\quad \Delta \mathrm{G}=\Delta \mathrm{H}-\left(\mathrm{S}_{2} \mathrm{~T}_{2}-\mathrm{S}_{1} \mathrm{~T}_{1}\right)$
$\Delta G=\Delta H-\left(S_{2} T_{2}-S_{1} T_{1}\right)=12106,6-94296,6=-82190,0 J$
3.) In the isothermal process the ideal gas is extended to $0,1 \mathrm{Mpa}$, i.e. $\Delta \mathrm{U}=0, \Delta \mathrm{H}=0, \mathrm{Q}=-\mathrm{W}$, $\Delta \mathrm{G}=\Delta \mathrm{A}$. According to the data: $\mathrm{p}_{3}=\mathrm{p}_{0}$

The work: $W=n R T \cdot \ln \frac{p_{3}}{p_{2}}=5 * 8,314 * 773,15 * \ln \frac{0,1 \cdot 10^{6}}{2,242210^{6}}=-99956 \mathrm{~J}$
Therefore the heat is: $Q=99956 J$
One can choose between two methods for the entropy calculations:

$$
\begin{aligned}
& \Delta S=\frac{Q}{T}=\frac{99956}{773,15}=129,28 J K^{-1} \quad \Delta S=n R \ln \frac{p_{2}}{p_{3}}=5 * 8,314 * \ln \frac{2,2422 \cdot 10^{6}}{0,1 \cdot 10^{6}}=129,28 J K^{-1} \\
& S_{3}=S_{2}+\Delta S=1035,11+129,28=1164,39 J K^{-1}
\end{aligned}
$$

The change in Helmhotz free energy is
here $\quad \Delta \mathrm{A}=\Delta \mathrm{U}-\mathrm{T} . \Delta \mathrm{S}=0-773,15 * 129,28=-99956 \mathrm{~J}$
The change in Gibbs free energy here $\quad \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} . \Delta \mathrm{S}=0-773,15 * 129,28=-99956 \mathrm{~J}$
4.) The ideal gas is cooled to $20^{\circ} \mathrm{C}$ in this process, i.e. $Q=\Delta H$. From the data: $T_{4}=T_{0}, p_{4}=p_{0}$.

Change in internal energy: $\Delta \mathrm{U}=\mathrm{n} \int \mathrm{C}_{\mathrm{mV}} \mathrm{dT} \quad$ here $\quad \Delta \mathrm{U}=\mathrm{n} \int \frac{5}{2} \mathrm{RdT}=\mathrm{n} \frac{5}{2} \mathrm{R}\left(\mathrm{T}_{4}-\mathrm{T}_{3}\right)$
$\Delta U=n \frac{5}{2} R\left(T_{4}-T_{3}\right)=5 * 2,5 * 8,314 *(293,15-773,15)=-49884 J$
Change in enthalpy: $\Delta \mathrm{H}=\mathrm{n} \int \mathrm{C}_{\mathrm{mp}} \mathrm{dT} \quad$ here $\quad \Delta \mathrm{H}=\mathrm{n} \int \frac{7}{2} \mathrm{RdT}=\mathrm{n} \frac{7}{2} \mathrm{R}\left(\mathrm{T}_{4}-\mathrm{T}_{3}\right)$
$\Delta H=n \frac{7}{2} R\left(T_{4}-T_{3}\right)=5 * 3,5 * 8,314 *(293,15-773,15)=-69838 J$
The heat: $Q=\Delta H=-69838 J$
The work: $W=-n . R\left(T_{4}-T_{3}\right)=-5 * 8,314 *(293,15-773,15)=19953,6 J$
The calculation of the entropy for calculations of changes in Helholtz and Gibbs free energys
$\Delta \mathrm{S}=\mathrm{n} \int \frac{\mathrm{C}_{\mathrm{mp}}}{\mathrm{T}} \mathrm{dT}$ here $\Delta \mathrm{S}=\mathrm{n} \int_{\mathrm{T}_{3}}^{\mathrm{T}_{1}} \frac{\frac{7}{2} \mathrm{R}}{\mathrm{T}} \mathrm{dT}=\mathrm{n} \cdot \frac{7}{2} \mathrm{R} \ln \frac{\mathrm{T}_{4}}{\mathrm{~T}_{3}}$
$\Delta S=5 * 3,5 * 8,314 * \ln \frac{293,15}{773,15}=-141,099 J K^{-1}$
$S_{4}=S_{3}+\Delta S=1164,39-141,10=1023,29 \mathrm{JK}^{-1}$
$S_{4} T_{4}-S_{3} T_{3}=1023,29 * 293,15-1164,39 * 773,15=299977,5-900248,1=-600270,6 J$
Change of the Helmhotz free energy: $\Delta \mathrm{A}=\Delta \mathrm{U}-\Delta(\mathrm{T} . \mathrm{S}) \quad$ here $\quad \Delta \mathrm{A}=\Delta \mathrm{U}-\left(\mathrm{S}_{4} \mathrm{~T}_{4}-\mathrm{S}_{3} \mathrm{~T}_{3}\right)$
$\Delta A=\Delta U-\left(S_{4} T_{4}-S_{3} T_{3}\right)=-49884+600271=550387 J$
Change of the Gibbs free energy: $\Delta \mathrm{G}=\Delta \mathrm{H}-\Delta(\mathrm{T} . \mathrm{S}) \quad$ here $\quad \Delta \mathrm{G}=\Delta \mathrm{H}-\left(\mathrm{S}_{4} \mathrm{~T}_{4}-\mathrm{S}_{3} \mathrm{~T}_{3}\right)$
$\Delta G=\Delta H-\left(S_{4} T_{4}-S_{3} T_{3}\right)=-69838+600271=530433 J$

The sum of the full cycle:

| step | $\mathrm{W} / \mathrm{J}$ | $\mathrm{Q} / \mathrm{J}$ | $\Delta \mathrm{U} / \mathrm{J}$ | $\Delta \mathrm{H} / \mathrm{J}$ | $\Delta \mathrm{S}^{2} / \mathrm{JK}^{-1}$ | $\Delta \mathrm{G} / \mathrm{J}$ | $\Delta \mathrm{A} / \mathrm{J}$ |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1. | 41237 | 0 | 41237 | 57731 | 0 | -348304 | -364790 |
| 2. | 0 | 8648 | 8648 | 12107 | 11,83 | -82190 | -85650 |
| 3. | -99956 | 99956 | 0 | 0 | 129,28 | -99956 | -99956 |
| 4. | 19954 | -69838 | -49884 | -69838 | $-141,10$ | 530433 | 550387 |
| $\Sigma$ | -38765 | 38766 | 1 | 0 | 0,01 | -17 | -9 |

$\mathrm{U}, \mathrm{H}, \mathrm{S}, \mathrm{G}, \mathrm{A}$ are state functions, therefore their values have to be zero for the full cycle. The present deviations are results of the uncertainties inn the calculations. Q and W are path functions, in a reversible process their absolute values have to be equal.

F3. The temperature of 3 mol nitrogen gas (ideal gas) is $327^{\circ} \mathrm{C}$, its pressure is $0,2 \mathrm{Mpa}$. It is cooled at constant volume until its pressure decreased to 150 kPa , then it is expanded on isothermal path to 75 kPa . The next (last) step is to bring the gas back into the final state. Friction loss is negligible. The work of the full cycle is 2371 J . What is the change in the individual steps in W, Q an U? Prove that the last process is adiabatic! The cycle is reversible. Use the data of Table 2!

Results
( Only for controlling of the solutions)

| PROCESS | $\mathrm{W} / \mathrm{kJ}$ | $\mathrm{Q} / \mathrm{kJ}$ | $\Delta \mathrm{U} / \mathrm{kJ}$ |
| :---: | :---: | :---: | :---: |
| 1. | 0 | $-10,15$ | $-10,15$ |
| 2. | $-7,780$ | 7,780 | 0 |
| 3. | 10,15 | 0 | 10,15 |

## Guide to the solution

1. Isochor process:

$$
Q_{1}=\Delta U_{1}
$$

$W_{1}=0$
$\Delta U=\Delta H-V \Delta p$ (see Table 1, general equations)

$$
V_{0}=V_{1}=\frac{n R T_{0}}{p_{0}}
$$

Equation for the molar enthalpy in Table 2A

$$
H_{m}^{0}=10^{3}\left[H(+)+a X+\frac{b}{2} X^{2}-\frac{c}{X}+\frac{d}{3} X^{3}\right] \quad \text { Jmol }^{-1} \quad X=10^{-3} \mathrm{~T} / \mathrm{K}
$$

(superscript zero: standard pressure)).
T must be substituted in $\square$ elvin. Data for nitrogen gas:
$H(+)=-9,982 \quad a=30,428 \quad b=2,544 \quad c=-0,238 \quad d=0,000$
Equation for the molar entropy:
$S_{m}^{0}=S(+)+a \cdot \ln T+b X-\frac{c}{2 X^{2}}+\frac{d}{2} X^{2} \quad \mathrm{Jmol}^{-1} K^{-1}$
Here $S(+)=16,203$.

## 2. Isothermal process

According to table 1 (general equations)

$$
\begin{aligned}
& \Delta U=\Delta H-\Delta(p V) \\
& Q=T \Delta S \\
& W=\Delta U-Q=\Delta H-\Delta(p V)-T \Delta S
\end{aligned}
$$

Since the work gas iz ideal, the isothermal change in entropy is calculable as

$$
\Delta S=n \cdot R \cdot \ln \frac{p_{1}}{p_{2}} .
$$

## 3. Is this process adiabatic, indeed?

Since the total work of the cycle is given, this is with negative sign the heat of the process. If the sum of the heats of the first two steps is equal to this value, then for the third step is $\mathrm{Q}_{3}=0$ apart from small numerical errors). So the adiabatic property of the third process is proved. Then the necessary relations are:

$$
\begin{aligned}
& \Delta U=\Delta H-\Delta(p V) \\
& Q=0 \\
& W=\Delta U=\Delta H-\Delta(p V)
\end{aligned}
$$

F4. Calculate the changes of the thermodynamic functions of $1 \mathrm{kmol} \mathrm{N}_{2}$ (ideal gas) during the process increasing its temperatrure form $27^{\circ} \mathrm{C}$ to $327^{\circ} \mathrm{C}$ and it pressure form $0,1 \mathrm{Mpa}$ to 1 Mpa ! Use the data of Table 2!

$$
(\Delta U=6578 \mathrm{~kJ}, \Delta H=9072 \mathrm{~kJ}, \Delta S=1,71 \mathrm{~kJ} / . \mathrm{K}, \Delta G=-49495 \mathrm{~kJ}, \Delta A=-51989 \mathrm{~kJ})
$$

## Calculate the thermodynamic functions of a pure substance!

F5. 1 mol liquid benzene is evaporated at its boiling point and heated the vapour at 0,1 Mpa to $427^{\circ} \mathrm{C}$. What is change in enthalpy, entropy and Gibbs free energy, if the entropy of the liquid benzene is $194,6 \mathrm{~J} . \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}$ at its boiling point, $80^{\circ} \mathrm{C}$, and the heat of vaporization is at this temperature $31,8 \mathrm{~kJ} . \mathrm{mol}^{-1}$.
$\mathrm{N}=1$ mol. The data of Table 2 refer $0,1 \mathrm{Mpa}$ ("o" subscript)

## Enthalpy

$\Delta \mathrm{H}=\mathrm{n} \lambda_{353}+\mathrm{n} \int_{353}^{700} \mathrm{C}_{\mathrm{mp}} \mathrm{dT}=\mathrm{n} \lambda_{353}+\mathrm{n}\left(\mathrm{H}_{\mathrm{m}}^{0}(700,15)-\mathrm{H}_{\mathrm{m}}^{0}(353,15)\right)$
Considering $\mathrm{X}_{2}=10^{-3} * \mathrm{~T}_{2}$ és $\mathrm{X}_{1}=10^{-3} * \mathrm{~T}_{1}$ and
$H_{m}^{0}(T)=10^{3}\left[H(+)+a . X+\frac{b}{2} X^{2}-\frac{c}{X}+\frac{d}{3} X^{3}\right]$
Since the state is the same and we are in the same temperature region of the table:

$$
\Delta \mathrm{H}_{\mathrm{m}}^{0}=10^{3}\left[\mathrm{a} .\left(\mathrm{X}_{2}-\mathrm{X}_{1}\right)+\frac{\mathrm{b}}{2}\left(\mathrm{X}_{2}^{2}-\mathrm{X}_{1}^{2}\right)-\mathrm{c} \cdot\left(\frac{1}{\mathrm{X}_{2}}-\frac{1}{\mathrm{X}_{1}}\right)+\frac{\mathrm{d}}{3}\left(\mathrm{X}_{2}^{3}-\mathrm{X}_{1}^{3}\right)\right]
$$

for benzene vapour at 700 K

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{m}}^{0}(700)=10^{3}\left[\begin{array}{l}
52,32+44,141 * 0,700+\frac{245,312}{2} * 0,700^{2}- \\
-\frac{-2,632}{0,700}+\frac{-75,525}{3} * 0,700^{3}
\end{array}\right]= \\
& =10^{3}[52,32+30,899+60,101+3,760-8,635]=1,38445 \cdot 10^{5} \mathrm{Jmol}^{-1}
\end{aligned}
$$

for benzene vapour at 353 K

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{m}}^{0}(353)=10^{3}\left[\begin{array}{l}
52,32+44,141 * 0,353+\frac{245,312}{2} * 0,353^{2}- \\
-\frac{-2,632}{0,353}+\frac{-75,525}{3} * 0,353^{3}
\end{array}\right]= \\
& =10^{3}[52,32+15,582+15,284+7,456-1,107]=0,89535 \cdot 10^{5} \mathrm{Jmol}^{-1} \\
& \Delta \mathrm{H}=1 * 31,8.10^{3}+1 *\left(1,38445.10^{5}-0,89535 \cdot 10^{5}\right)=8,07210.10^{4} \mathrm{~J}
\end{aligned}
$$

## Entropy

$$
\begin{aligned}
& \Delta \mathrm{S}=\mathrm{n} \cdot \frac{\lambda_{353}}{\mathrm{~T}}+\mathrm{n} \int_{353}^{700} \frac{\mathrm{C}_{\mathrm{mp}}^{0}}{\mathrm{~T}}=\mathrm{n} \frac{\lambda_{353}}{\mathrm{~T}}+\mathrm{n}\left[\mathrm{~S}_{\mathrm{m}}^{0}(700)-\mathrm{S}_{\mathrm{m}}^{0}(353)\right] \\
& \mathrm{S}_{\mathrm{m}}^{0}(\mathrm{~T})=\mathrm{S}(+)+\mathrm{a} \cdot \ln \mathrm{~T}+\mathrm{b} \cdot \mathrm{X}-\frac{\mathrm{c}}{2 \mathrm{X}^{2}}+\frac{\mathrm{d}}{2} \mathrm{X}^{2}
\end{aligned}
$$

Since the state is the same and we are in the same temperature region of the table:
$\Delta \mathrm{S}_{\mathrm{m}}^{0}=\mathrm{a} * \ln \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}+\mathrm{b} *\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)-\frac{\mathrm{c}}{2}\left(\frac{1}{\mathrm{X}_{2}^{2}}-\frac{1}{\mathrm{X}_{1}^{2}}\right)+\frac{\mathrm{d}}{\mathrm{s}}\left(\mathrm{X}_{2}^{2}-\mathrm{X}_{1}^{2}\right)$
The absolute entropy values are necessary for the calculation of $\Delta \mathrm{G}$,
For benzene vapour at 700 K
$\mathrm{S}_{\mathrm{m}}^{0}(700)=-62,602+44,141 * \ln 700+245,312 * 0,700-$
$-\frac{(-2,632)}{2} * \frac{1}{0,700^{2}}+\frac{-75,525}{2} * 0,700^{2}=$
$=[-62,602+289,171+171,718+2,686-18,504]=382,469 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
for benzene vapour at 353 K
$\mathrm{S}_{\mathrm{m}}^{0}(353)=-62,602+44,141 * \ln 353+245,312 * 0,353-$
$-\frac{(-2,632)}{2} * \frac{1}{0,353^{2}}+\frac{-75,525}{2} * 0,353^{2}=$
$=[-62,602+258,952+86,595+10,561-4,706]=288,800 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
$\Delta \mathrm{S}=1 * \frac{31,8.10^{3}}{353}+1 *(382,469-288,800)=90,085+93,669=183,754 \mathrm{JK}^{-1}$

## Gibbs free energy

$\Delta \mathrm{G}=\Delta \mathrm{H}-\left(\mathrm{T}_{2} \mathrm{~S}_{2}-\mathrm{T}_{1} \mathrm{~S}_{1}\right)$
for liquid benzene
$S_{1}=S_{l}(353)=1 * 194,6=194,6 \mathrm{~J}^{2} \mathrm{~K}^{-1}$
for benzene vapour
$\mathrm{S}_{2}=\mathrm{S}_{v}(700)=\mathrm{S}_{l}(353)+\Delta \mathrm{S}=194,6+183,8=378,4 \mathrm{~J} . \mathrm{K}^{-1}$
$\Delta \mathrm{G}=80754-(700 * 378,4-353 * 194,6)=80754-264880+68694=-115432 \mathrm{~J}=$ $=-115,432 \mathrm{~kJ}$

F6. Liquid methanol is heated form $30^{\circ} \mathrm{C}$ to $128^{\circ} \mathrm{C}$. In between at 338 K its state changes.

What is the entropy product? What is the heat of boiling?

|  | A | b | c | d | $\mathrm{H}(+)$ | $\mathrm{S}(+)$ |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$ | 4,310 | 128,725 | 0,452 | $-44,099$ | $-206,369$ | 181,421 |
| $\mathrm{CH}_{3} \mathrm{OH}(l)$ | 81,588 |  |  |  | $-263,776$ | $-338,248$ |


|  | Temperature (K) | $\mathrm{H}_{\mathrm{m}}^{0}(\mathrm{~J} / \mathrm{mol})$ |
| :--- | :---: | :---: |
| $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$ | 401 | $-196366,17$ |
| $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$ | 338 | $-199464,09$ |
| $\mathrm{CH}_{3} \mathrm{OH}(l)$ | 338 | $-236199,26$ |
| $\mathrm{CH}_{3} \mathrm{OH}(l)$ | 303 | $-239054,84$ |

$$
\Delta \mathrm{H}_{\mathrm{m}}^{0}=42688,67 \mathrm{~J} / \mathrm{mol} \quad \lambda=36735,17 \mathrm{~J} / \mathrm{mol}
$$

F7. What is the molar heat of vaporation of n-pentane at its boiling point?
Data from Table 2 for the vapour
$\begin{array}{llllllll}\mathrm{n}-\mathrm{C} 5 \mathrm{H} 12(\mathrm{~g}) & 309,000 & 124,675 & 136,900 & -3,238 & -25,623 & -200,328 & -419,709\end{array}$
Temperature $309,000 \mathrm{~K} \quad\left(35,850{ }^{\circ} \mathrm{C}\right)$
$\Delta \mathrm{H}_{\mathrm{m}}^{0}=-145040,776644 \mathrm{~J} / \mathrm{mol}$
$\Delta \mathrm{S}_{\mathrm{m}}^{0}=353,130422 \mathrm{~J} / \mathrm{K} / \mathrm{mol}$
$\Delta \mathrm{G}_{\mathrm{m}}^{0}=-254158,077024 \mathrm{~J} / \mathrm{mol}$
$\Delta \mathrm{C}_{\mathrm{m}}^{0}=130,618084 \mathrm{~J} / \mathrm{K} / \mathrm{mol}$
Data from Table 2 for the liquid
$n-C 5 H 12(1) 309,000 \quad 165,686 \quad 0,000 \quad 0,000 \quad 0,000-223,328-684,154$
Temperature $309,000 \mathrm{~K} \quad\left(35,850{ }^{\circ} \mathrm{C}\right)$
$\Delta \mathrm{H}_{\mathrm{m}}^{0}=-172131,026000 \mathrm{~J} / \mathrm{mol}$
$\Delta \mathrm{S}_{\mathrm{m}}^{0}=265,780383 \mathrm{~J} / \mathrm{K} / \mathrm{mol}$
$\Delta \mathrm{G}_{\mathrm{m}}^{0}=-254257,164286 \mathrm{~J} / \mathrm{mol}$
$\Delta \mathrm{C}_{\mathrm{m}}^{0}=165,686000 \mathrm{~J} / \mathrm{K} / \mathrm{mol}$
$\Delta \mathrm{H}_{\mathrm{m}}=27,090 \mathrm{~kJ} / \mathrm{mol}$

## 3. PHASE EQUILIBRIA OF PURE SUBSTANCES

Change of the Gibbs free energy:
In general:
$d G=d H-T d S-S d T$
Substituting dH-t (Equ. 5):
$d G=d U+p d V+V d p-T d s-S d T$
Resolving dU: $(d U=T d S-p d V)$
$d G=T d S-p d V+p d V+V d p-T d S-S d T=V d p-S d T$
Since the Gibbs free energy depends on the quantity of the substance (45) must be completed with a new member:
$d G=\left(\frac{\partial G}{\partial p}\right)_{T, n} d p+\left(\frac{\partial G}{\partial T}\right)_{p, n} d T+\sum_{i, j \neq i}\left(\frac{\partial G}{\partial n_{i}}\right)_{T, p, n_{j}} d n_{i}$
CHEMICAL POTENTIAL
The molar Gibbs free energy of pure compounds is called chemical potential.
$\mu=\left(\frac{\partial G}{\partial n}\right)_{T, p}=G_{m}$
Under other thermodynamic conditions:
$\mu=\left(\frac{\partial U}{\partial n}\right)_{V, S}=\left(\frac{\partial H}{\partial n}\right)_{p, S}=\left(\frac{\partial A}{\partial n}\right)_{V, T}$

## PARTIAL CHEMICAL POTENTIAL

The chemical potential of the component „i' in a multi-component system is defined as

$$
\begin{equation*}
\mu_{i}=\left(\frac{\partial G}{\partial n_{i}}\right)_{T, p, n_{j} j \neq i} \tag{49}
\end{equation*}
$$

Change of the chemical potential in pure substance (one-component system)

$$
\begin{equation*}
d \mu=V_{m} d p-S_{m} d T \tag{50}
\end{equation*}
$$

In case of equlibrium (the example is here the vapour-liquid equilibrium):
$\mu_{g}=\mu_{l}$
and

$$
\begin{equation*}
d \mu_{g}=d \mu_{l} \tag{52}
\end{equation*}
$$

Relations (51) and (52) are valid for any (gas-liquid, gas-solid, liquid-solid and solid-solid) phase equlibria. From relation (52)

$$
\begin{equation*}
-S_{m, g} d T+V_{m, g} d p=-S_{m, l} d T+V_{m, l} d p \tag{53}
\end{equation*}
$$

and in this way
$\left(V_{m, g}-V_{m, l}\right) d p=\left(S_{m, g}-S_{m . l}\right) d T$
Since in equilibrium (37) $\Delta H_{m}=T . \Delta S_{m}\left(\Delta G_{m}=0\right)$

$$
\begin{equation*}
\frac{d p}{d T}=\frac{\Delta S_{m}}{\Delta V_{m}}=\frac{\Delta H_{m}}{T \cdot \Delta V_{m}} \quad \text { (Clapeyron equation) } \tag{55}
\end{equation*}
$$

## Temperature dependence of the vapour pressure

If the vapour can be considered as ideal gas and the molar volume of the liquid state is negligible to that of the vapour, then one can use the approach $\Delta V_{m} \approx V_{m, g}$. According to approach the ideal gas law is applicable in this case and may substituted in (55). Moreover, the change of the molar enthalpy may substituted with the heat of vaporization $(\lambda)$. With these, (55) has the form

$$
\begin{equation*}
\frac{d p}{d T}=\frac{\Delta H_{m}}{T \frac{R T}{p}}=\frac{\lambda p}{R T^{2}} \tag{56}
\end{equation*}
$$

and

$$
\frac{d p}{d T}=p \frac{\lambda}{R T^{2}}
$$

With a short formulation

$$
\begin{equation*}
\frac{\mathrm{d} \ln \{\mathrm{p}\}}{\mathrm{dT}}=\frac{\lambda}{\mathrm{RT}^{2}} \quad\{\mathrm{p}\}=\frac{\mathrm{p}(\mathrm{~Pa})}{1 \mathrm{~Pa}} \tag{57}
\end{equation*}
$$

Integrating under $\lambda=$ constant condition (with this $\lambda$ is regarded as mean heat of vaporization is

$$
\begin{equation*}
\int \mathrm{d} \ln \{p\}=\int \frac{\lambda}{\mathrm{RT}^{2}} \mathrm{dT} \tag{58}
\end{equation*}
$$

and now we have
$\ln \{\mathrm{p}\}=-\frac{\lambda}{\mathrm{RT}}+\mathrm{B} \quad$ (the Clausius-Clapeyron equation)
This is a good approach for the estimation of the vapour pressure. Here $\{\mathrm{p}\}=\frac{\mathrm{p}(\mathrm{Pa})}{1 \mathrm{~Pa}}$ is a dimensionless quantity and B is constant. Integrating similarly like in (58) the result is a similarly well applicable equation, after all for the estimation of the change in vapour pressure in a close region or for interpolation:

$$
\begin{equation*}
\ln \frac{p_{2}}{p_{1}}=\frac{\lambda}{R} \frac{T_{2}-T_{1}}{T_{1} \cdot T_{2}} \tag{60}
\end{equation*}
$$

## EXERCISES

G1. Calculate the heat of vaporization of benzene at its boiling point applying the following data: boling point at $101,3 \mathrm{kPa}$ is $80,10^{\circ} \mathrm{C}$. The change of the boling pont is describable about $10^{5} \mathrm{~Pa}$ using the equation

$$
\frac{d t}{d p}=\frac{d T}{d p}=0,320 K \cdot k P a^{-1}
$$

The density of the liquid is at $80,10^{\circ} \mathrm{C}: 814,4 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$, the density of the vapour is at the same temperature $2,741 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$.
Using relation (55):

$$
\begin{aligned}
& \Delta H_{m}=T \cdot \Delta V_{m} \cdot \frac{d p}{d T} \\
& \Delta v=\frac{1}{\rho_{g}}-\frac{1}{\rho_{l}}=\frac{1}{2,741}-\frac{1}{814,4}=0,36483-0,0012279=0,3636 \mathrm{~m}^{3} \mathrm{~kg}^{-1} \\
& \Delta V_{m}=0,3636 \mathrm{~m}^{3} \mathrm{~kg}^{-1} \times \frac{78 g \cdot \mathrm{~mol}^{-1}}{1000 g \cdot \mathrm{~kg}^{-1}}=0,02836 \mathrm{~m}^{3} \mathrm{~mol}^{-1} \\
& \Delta h=T \cdot \Delta v \cdot \frac{d p}{d T}=353,25 \mathrm{~K} \times 0,3636 \mathrm{~m}^{3} \mathrm{~kg}^{-1} \times \frac{1}{0,320 \mathrm{~K} \cdot \mathrm{kPa}^{-1}}=401,4 \mathrm{~kJ} \cdot \mathrm{~kg}^{-1} \\
& \quad \lambda=\Delta \mathrm{H}_{\mathrm{m}}=353,25 \mathrm{~K} \times 0,02836 \mathrm{~m}^{3} \mathrm{~mol}^{-1} \times \frac{1}{0,320 \mathrm{K.kPa}^{-1}}=31,32 \mathrm{~J} \cdot \mathrm{~mol}^{-1}
\end{aligned}
$$

G2. The vapour pressure dependence of ethylpropionate is as function of the temperature

| $\mathrm{t} /{ }^{\circ} \mathrm{C}$ | 190 | 200 | 210 | 220 |
| :--- | :---: | :---: | :---: | :---: |
| $\mathrm{p} / \mathrm{kPa}$ | 882,5 | 1058 | 1261 | 1493 |

1. Compile diagram $\ln \left(\frac{p}{p^{0}}\right)-\frac{1}{T} \quad$ using the data of this table. Drawing the "best" line crossing the data points, the mean heat of vaporization can calculated from its slope. (see equation 59).
(The slope can be calculated with using the method of least squares).

| $10^{3} / \mathrm{T}\left(\mathrm{K}^{-1}\right)$ | 2,1591 | 2,1135 | 2,0698 | 2,0278 |
| :--- | :---: | :---: | :---: | :---: |
| $\ln (\mathrm{p} / \mathrm{kPa})$ | 2,177 | 2,359 | 2,534 | 2,703 |

From the figure $\operatorname{tg} \alpha=-4039$, so $\mathrm{K}=-\frac{\lambda}{R}$, and $\lambda=33580 \mathrm{~J} \mathrm{~mol}^{-1}$

2. Calculate the vapour pressure at $205^{\circ} \mathrm{C}$ !

The vapour pressure at $205^{\circ} \mathrm{C}$ :
Interpolation between 200 és $210^{\circ} \mathrm{C}$ (60)
$\mathrm{T}_{1}=473,15 \mathrm{~K} \quad \mathrm{~T}_{2}=483,15 \mathrm{~K}$
$\lambda=R \frac{T_{1} T_{2}}{T_{2}-T_{1}} \ln \frac{p_{2}}{p_{1}}=8,314 \times \frac{473,15 \times 483,15}{483,15-473,15} \times \ln \frac{1261}{1058}=1,9006.10^{5} \times 0,1755=33360 \mathrm{~J} . \mathrm{mol}^{-1}$
$\mathrm{T}_{3}=478,15 \mathrm{~K}$
$\ln \left(\frac{p_{3}}{p^{0}}\right)=\ln \left(\frac{p_{1}}{p^{0}}\right)+\frac{\lambda}{R} \times \frac{T_{3}-T_{1}}{T_{1} \times T_{3}}=$
$=\ln 10,58+\frac{33360}{8,314} \times \frac{478,15-473,15}{473,15 \times 478,15}=2,359+4012,5 \times 2,2101.10^{-5}=2,447$
$p_{3}=11,561.10^{5} \mathrm{~Pa}$
3. What is the boiling point if the pressure is 1 MPa ? Use the Clausius-Clapeyron approximation!

The heat of vaporation at 1 MPa-on:
This pressure value should be between $190^{\circ} \mathrm{C}$ and $200^{\circ} \mathrm{C}$ (look at the diagram!). Again, interpolation is necessary.
$\mathrm{T}_{1}=463,15 \mathrm{~K}$
$\mathrm{T}_{2}=473,15 \mathrm{~K}$
$\lambda=R \frac{T_{1} T_{2}}{T_{2}-T_{1}} \ln \frac{p_{2}}{p_{1}}=8,314 \times \frac{463,15 \times 473,15}{473,15-463,15} \times \ln \frac{1058}{882,5}=1,8219.10^{5} \times 0,1814=33050 \mathrm{~J} . \mathrm{mol}^{-1}$
$\frac{1}{T_{3}}=\frac{1}{T_{1}}-\frac{R}{\lambda} \ln \frac{p_{3}}{p_{1}}=\frac{1}{463,15}-\frac{8,314}{33050} \ln \frac{10^{6}}{8,825 \cdot 10^{5}}=2,1591 \cdot 10^{-3}-2,51558 \cdot 10^{-4} \times 0,124996=$
$=2,12766 \cdot 10^{-3} K^{-1}$
$T_{3}=470,0 \mathrm{~K} \sim 196,85^{\circ} \mathrm{C}$
What is the value of," B "?
$B=\ln \frac{p_{1}}{p^{0}}+\frac{\lambda}{R T_{1}}=\ln 8,825+\frac{33050}{8,314 \times 463,15}=2,178+8,583=10,761$

G3. The temperature dependence of the vapour pressure of the liquid iodine is (log means ${ }^{10} \mathrm{lg}$ )

$$
\log \{\mathrm{p}\}=25,588-5,092 \times \log (\mathrm{T} / \mathrm{K})-\frac{3222}{\mathrm{~T}}
$$

The same equation for the solid iodine has the form:
$\log \{\mathrm{p}\}=18,380-2,013 \times \log (\mathrm{T} / \mathrm{K})-\frac{3512}{\mathrm{~T}}$
What is the temperature of the triple point? What is the vapour pressure and the heat of fusion at this temperature?


At the triple point the vapour pressure of the sold and the liquid is equal.
$p_{s}=p_{l}$
$25,588-5,092 \times \log (T / K)-\frac{3222}{T}=18,230-2,013 \times \log (T / K)-\frac{3512}{T}$
i.e.
$7,208-3,079 \times \log (T / K)+\frac{290}{T}=0$
The solution of this equation is, using iteration
$T_{t r i}=385,1 \mathrm{~K} \sim 112{ }^{\circ} \mathrm{C}$
The vapour pressure of the liquid is
$\log \left(\frac{p_{t r i}}{p^{0}}\right)=18,380-2,013 \times \log (385,1)-\frac{3512}{385,1}=18,380-5,2048-9,1197=4,0555$
$p_{t r i}=11363 \mathrm{~Pa}$
The calculation of the heats of sublimation and vaporization::
$\lambda_{s, l}=\lambda_{s, g}-\lambda_{l, g}$
Calculation of the heat of sublimation:

$$
\frac{\mathrm{dp}}{\mathrm{dT}}=\mathrm{p} \frac{\lambda}{\mathrm{RT}^{2}} \rightarrow \lambda=\frac{\mathrm{R} \cdot \mathrm{~T}^{2}}{\mathrm{p}} \times \frac{\mathrm{dp}}{\mathrm{dT}}=\mathrm{R} \cdot \mathrm{~T}^{2} \frac{\mathrm{~d} \ln }{\mathrm{dT}}
$$

$\ln \left(\frac{p}{p^{0}}\right)=\ln (10) \times 18,380-2,013 \times \ln (T / K)-\ln (10) \times \frac{3512}{T}=$
$42,322-2,013 \times \ln (T / K)-\frac{8087}{T}$
Differentiating:

$$
\begin{aligned}
& \frac{\mathrm{d} \ln \{\mathrm{p}\}}{\mathrm{dT}}=-\frac{2,013}{\mathrm{~T}}+\frac{8087}{\mathrm{~T}^{2}}=-5,2272 \cdot 10^{-3}+5,4531 \cdot 10^{-2}=0,049303 \mathrm{~K}^{-1} \\
& \lambda_{\mathrm{s}, \mathrm{~g}}=\mathrm{R} \cdot \mathrm{~T}^{2} \frac{\mathrm{~d} \ln \{\mathrm{p}\}}{\mathrm{dT}}=8,314 \times 385,1^{2} \times 0,0493034=60790,2 \mathrm{~J} \cdot \mathrm{~mol}^{-1}
\end{aligned}
$$

The calculation of the heat of vaporization is possible on a similar way:

$$
\begin{aligned}
& \ln \{\mathrm{p}\}=\ln (10) \times 25,588-5,092 \times \ln \left(\frac{\mathrm{T}}{\mathrm{~T}^{0}}\right)-\ln (10) \times \frac{3222}{\mathrm{~T}}=58,919-5,092 \times \ln \left(\frac{\mathrm{T}}{\mathrm{~T}^{0}}\right)-\frac{7419}{\mathrm{~T}} \\
& \frac{\mathrm{~d} \ln \{\mathrm{p}\}}{\mathrm{dT}}=-\frac{5,092}{\mathrm{~T}}+\frac{7419}{\mathrm{~T}^{2}}=-1,3225.10^{-2}+5,0026.10^{-2}=0,0368013 \mathrm{~K}^{-1} \\
& \lambda_{\mathrm{l}, \mathrm{~g}}=\mathrm{R} \cdot \mathrm{~T}^{2} \frac{\mathrm{~d} \ln \{\mathrm{p}\}}{\mathrm{dT}}=8,314 \times 385,1^{2} \times 0,0368013=45375,4 \mathrm{~J} . \mathrm{mol}^{-1}
\end{aligned}
$$

And now at the end we have the heat of fusion

$$
\lambda_{s, l}=60790,2-45375,4=15414,8 \mathrm{~J} . \mathrm{mol}^{-1}
$$

G4. The melting point of the acetic acid changes with the temperature up to $2.10^{8} \mathrm{~Pa}$ according to the equation:

$$
\mathrm{t}=16,66+0,231 \cdot 10^{-6} \mathrm{p}-2,25 \cdot 10^{-16} \mathrm{p}^{2}\left[{ }^{\circ} \mathrm{C}\right] \mathrm{p}[\mathrm{~Pa}]
$$

a.) Calculate the heat of fusion of acetic acid at standard pressure! Its specific volume increases at the melting point with $0,156 \mathrm{dm}^{3} \mathrm{~kg}^{-1}$ ?
b.) What is its melting point at 100 MPa ? At this pressure the specific volume increases $0,115 \mathrm{dm}^{3} \mathrm{~kg}^{-1}$.
(a: $\Delta H_{m, 1}=195,93 \times 0,060=11,74 \mathrm{~kJ}^{2} . \mathrm{mol}^{-1} ; \mathrm{b}: \Delta v_{2}=1,15.10^{-4} \mathrm{~m}^{3} \mathrm{~kg}^{-1}$;
$\left.\Delta h_{2}=\frac{310,66 \times 1,15 \cdot 10^{-4}}{1,86 \cdot 10^{-7}}=192,07 \mathrm{~kJ} \cdot \mathrm{~kg}^{-1} ; \Delta H_{m, 2}=192,07 \times 0,060=11,52 \mathrm{~kJ} . \mathrm{mol}^{-1}\right)$.
G5. What changes the molar Gibbs free energy of methanol, if the liquid is in equilibrium with its vapour at $25^{\circ} \mathrm{C}$, and this system is heated to $50^{\circ} \mathrm{C}$ under preserving the equilibrium state? The vapour phase is regarded as ideal gas. The equilibrium vapour pressure of methanol is $16,44 \mathrm{kPa}$ at $25^{\circ} \mathrm{C}$, and $54,31 \mathrm{kPa}$ at $50^{\circ} \mathrm{C}$. At $0,1 \mathrm{MPa} C_{\text {mp, }}=81,59$ $\mathrm{J} /(\mathrm{mol} . \mathrm{K}), C_{\mathrm{mp}, \mathrm{g}}=4,310+128,725.10^{-3} T+0,452.10^{6} T^{-2}-44,099.10^{-6} T^{2} \mathrm{~J} /(\mathrm{mol} . \mathrm{K}), S_{\mathrm{m}, 298(1)}$ $=126,61 \mathrm{~J} /(\mathrm{mol} . \mathrm{K}), \quad S_{\mathrm{m}, 298(\mathrm{~g})}=239,70 \mathrm{~J} /(\mathrm{mol} . \mathrm{K})$.
( $\Delta G=-3205,1 \mathrm{~J} / \mathrm{mol}$ )
G6. Data for the vapor pressure of CH 3 Br :

| $t /{ }^{\circ} \mathrm{C}$ | $-69,974$ | $-44,326$ | $-30,062$ | $-8,140$ |
| :---: | :---: | :---: | :---: | :---: |
| $p /$ mbar | 17,31 | 100,45 | 223,19 | 630,00 |

What is the vapour pressur at $+4,2{ }^{\circ} \mathrm{C}$ ? Use the Clausius-Clapeyron approach! ( $p=$ 110 kPa , the extrapolation result is not accurate, the measured result is $105,5 \mathrm{kPa}$ )

G7. The vapor pressure of the liquid iodine:

$$
\log (p / \mathrm{Pa})=25,588-5,092 \log T-3222 / T
$$

The vapor pressure of the solid ioodine is:
$\log (p / \mathrm{Pa})=18,380-2,013 \log T-3512 / T$
What is the triple point temperature? What is the vapor pressure and the heat fusion at the triple point, Mekkora a hármaspont hõmérséklete?
Help: $\mathrm{p}_{\text {solid }}=\mathrm{p}_{\text {liquid }}$ at the triple point.
$(T=385,1 \mathrm{~K} ; p=11,37 \mathrm{kPa} ; \lambda=15,4 \mathrm{~kJ} / \mathrm{mol})$
G8. The vapor pressure of ethylpropionate depend on the temperature as

| $t /{ }^{\circ} \mathrm{C}$ | 190 | 200 | 210 | 220 |
| ---: | ---: | ---: | ---: | ---: |
| $p / \mathrm{kPa}$ | 882,5 | 1058 | 1261 | 1493 |

Calculate the vapour pressure at $205{ }^{\circ} \mathrm{C}$, and the boiling point at 1 MPa . Use the Clausius-Clapeyron approximation.

$$
\left(p=1,16 \mathrm{MPa}, t=196,8{ }^{\circ} \mathrm{C}\right)
$$

G9. The vapor pressure of ethanol increases near $50{ }^{\circ} \mathrm{C} 1380 \mathrm{~Pa} / \mathrm{K}$. What is the molar heat of vaporization if the density of the saturated vapour is at $50^{\circ} \mathrm{C}$ is $0,506 \mathrm{~g} / \mathrm{dm}^{3}$, that of the liquid $760 \mathrm{~g} / \mathrm{dm}^{3}$ ? Help: remember on the connection of vapor density and the molar voluime!

$$
\left(\Delta H_{\mathrm{m}}=40,5 \mathrm{~kJ} / \mathrm{mol}\right)
$$

G10. Calculate the constants of the $\ln (p / \mathrm{kPa})=-\lambda^{\prime} /(R T)+B$ equation for acetonitryl from the experimental data

$$
\begin{array}{ccccc}
t /{ }^{\circ} \mathrm{C} & 89,66 & 94,52 & 99,89 & 104,30 \\
p / \mathrm{kPa} & 129,4 & 149,0 & 173,8 & 196,4 \\
& \lambda^{\prime}=32,45 & \mathrm{~kJ} / \mathrm{mol}, B=15,625)
\end{array}
$$

## Vapor-liquid equilibria in multicomponent systems

1. Ideal mixture in liquid- and vapor phase, gas mixture behaves as ideal gas

## Partial pressure

Raoult's law expresses the behaviour of the ideal liquid mixture. The partial pressure $p_{i}$ of the component $i$ is proportional to its mole fraction $\mathrm{x}_{\mathrm{i}}$. The proportionality factor is the vapor pressure of the pure component at the given temperature $\left(p_{i}^{*}\right)$ :

$$
\begin{equation*}
\mathrm{p}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}^{*} \tag{61}
\end{equation*}
$$

The full pressure (p) of the mixture is

$$
\begin{equation*}
p=\sum_{i} p_{i}=\sum_{i} x_{i} p_{i}^{*} \tag{62}
\end{equation*}
$$

The temperature dependence of the partial pressures for ideal mixtures can be calculated using equations (59) and (61), respectively. In ideal case equ. 62 is applicable.

Mole fraction in gas phase: According Dalton's law

$$
\begin{equation*}
y_{i}=\frac{p_{i}}{p} \tag{63}
\end{equation*}
$$

Mass balance: $\mathrm{n}_{1}$ moles in the liquid phase and $\mathrm{n}_{\mathrm{g}}$ in the gas phase,

$$
\begin{equation*}
\mathrm{n}=\mathrm{n}_{\mathrm{l}}+\mathrm{n}_{\mathrm{g}} \tag{64}
\end{equation*}
$$

b refers to the full system, $\mathrm{n}_{\mathrm{i}}$ the molar mass of component i in the full system:

$$
\begin{gather*}
\mathrm{n}_{l}=\frac{\mathrm{n}_{\mathrm{i}}-\mathrm{n} \cdot \mathrm{y}_{\mathrm{i}}}{\mathrm{x}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}}}  \tag{65}\\
\mathrm{n}_{g}=\frac{\mathrm{n}_{\mathrm{i}}-\mathrm{n} \cdot \mathrm{x}_{\mathrm{i}}}{\mathrm{y}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}} \tag{66}
\end{gather*}
$$

In case of two components:

$$
\begin{equation*}
\frac{\mathrm{n}_{g}}{\mathrm{n}_{l}}=\frac{\mathrm{x}_{b}-\mathrm{x}}{\mathrm{y}-\mathrm{x}_{b}} \tag{67}
\end{equation*}
$$

$\mathrm{x}_{\mathrm{b}}$ is the mole fraction in the full system. Please, note

$$
\begin{equation*}
\frac{\mathrm{n}_{1, l}}{\mathrm{n}_{2, l}}=\frac{\mathrm{x}_{1}}{\mathrm{x}_{2}} \tag{68}
\end{equation*}
$$

## 2. Real liquid mixture, ideal vapor

Activity: generalization of Raoult's law:

$$
\begin{equation*}
\mathrm{p}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}^{*}=\gamma_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}^{*} \tag{69}
\end{equation*}
$$

The mole fraction is replaced by $\boldsymbol{a}$ (rational) axtivity, the mole fraction is corrected by the $\gamma$ (rational) activity coefficient. The deviation from the ideal behaviour may be positive ( $\gamma>1$ ) or negatíve ( $\gamma<1$ ), but in a two component system either both components show positive deviation or both have negative one.

Azeotrop mixture. Sometimes the full pressure of the mixture has an extremum (at the same time also its boiling point) at a composition. At this mole fraction the compositon of the liquid and gas phases are the same. The azeotrop extremum may be maximum (maximal vapour pressure, minimal boiling point) or minimum (minimal vapour pressure, maximal boiling point)

## Boiling point diagram (temperature - composition) and vapor pressure (vapor presssre -composition) diagram.

These are the usual diagrams for two component systems.
V: vapour curve; L: liquid curve


Azeotrop two component liquid mixtures: the ethanol-water mixture show positive deviation, its minimal boiling point is at $96 \%(\mathrm{~m} / \mathrm{m})$ ethanol content. The hydrochloric acid - water mixture has maximal boiling point at $8 \%(\mathrm{~m} / \mathrm{m})$ water content.

Vapor pressure diagrams of azeotrope mixture with vapour pessure maximum and minimum:


## PROBLEMS

H1. At $140{ }^{\circ} \mathrm{C}$ the vapour pressure of chlorobenzene is $125,24 \mathrm{kPa}$, that of bromobenzene (2) $66,10 \mathrm{kPa}$. Assuming, the tho compounds build ideal mixture, calculate the composition of the mixture boiling at 100 kPa pressure at $140^{\circ} \mathrm{C}$. What is the composition of the vapour at this temperature? $\left(\mathrm{y}_{1}=0,177\right)$.

H2. 100 mole benzene-toluene mixture are in a closed piston, the benzene mole fraction is 0.65 . The system is heated to $70{ }^{\circ} \mathrm{C}$, the pressure is set to $53,3 \mathrm{kPa}$. How many material is evaporated? At $70{ }^{\circ} \mathrm{C}$ the vapour pressures of pure toluene (2) is $27,5 \mathrm{kPa}$, that of benzene (1): $72,0 \mathrm{kPa}$ (ideal mixture).
$\mathrm{x}_{1}=\frac{\mathrm{p}-\mathrm{p}_{2}^{*}}{\mathrm{p}_{1}^{*}-\mathrm{p}_{2}^{*}}=\frac{53,3-27,5}{72,0-27,5}=0,580$
$x_{2}=0,420$
$\mathrm{p}_{1}=\mathrm{x}_{1} \mathrm{p}_{1}^{*}=0,580 \times 72,0=41,76 \mathrm{kPa}$
$\mathrm{p}_{2}=\mathrm{x}_{2} \mathrm{p}_{2}^{*}=0,420 \times 27,5=11,55 \mathrm{kPa}$
$\mathrm{y}_{1}=\frac{\mathrm{p}_{1}}{\mathrm{p}}=\frac{41,76}{53,3}=0,783 \quad \mathrm{y}_{2}=0,217$
Mivel $\frac{\mathrm{n}_{g}}{\mathrm{n}_{l}}=\frac{\mathrm{x}_{b}-\mathrm{x}}{\mathrm{y}-\mathrm{x}_{b}}$
$n_{l}=\frac{y_{1}-x_{1, b}}{x_{1, b}-x_{1}} n_{g}=\frac{0,783-0,65}{0,65-0,580} n_{g}=1,90 n_{g}$
$n=n_{l}+n_{g}=1,90 n_{g}+n_{g}=2,90 n_{g}=100 \mathrm{~mol}$
$n_{g}=\frac{100}{2,90}=34,5 \mathrm{~mol}$
H3. How many benzene must be added to 100 g toluene, so that in a 10 L vessel at $70{ }^{\circ} \mathrm{C}$ the vapour pressure of the mixture will be 60 kPa ? At $70^{\circ} \mathrm{C}$ the vapor pressure of toluene (2) is: $27,5 \mathrm{kPa}$, that of benzene (1) $72,0 \mathrm{kPa}$ (ideal mixture). The liquid volume is negligible.
$\mathrm{p}=\mathrm{x}_{1} \mathrm{p}_{1}^{*}+\left(1-\mathrm{x}_{1}\right) \mathrm{p}_{2}^{*}$
$\mathrm{x}_{1}=\frac{\mathrm{p}-\mathrm{p}_{2}^{*}}{\mathrm{p}_{1}^{*}-\mathrm{p}_{2}^{*}}=\frac{60-27,5}{72,0-27,5}=0,730$
$\mathrm{x}_{2}=0,270$
$\mathrm{p}_{1}=\mathrm{x}_{1} \mathrm{p}_{1}^{*}=0,730 \times 72,0=52,6 \mathrm{kPa}$
$\mathrm{p}_{2}=\mathrm{x}_{2} \mathrm{p}_{2}^{*}=0,270 \times 27,5=7,4 \mathrm{kPa}$
$n_{1, g}=\frac{p_{1} V}{R T}=\frac{52,6.10^{3} \times 1.10^{-2}}{8,314 \times 343,15}=0,1844 \mathrm{~mol} \sim 14,383 \mathrm{~g}$
$n_{2, g}=\frac{p_{2} V}{R T}=\frac{7,4.10^{3} \times 1.10^{-2}}{8,314 \times 343,15}=0,02594 \mathrm{~mol} \sim 2,386 \mathrm{~g}$
$n_{g}=0,1844+0,02594=0,2103 \mathrm{~mol} \sim 16,769 \mathrm{~g}$
$\mathrm{y}_{1}=\frac{\mathrm{p}_{1}}{\mathrm{p}}=\frac{52,6}{60}=0,877$
$y_{2}=\frac{p_{2}}{p}=\frac{7,4}{60}=0,123$
$n_{2, b}=\frac{m}{M}=\frac{100}{92}=1,0870 \mathrm{~mol}$ toluol
$n_{2, l}=1,0870-0,0259=1,0611 \mathrm{~mol}$
$\frac{x_{1}}{x_{2}}=\frac{n_{1, l}}{n_{2, l}}$
$n_{1, l}=n_{2, l} \frac{x_{1}}{x_{2}}=1,0611 \times \frac{0,730}{0,270}=2,8689 \mathrm{~mol}$
$n_{1, b}=n_{1, l}+n_{1, g}=2,8689+0,1844=3,0533 \mathrm{~mol} \sim 238,16 \mathrm{~g}$

H4. The vapour pressures of carbon disulfide (1) and ethanol (2) at $20{ }^{\circ} \mathrm{C}$ are $\mathrm{p}_{1}^{*}=39,52 \mathrm{kPa}$, and $\mathrm{p}_{2}^{*}=5,84 \mathrm{kPa}$, respectively. At the same temperature the mixture of composition $\mathrm{x}_{1}=0,40$ begins to boil at the same temperature on $41,33 \mathrm{~Pa}$. Distillating from this mixture a small amount, the vapour composition is $y_{1}=0,887$. Calculate the rational activity coefficients in the liquid mixture!
$\mathrm{y}_{1}=0,887$
$\mathrm{a}_{l} \mathrm{p}_{l}^{*}=\mathrm{y}_{l} \mathrm{p}$
$\mathrm{a}_{l}=\mathrm{y}_{1} \frac{\mathrm{p}}{\mathrm{p}_{I}^{*}}=0,887 \times \frac{41,33}{39,52}=0,9276$
$\gamma_{1}=\frac{\mathrm{a}_{1}}{\mathrm{x}_{1}}=\frac{0,9276}{0,40}=2,32$
$y_{2}=0,113$
$\mathrm{a}_{2} \mathrm{p}_{2}^{*}=\mathrm{y}_{2} \mathrm{p}$
$\mathrm{a}_{2}=\mathrm{y}_{2} \frac{\mathrm{p}}{\mathrm{p}_{2}^{*}}=0,113 \times \frac{41,33}{5,84}=0,7997$
$\gamma_{2}=\frac{\mathrm{a}_{2}}{\mathrm{x}_{2}}=\frac{0,7997}{0,60}=1,33$

H5. Acetone (1) and choroform (2) form azeotrop mixture with boiling point $64,7^{\circ} \mathrm{C}$ at 101,3 kPa pressure. The vapor pressure of acetone is at this temperature $134,6 \mathrm{kPa}$, the same of chloroform is $113,0 \mathrm{kPa}$. Calculate the rational activity coefficients of the two components in liquid phase at the azeotrop composition! Consider the vapor as ideal gas! $(0,753 ; 0,896)$.

## Two component (binary) liquid-gas equilibria with limited miscibility in liquid phase.

The L curve is horizontal line in a wide region of the two-phase liquid. The boiling point and the vapor composition is in this region independent of the liquid composition.


H6. The two phase mixture of 9 moles water (W) and 3 moles organic compound (OC) miscible limited with water is boiling at standard pressure at $87^{\circ} \mathrm{C}$. The mole fraction of water in the OC phase saturated with water is 0,20 , while the mole fraction of OC in the W phase saturated with OC is 0,15 . The partial pressure of the water in the equilibrium vapour phase is $53,7 \mathrm{kPa}$. Which phase does run out at first, and how many moles remain then in the liquid from the components? The system is closed, assuming that we increase slowly the volume of a piston, saving the equilibrium pressure.

The mole fraction of water is 0,75 , in the W phase 0,85 , in the vapor
$y_{w}=\frac{53,7}{100}=0,537$
Since during the evaporation always less water goes over into the vapor phase in a lower ratio than it corresponds to its brutto compositon, the mole fraction of water increases in the liquid pahs, and 0,85 the organic phase disappears. Only two phases remain. Its mass is calculable with mass balance. If the initial number of all moles $n=12$, in gas phase $n_{v}$, in the liquid $n_{1}$, the mass balances is
$\left(n_{v}+n_{l}\right) \times 0,75=0,537 n_{v}+0,85 n_{l}$
According to the lever rule: $(0,75-0,537) n_{v}=(0,85-0,75) n_{l}$
$\frac{n_{v}}{n_{l}}=\frac{0,85-0,75}{0,75-0,537}=0,469$
$n=n_{v}+n_{l}=1,469 n_{l} \quad n=12 \mathrm{~mol}$
$n_{v}=\frac{0,469 n_{l}}{1,469 n_{l}} n=3,83 \mathrm{~mol}$
$n_{l}=12-3,83=8,17 \mathrm{~mol}$
The result is the same if in the lever rule $\mathrm{n}_{\mathrm{v}}$ is substituted for $\left(\mathrm{n}-\mathrm{n}_{1}\right)$. In the remaining W liquid phase

$$
\mathrm{n}_{\mathrm{w}, \mathrm{1}}=0,85 \times 8,17=6,94 \mathrm{~mol}
$$

for the organic compound $\mathrm{n}_{\mathrm{OC}, 1}=0,15 \times 8,17=1,23 \mathrm{~mol}$

## Two component liquid-vapor equibrium with non miscible liquid phases

In this case the vapor pressure is the sum of the vapor pressures of the two pure components:

$$
\begin{equation*}
\mathrm{p}=\mathrm{p}_{1}^{*}+\mathrm{p}_{2}^{*} \tag{70}
\end{equation*}
$$

The L curve is a horizontal line, i.e. the boiling point is independent of the composition of the mixture. The total vapour pressure is greater than any of the pure vapour pressures, the boiling point is always less the same of any pure component. This is the basic idea of the steam distillation.

The vapor (V) curve shows us the temperature where a component begins to condensate at a given composition of vapour. If a component has the mole fraction $y$ in vapor, according to the Claysius-Clapeyron equation
$\ln (1-y)=\lambda / R\left(1 / T-/ T_{0}\right), \lambda$ is the heat of vaporization, $T_{0}$ is its boiling point.
Components A and B:


H7. The following data are given for the water (W) - chlorobenzene (C) mixture:

| $\mathrm{t} /{ }^{\circ} \mathrm{C}$ | $\mathrm{p}_{\mathrm{V}}^{*} / \mathrm{kPa}$ | $\mathrm{p}_{\mathrm{K}}^{*} / \mathrm{kPa}$ | $\mathrm{p} / \mathrm{kPa}$ |
| :---: | :---: | :---: | :---: |


| 90 | 70,09 | 27,78 | 97,87 |
| :---: | :---: | :---: | :---: |
| 92 | 75,59 | 29,78 | 105,37 |
| 94 | 81,45 | 31,90 | 113,35 |
| 96 | 87,67 | 34,14 | 121,81 |

a./ What is boiling point of the at 105 kPa ? Based on the data calculate the full pressure! At first glance the boiling point is below $92{ }^{\circ} \mathrm{C}$ (the vapor pressure is there $105,37 \mathrm{kPa}$ ). The heats of evaporation are since
$\lambda=\mathrm{R} \times \ln \frac{\mathrm{p}_{2}}{\mathrm{p}_{1}} \times \frac{\mathrm{T}_{1} \mathrm{~T}_{2}}{\mathrm{~T}_{2}-\mathrm{T}_{1}}$
$\lambda_{\mathrm{w}}=8,314 \times \ln \frac{75,59}{70,09} \times \frac{363,15 \times 365,15}{365,15-363,15}=3,772.10^{4} \mathrm{~J} / \mathrm{mol}$
$\lambda_{\mathrm{C}}=8,314 \times \ln \frac{29,78}{27,78} \times \frac{363,15 \times 365,15}{365,15-363,15}=3,832.10^{4} \mathrm{~J} / \mathrm{mol}$
Correction to 105 kPa (very small deviation):
$\Delta \mathrm{p}=\Delta \mathrm{p}_{\mathrm{w}}+\Delta \mathrm{p}_{\mathrm{K}}=\left(\frac{\lambda_{\mathrm{w}}}{\mathrm{RT}^{2}} \mathrm{p}_{\mathrm{w}}+\frac{\lambda_{\mathrm{C}}}{\mathrm{RT}^{2}} \mathrm{p}_{\mathrm{C}}\right) \Delta \mathrm{T} \quad\left(\mathrm{p}_{\mathrm{w}}=\mathrm{p}_{\mathrm{w}}^{*} \quad \mathrm{p}_{\mathrm{C}}=\mathrm{p}_{\mathrm{K}}^{*}\right)$
$\Delta \mathrm{T}=\frac{\mathrm{RT}^{2} \Delta \mathrm{p}}{\mathrm{p}_{\mathrm{w}} \lambda_{\mathrm{W}}+\mathrm{p}_{\mathrm{C}} \lambda_{\mathrm{C}}}=\frac{8,314 \times 365,5^{2} \times(-370)}{3,772.10^{4} \times 75,69.10^{3}+3,832.10^{4} \times 9,78.10^{3}}=0,1026 \mathrm{~K}$
The correction is only $0,1 \mathrm{~K}$, so the poiling point is $91,9^{\circ} \mathrm{C}$.
b./ How many steam is necessary for the steam distillation of 1 kg chlorobenzene at 105 kPa pressure?
Partial pressures at 105 kPa :

$$
\begin{aligned}
& \Delta \mathrm{p}_{\mathrm{W}}^{*}=\frac{3,772 \cdot 10^{4} \times 75,59 \cdot 10^{3}}{8,314 \times 365,15^{2}} \times 0,1=257 \mathrm{~Pa} \\
& \Delta \mathrm{p}_{\mathrm{C}}^{*}=\frac{3,832 \cdot 10^{4} \times 29,78.10^{3}}{8,314 \times 365,15^{2}} \times 0,1=102,9 \mathrm{~Pa}
\end{aligned}
$$

at the boiling point $365,05 \mathrm{~K}\left(91,9^{\circ} \mathrm{C}\right)$

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{C}}^{*}=29,78 \cdot 10^{3}-102,9=29,68 \mathrm{kPa} \quad \mathrm{M}_{\mathrm{C}}=112,45 \mathrm{~g} / \mathrm{mol} . \\
& \mathrm{p}_{\mathrm{w}}^{*}=75,59 \cdot 10^{3}-257=75,33 \mathrm{kPa}
\end{aligned}
$$

$\alpha=\frac{\mathrm{p}_{\mathrm{w}}}{\mathrm{p}_{\mathrm{C}}}=\frac{75,33}{29,68}=2,5377$
$\mathrm{n}_{\mathrm{C}}=\frac{1000}{112,45}=8,893 \mathrm{~mol}$
$\mathrm{n}_{\mathrm{w}}=\alpha \mathrm{n}_{\mathrm{C}}=2,5377 \times 8,893=22,57 \mathrm{~mol}=18 \times 22,57=406,2 \mathrm{~g}$
c./ At what temperature begins to boil the system of $n_{W}=4$ mole and $n_{C}=6$ mole at 105 kPa pressure? Since the boiling point is independent of the composition, $91,9^{\circ} \mathrm{C}$. The system is closed!
d./What is the composition of the vapor phase?

It depends only on the temperature, therefore
$\mathrm{y}_{\mathrm{W}}=\frac{\mathrm{p}_{\mathrm{W}}^{*}}{\mathrm{p}}=\frac{75,32}{105}=0,719$
$y_{C}=0,283$
e./ Which phase does disappear at first during the boiling?

One have to add to 1 mole chlorobenzene $\alpha=2,5377$ mole water, i.e here is necessar $6 \times$ $2,5377=15,23$ mole water but only 6 moles are in the mixture. There fore the W phase disappears at first.
f./ At which temperature does evaporate the last drop? The system is closed!

That means, the composition does not change during the boiling. One have to look for the temperature where $\mathrm{y}_{\mathrm{W}}=0,4$.

Applying the calculated heat of evaporation for chlorobenzene and from the vapour pressure at $96^{\circ} \mathrm{C}$ :

$$
\ln \mathrm{p}_{\mathrm{C}, 2}^{*}=\ln \mathrm{p}_{\mathrm{C}, l}^{*}+\frac{\lambda}{\mathrm{R}} \times\left(\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right)=\ln (34,14)+\frac{3,832 \cdot 10^{+}}{8,314}\left(\frac{1}{369,15}-\frac{1}{\mathrm{~T}_{2}}\right)
$$

Calculating for more temperatures

| $\mathrm{t} /{ }^{\circ} \mathrm{C}$ | $\mathrm{T} / \mathrm{K}$ | $\mathrm{p}_{\mathrm{K}}^{*} / \mathrm{kPa}$ | $\mathrm{y}_{\mathrm{K}}$ | $\mathrm{y}_{\mathrm{v}}$ |
| :---: | :---: | :---: | :---: | :---: |
| 110 | 383,15 | 53,876 | 0,513 | 0,487 |
| 120 | 393,15 | 73,928 | 0,704 | 0,296 |
| 115 | 388,15 | 62,906 | 0,599 | $0,401 \approx 0,4$ |

The last drop evaporates at $115^{\circ} \mathrm{C}$.
g./ What is the composition of the gas phase at $106^{\circ} \mathrm{C}$ and how many moles does it contain? Closed system!

We apply the equation used in point f.! Now $\mathrm{T}_{2}=379,15 \mathrm{~K}$.

| $\mathrm{t} /{ }^{\circ} \mathrm{C}$ | $\mathrm{T} / \mathrm{K}$ | $\mathrm{p}_{\mathrm{C}}^{*} / \mathrm{kPa}$ | $\mathrm{y}_{\mathrm{C}}$ | $\mathrm{y}_{\mathrm{w}}$ |
| :---: | :---: | :---: | :---: | :---: |
| 106 | 379,15 | 47,816 | 0,455 | 0,545 |

Since all the water evaporates, $\mathrm{n}_{\mathrm{W}, \mathrm{I}}=0, \mathrm{n}_{\mathrm{VW}, \mathrm{v}}=4 \mathrm{~mol}$.
$\frac{\mathrm{n}_{\mathrm{C}, \mathrm{v}}}{\mathrm{n}_{\mathrm{w}, \mathrm{v}}}=\frac{\mathrm{y}_{\mathrm{C}}}{\mathrm{y}_{\mathrm{w}}} \quad \mathrm{p}_{\mathrm{w}}=\mathrm{p}-\mathrm{p}_{\mathrm{C}}^{*}$ Since there is not water in the liquid phase, its vapor in not in equilibrium with its liquid, so its partial pressure is the difference between vapour pressure and that of the chlorobenzene.
$\mathrm{n}_{\mathrm{C}, \mathrm{v}}=\frac{\mathrm{y}_{\mathrm{C}}}{\mathrm{y}_{\mathrm{w}}} \mathrm{n}_{\mathrm{w}, \mathrm{v}}=\frac{0,452}{0,548} \times 4=3,34 \mathrm{~mol}$
$\mathrm{n}_{\mathrm{C}, 1}=6-3,34=2,66 \mathrm{~mol}$

## Liquid-solid equilibrium

Here we use the freezing point diagrams. It should be have theoretically the same form like the boiling point diagrams of the two component vapour-liquid diagrams. The ideal mixing is in the solid state rare, the systems with limited miscibility or not miscible in solid state are more common. The last ones have minimal freezing points, called eutectic points. The mixture of eutectic composition behaves in freezing like a pure component (but only in freezing!), similarly to a mixture with minimal boiling point. The diagram


If the liquid phase is an ideal mixture, the freezing point depression can be calculated in good approach as

$$
\begin{equation*}
\ln (1-\mathrm{x})=\frac{\Delta \mathrm{H}^{0}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_{0}}-\frac{1}{\mathrm{~T}}\right)=\frac{\Delta \mathrm{H}^{0}}{\mathrm{R}} \frac{\mathrm{~T}-\mathrm{T}_{0}}{\mathrm{~T}_{0} \mathrm{~T}} \tag{71}
\end{equation*}
$$

x is the mole fraction of the solute, $\Delta \mathrm{H}^{0}$ is the heat of fusion of the solvent, $\mathrm{T}_{0}$ is the freezing point of the solvent, $T$ is that of the solution. If $x$ is small,.

$$
\begin{equation*}
\mathrm{x}=\frac{\Delta \mathrm{H}^{0}}{\mathrm{RT}_{0}^{2}} \Delta \mathrm{~T} \tag{72}
\end{equation*}
$$

is a good approach.
The concentration of the solvent is often molality (m) given. The molality is the amount of the solute in moles, in 1 kg solvent. So the freezing point depression is

$$
\begin{equation*}
\Delta \mathrm{T}=\Delta \mathrm{T}_{\mathrm{m}} \mathrm{~m} \tag{73}
\end{equation*}
$$

where $\Delta \mathrm{T}_{\mathrm{m}}$ is the characteristic freezing point depression of the solvent in molality.

$$
\begin{equation*}
\Delta \mathrm{T}_{\mathrm{m}}=\frac{\mathrm{RT}_{0}^{2}}{\Delta \mathrm{H}^{0}} \frac{\mathrm{M}}{1000}=\frac{\mathrm{RT}_{0}^{2}}{\mathrm{q}_{\mathrm{sl}}} \tag{74}
\end{equation*}
$$

M the amount of the solvent in moles, $\mathrm{q}_{\mathrm{sl}}$ is the heat of fusion of 1 kg solvent..

The left and right part of the L curve cut one another. The undercooling is often the case, in this case the curve continues below the eutectic point. If a small crystal (seed) of one component is thrown in the undercooled solution the solid phase begins to crystallize and the temperature heats to the eutectic one. Glasses are regarded as undercooled lquids.

## Special freezing point diagrams.

Congruent melting: a compound (adduct) is formed in the solid phase from the two compounds. E.g. Ga+As is in equilibrium with GaAs. The freezing ( L ) curve has a maximum.


Incongruent melting: during the cooling a compound is formed from the liquid mixture, it begins to appear at the peritectic (P) point, a break on L curve, from K and $\mathrm{Na}_{\mathrm{Na}}^{2} \mathrm{~K}$ i9s formed. The diagram:


## PROBLEMS

I1. Naphtalene ( N ) and p-dichlorobenzene ( P ) form ideal eutecticum. Naphtalene m.p. 80,2
${ }^{\circ} \mathrm{C}$, heat of fusion $19,0 \mathrm{~kJ} / \mathrm{mol}$, p-dichlorobenene m.p. $53,2{ }^{\circ} \mathrm{C}$, heat of fusion $18,26 \mathrm{~kJ} / \mathrm{mol}$. Calculate the freezing point of the mixture with $55 \%(\mathrm{n} / \mathrm{n})$ p-dichlorobenzene content!

Look for the eutectic point (composition and temperature)! According to Eq. (71)
$\ln (1-\mathrm{x})=\frac{\Delta \mathrm{H}^{0}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_{0}}-\frac{1}{\mathrm{~T}}\right)=\frac{\Delta \mathrm{H}^{0}}{\mathrm{R}} \frac{\mathrm{T}-\mathrm{T}_{0}}{\mathrm{~T}_{0} \mathrm{~T}}$
Substitute for (1-x) the mole fraction of the solvent (ideal eutecticum) for both components. Expressing the temperature of the eutecticum in $1 / \mathrm{T}_{0}$, the two equations should be equal, therefore:
$\frac{1}{\mathrm{~T}_{\mathrm{P}}}-\frac{\mathrm{R} \ln \mathrm{x}_{\mathrm{P}}}{\Delta \mathrm{H}_{\mathrm{N}}^{0}}=\frac{1}{\mathrm{~T}_{\mathrm{N}}}-\frac{\mathrm{R} \ln \mathrm{x}_{\mathrm{N}}}{\Delta \mathrm{H}_{\mathrm{P}}^{0}}$
Considering that $\mathrm{x}_{\mathrm{N}}=1-\mathrm{x}_{\mathrm{P}}$,
After alteration
$\mathrm{x}_{\mathrm{P}}^{\frac{\Delta \mathrm{H}_{\mathrm{P}}^{0}}{\Delta H_{\mathrm{N}}^{0}}}=\exp \left(\frac{\Delta \mathrm{H}_{\mathrm{p}}^{0}}{\mathrm{R}} \times \frac{\mathrm{T}_{\mathrm{N}}-\mathrm{T}_{\mathrm{P}}}{\mathrm{T}_{\mathrm{N}} \mathrm{T}_{\mathrm{P}}}\right) \times\left(1-\mathrm{x}_{\mathrm{P}}\right)$,
Subsituting $\mathrm{x}_{\mathrm{P}}=0,55$, the inequality is $0,5629<0,7526$;
substituting e.g. $x_{P}=0,70$, the inequality is $0,7098>0,5017$. Therefore the eutectic point is between these values. $\mathrm{x}_{\mathrm{P}}=0,55$ is on the naphthalene side of the eutectic point. Therefore naphthalene is the solvent. We have to increase $x_{p}$ from 0,55 for have the equality.
Expressing 1/T from Eq. (1) and substituting:

$$
\frac{1}{\mathrm{~T}}=\frac{1}{\mathrm{~T}_{\mathrm{N}}}-\frac{\mathrm{R} \ln \left(1-\mathrm{x}_{\mathrm{P}}\right)}{\Delta \mathrm{H}_{\mathrm{N}}^{0}}=\frac{1}{353,35}-\frac{8,314 \times \ln (1-0,55)}{19000}=3,1797 \mathrm{~K}^{-1}
$$

$$
\mathrm{T}=314,5 \mathrm{~K}=41,6^{\circ} \mathrm{C}
$$

I2. O-nitrotoluene (O, m.p. $-4,45^{\circ} \mathrm{C}$ ) and p-nitrotoluene (P, m.p $51,4^{\circ} \mathrm{C}$ ) form ideal eutecticum (E) , with melting point $-15,2^{\circ} \mathrm{C}$, and $30,5 \%(\mathrm{~m} / \mathrm{m})$ p-nitro-toluene content. How meny pure P compound can be yielded from 1 kg O-P mixture (M), having as melting point $12{ }^{\circ} \mathrm{C}$, during heating to the temperature of the eutecticum?


We are at the side of P , this is the solvent. Namely, the melt has $12{ }^{\circ} \mathrm{C}$ m.p., this is over the m.p. of $M$ is over m.p. of $O$ but below the m.p. of $P$. Therefore during heating the heating curve can cross the $L$ curve only on the $P$ side. Since the molar masses of the two components is equal, the mass\% is equal to the $\mathrm{mol} \%$.

Calculation at the P side
$\Delta H_{P}^{0}=R \cdot \ln \left(1-x_{E, O}\right) \frac{T_{P} T_{E}}{T_{E}-T_{P}}=8,314 \times \ln (1-0,695) \frac{324,55 \times 257,95}{257,95-324,55}=12410 \mathrm{Jmol}^{-1}$
$\ln \left(1-\mathrm{x}_{\mathrm{M}, \mathrm{O}}\right)=\frac{\Delta \mathrm{H}_{\mathrm{P}}^{0}}{\mathrm{R}}\left(\frac{\mathrm{T}_{\mathrm{M}}-\mathrm{T}_{\mathrm{P}}}{\mathrm{T}_{\mathrm{P}} \mathrm{T}_{\mathrm{M}}}\right)=\frac{12410}{8,314} \times \frac{285,15-324,55}{324,55 \times 285,15}=-0,6355$
$x_{M, P}=1-x_{M, O}=0,5297 \quad x_{M, O}=0,4703$
Eutecticum and P will precipite.
1000 g mixture contains $470,3 \mathrm{~g} \mathrm{O}$. All this amount is in the euteticum. Since its mole fraction in M is $0,695(1-0,305)$, the mass of the eutecticum is $\frac{470,3}{0,695}=676,7 \mathrm{~g}$. The remaining mass of the mixture appears as solid P ,i.e. we have separately the remaining $1000-676,7=323,3 \mathrm{~g}$. pure P.

I3. Meta(M)- and p-nitroaniline (P) form ideal eutecticum (E), with $\mathrm{x}_{\mathrm{M}}=0,614, \mathrm{t}_{\mathrm{E}}=90^{\circ} \mathrm{C}$. parameters. 1 kg melt is cooled from $150{ }^{\circ} \mathrm{C}$ in an experiment, the components are m - és p-nitro-anilines, the composition is unknown. The crystallization began at $100^{\circ} \mathrm{C}$. The cooling is continued until the temperature arrives that of the eutecticum. Two type of crystals are found
a./ $374 \pm 5 \mathrm{~g}$,
b. $/ 100 \pm 5 \mathrm{~g}$

Questions: A./ Wat was the composition of the mixture?
B./ What was the composition of the resulted crystals?

| Compound | Freezing point $/{ }^{\circ} \mathrm{C}$ | Heat of fusion $/ \mathrm{kJ} . \mathrm{mol}^{-1}$ |
| :--- | :---: | :---: |
| m -nitro-anilin | 114,0 | 23,69 |
| p-nitro-anilin | 147,3 | 21,08 |

1. 

$\ln \left(1-\mathrm{x}_{\mathrm{M}}\right)=\frac{\Delta \mathrm{H}_{\mathrm{P}}^{0}}{\mathrm{R}} \times \frac{\mathrm{T}-\mathrm{T}_{\mathrm{P}}}{\mathrm{T}_{\mathrm{P}} \mathrm{T}}=\frac{21080}{8,314} \times \frac{373,15-423,15}{423,15 \times 373,15}=-0,8029$
$\mathrm{x}_{\mathrm{P}}=1-\mathrm{x}_{\mathrm{M}}=0,4480 \quad \mathrm{x}_{\mathrm{M}}=0,5520$
We are at the P side of E . The composition of the original mixture

$$
\mathrm{m}_{\mathrm{M}}=1000 \times 0,5520=552,0 \mathrm{~g} \mathrm{~m}_{\mathrm{P}}=1000-552,0=448,0 \mathrm{~g}
$$

Using the lever rule for the original mixture

$$
\mathrm{m}_{\mathrm{E}}=\frac{1,0-\mathrm{m}_{\mathrm{P}}}{1,0-\mathrm{m}_{\mathrm{E}, \mathrm{P}}}=\frac{1,0-0,448}{1,0-0,386} \times 1000=899,0 \mathrm{~g}
$$

$$
\mathrm{m}_{\mathrm{P}}=\frac{\mathrm{m}_{\mathrm{P}}-\mathrm{m}_{\mathrm{E}, \mathrm{P}}}{1,0-\mathrm{m}_{\mathrm{E}, \mathrm{P}}}=\frac{0,448-0,386}{1,0-0,386} \times 1000=101,0 \mathrm{~g} \quad \text { crystal are yielded }
$$

## 2.

$$
\ln \left(1-x_{P}\right)=\frac{\Delta \mathrm{H}_{M}^{0}}{R} \times \frac{\mathrm{T}-\mathrm{T}_{\mathrm{M}}}{\mathrm{~T}_{\mathrm{M}} \mathrm{~T}}=\frac{23690}{8,314} \times \frac{373,15-387,15}{387,15 \times 373,15}=-0,2761
$$

$$
x_{M}=1-x_{P}=0,7587 \quad x_{P}=0,2413
$$

We are at the $M$ side of the $E$. The composition of the original mixture:
$\mathrm{m}_{\mathrm{M}}=1000 \times 0,7587=758,7 \mathrm{~g} \mathrm{~m}_{\mathrm{P}}=1000-758,7=241,3 \mathrm{~g}$
Calculation of the mass of the produced crystals:

$$
m_{E}=\frac{m_{P}-0,0}{1,0-m_{E, M}}=\frac{0,2413-0,0}{1,0-0,614} \times 1000=625,1 \mathrm{~g}
$$

and

$$
m_{M}=\frac{m_{E, P}-m_{P}}{m_{E, P}-0,0}=\frac{0.386-0,2413}{0,386-0,0} \times 1000=374,9 \mathrm{~g}
$$

## CHEMICAL EQUILIBRIUM

## Activities

$a_{i}=\frac{p_{i}}{p^{0}}$ ideal gas, $\mathrm{p}^{0}=$ standard pressure, $\mathrm{a}_{\mathrm{i}}$ dimensionless
$a_{i}=\frac{f_{i}}{p^{0}} \quad$ real gas $a_{i}=$ activity, $f_{i}=$ fugacity
$\mathrm{a}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}} \quad$ ideal mixture
$\mathrm{a}_{\mathrm{i}}={ }^{\mathrm{x}} \gamma_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \quad$ real mixture ${ }^{\mathrm{x}} \gamma_{\mathrm{i}}=$ activity coefficient
$a_{i}=\frac{{ }^{c} \gamma_{i} c_{i}}{c^{0}} \quad$ mixture, chemical concentration
$\mathrm{c}^{0}=$ unit chemical concentration, mole solute $/ \mathrm{dm}^{3}$ mixture
$\mathrm{a}_{\mathrm{i}}=\frac{{ }^{\mathrm{m}} \gamma_{\mathrm{i}} \mathrm{m}_{\mathrm{i}}}{\mathrm{m}^{0}} \quad$ (molality) $\mathrm{m}^{0}=$ unit molality, 1 mol solute $/ \mathrm{kg}$ solvent

## The equilibrium constant

$\sum_{A} v_{A} M_{A}=\sum_{B} v_{B} M_{B} \quad v=$ stoichiometric coefficient

$$
\begin{align*}
& K=K_{a}=\frac{\prod_{B} a_{B}^{v_{B}}}{\prod_{A} a_{A}^{v_{A}}}=\frac{\prod_{B}\left(\frac{c_{B} c_{B} c_{B}}{c^{0}}\right)^{v_{B}}}{\prod_{A}\left(\frac{c_{A} \gamma_{A} c_{A}}{c^{o}}\right)^{v_{B}}}=K_{\gamma} K_{c}\left(c^{o}\right)^{-\alpha v}  \tag{82}\\
& \mathrm{~K}_{\gamma}=\frac{\prod_{\mathrm{B}}\left({ }^{c} \gamma_{\mathrm{B}}\right)^{\mathrm{r}_{\mathrm{B}}}}{\prod_{\mathrm{A}}\left({ }^{c} \gamma_{\mathrm{A}}\right)^{\mathrm{r}^{\prime}}} \quad \mathrm{K}_{\mathrm{c}}=\frac{\prod_{\mathrm{B}}\left(\mathrm{c}_{\mathrm{B}}\right)^{v_{\mathrm{B}}}}{\prod_{\mathrm{A}}\left(\mathrm{c}_{\mathrm{A}}\right)^{v_{A}}} \quad \Delta v=\sum_{\mathrm{B}} v_{\mathrm{B}}-\sum_{\mathrm{A}} v_{\mathrm{A}} \tag{83}
\end{align*}
$$

$\mathrm{K}_{\mathrm{y}}$ is dimensionless but depends on pressure (excluding $\Delta \nu=0$ ), it is practical to use at constant pressure; $\mathrm{K}_{\mathrm{p}}$ has dimension, it is practical to use at constant volume.

## PROBLEMS

J1. Calculate the equilibrium constant of the reaction $\mathrm{C}_{3} \mathrm{H}_{8}=\mathrm{CH}_{4}+\mathrm{C}_{2} \mathrm{H}_{4}$ at 960 K using data of Table 2.
$\mu_{\mathrm{T}}^{0}=\mathrm{a}(-\mathrm{x} . \mathrm{y})-\mathrm{b}\left(\frac{\mathrm{x}^{2}}{2}\right)-\mathrm{c}\left(\frac{1}{2 \mathrm{x}}\right)-\mathrm{d}\left(\frac{\mathrm{x}^{3}}{6}\right)+\mathrm{H}(+)-\mathrm{S}(+) \mathrm{x} \quad \mathrm{kJ} /$ mole $\mathrm{x}=\frac{\mathrm{T}[\mathrm{K}]}{1000} \quad \mathrm{y}=\ln (\mathrm{T}[\mathrm{K}])-1 \quad \Delta_{\mathrm{r}} \mu_{\mathrm{T}}^{0}=\sum_{\mathrm{B}} v_{\mathrm{B}} \mu_{\mathrm{T}, \mathrm{B}}^{0}-\sum_{\mathrm{A}} v_{\mathrm{A}} \mu_{\mathrm{T}, \mathrm{A}}^{0} \quad \Delta_{\mathrm{r}} \mu_{\mathrm{T}}^{0}=-\mathrm{RT} \ln \mathrm{K}$

It is practical to collect the data in table since they are better applicable and this accelerates the calculations. The stoichiometric coefficients of the molecules in the reaction equation are placed in the left first column, products with positive, reactants with negative sign.

The other columns contain the constants of the molecules from Table 2.

How to calculate?

1. Calculate the x and y constants according to the above equations.
2. Fill the table with the stoichiometric coefficients and the data from Table 2.
3. Summing of the molecular constants $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{H}(+)$ and $\mathrm{S}(+)$ by columns multiplying the data with the corresponding stoichiometric coefficient of the molecules. Write the results in the Sum line.
4. Calculate the coefficients of the $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{H}(+)$ and $\mathrm{S}(+)$ quantities according to the above equation for the standard chemical potentials, and write the results int he Multiplier line.
5. Multiply the data in Sum line with those in the Multiplier line. Write the products in the Product line.
6. The sum of the data in Product line is the standard chemical potential of the reaction in $\mathrm{kJ} /$ mole. Multiply it with 1000 for get it $\mathrm{J} / \mathrm{mole}$ for the calculation of the equilibrium constant.
7. Calculate the equilibrium constant using the above equation.

| Number of: mol. .types | 3 |  | $x=$ | 0,960 |  | 5,8669 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temperature: |  |  |  |  |  |  |  |
| Molecule | $v$ | a | b | c | d | H(+) | S(+) |
| $\mathrm{CH}_{4}$ | 1 | 11,933 | 77,647 | 0,142 | -18,414 | -81,242 | 96,731 |
| $\mathrm{C}_{2} \mathrm{H}_{4}$ | 1 | 39,292 | 57,128 | -1,297 | 0 | 33,863 | -28,868 |
| $\mathrm{C}_{3} \mathrm{H}_{8}$ | -1 | 19,008 | 224,48 | -0,582 | -66,467 | -120,855 | 94,474 |
| Sum |  | 32,217 | -89,705 | -0,573 | 48,053 | 73,476 | -26,611 |
| Multiplier |  | -5,6323 | -0,4608 | -0,5208 | -0,1475 | 1 | -0,96 |
| Product |  | -181,454 | 41,3361 | 0,2984 | -7,0857 | 73,476 | 25,5466 |

$\Delta_{\mathrm{r}} \mu_{\mathrm{T}}{ }^{0}$
$\ln (\mathrm{K})$
K
$-47,883 \mathrm{~kJ} /$ mole $\quad * 1000$ to $\mathrm{J} / \mathrm{mole}$
5,9993

403,15

J2. Calculate the equilibrium constant of the reaction $2 \mathrm{H}_{2} \mathrm{O}=2 \mathrm{H}_{2}+\mathrm{O}_{2}$ at 1500 K using the dta in Table 2! $\left(3,27.10^{-12)}\right.$

J3. Calculate the equilibrium constant of the reaction $2 \mathrm{KHCO}_{3}(\mathrm{~s})=\mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ at 389,5 K using the data of Table 2!

$$
\begin{aligned}
& \quad \mu_{\mathrm{T}}^{0}=\mathrm{a}(-\mathrm{x} \cdot \mathrm{y})-\mathrm{b}\left(\frac{\mathrm{x}^{2}}{2}\right)-\mathrm{c}\left(\frac{1}{2 \mathrm{x}}\right)-\mathrm{d}\left(\frac{\mathrm{x}^{3}}{6}\right)+\mathrm{H}(+)-\mathrm{S}(+) \mathrm{x} \quad \mathrm{~kJ} / \mathrm{mol} \\
& \mathrm{x}=\frac{\mathrm{T}[\mathrm{~K}]}{1000} \quad \mathrm{y}=\ln (\mathrm{T}[\mathrm{~K}])-1
\end{aligned}
$$

| Number of molec. types: Temperature: |  | 4 |  | $\mathrm{x}=$ |  |  | 4.9649 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 389.5 K |  |  | 0.3895 |  |  |
|  |  | Constants from Table 2 |  |  |  |  |  |
| Molecule | $v$ | a | b | c | d | H(+) | S(+) |
| $\mathrm{K}_{2} \mathrm{CO}_{3(\mathrm{~s})}$ | 1 | 97.947 | 92.090 | -0.978 | 0.000 | -1187.626 | -435.556 |
| $\mathrm{CO}_{2}$ | 1 | 51.128 | 4.368 | -1.469 | 0.000 | -413.886 | -87.078 |
| $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ | 1 | 34.376 | 7.841 | -0.423 | 0.000 | -253.871 | -11.750 |
| $\mathrm{KHCO}_{3(\mathrm{~s})}$ | -2 | 47.698 | 143.093 | 0.000 | 0.000 | -985.420 | -198.925 |
| Sum |  | 88.055 | -181.887 | -2.870 | 0.000 | 115.457 | -136.534 |
| Multiplyer |  | -1.934 | -0.076 | -1.284 | -0.010 | 1.000 | -0.390 |
| Product |  | -170.282 | 13.797 | 3.684 | 0.000 | 115.457 | 53.180 |


| $\Delta_{\mathrm{r}} \mu^{\circ}=$ | $15.8362 \mathrm{~kJ} /$ mole | Multiply with $1000!$ |
| :--- | :---: | :---: |
| $\ln (\mathrm{K})=$ | -4.8903 |  |
| $\mathrm{~K}=$ | $7,51926.10^{-3}$ | $\left(7,52.10^{-3}\right)$ |

## Disszociation and the ratio of conversation (dissociation)

Example: $\mathrm{PCl}_{5}=\mathrm{PCl}_{3}+\mathrm{Cl}_{2} ; \mathrm{t}=250{ }^{\circ} \mathrm{C}$
$\mathrm{K}=1,13$ (dissociaton constant) $\mathrm{K}=\mathrm{K}_{\gamma} \mathrm{K}_{\mathrm{y}}\left(\frac{\mathrm{p}}{\mathrm{p}^{0}}\right)^{\Delta v} \quad$ We assume ideal mixture of ideal gases, therefore $\mathrm{K}_{\gamma}=1$, and Dalton's law is valid.

J4. The ratio of the components in the initial mixture is $\mathrm{PCl}_{5}: \mathrm{Cl}_{2}=1: 2$

## a./ What is the ratio of dissociation at 200 kPa constant pressure?

Since the pressure is constant, $\mathrm{p}_{0}=200 \mathrm{kPa}$, the application of $\mathrm{K}_{\mathrm{y}}$ is practical.

$$
\begin{aligned}
& \mathrm{K}=\left(\frac{\mathrm{p}_{0}}{\mathrm{p}^{0}}\right)^{\Delta v} \mathrm{~K}_{\mathrm{y}} \\
& \sum_{\mathrm{A}} v_{\mathrm{A}} \mathrm{M}_{\mathrm{A}}=\sum_{\mathrm{B}} v_{\mathrm{B}} \mathrm{M}_{\mathrm{B}} \\
& \mathrm{~K}_{\mathrm{y}}=\frac{\prod_{\mathrm{B}} \mathrm{y}_{\mathrm{B}}^{\mathrm{v}_{\mathrm{B}}}}{\prod_{\mathrm{A}} \mathrm{y}_{\mathrm{A}}^{v_{\mathrm{A}}}} \\
& \Delta v=+1 \quad \mathrm{p}^{0}=100 \mathrm{kPa}
\end{aligned}
$$

## Starting with pure PCl $_{5}$ :

| Initial molar ratio | $\mathrm{PCl}_{5}$ | $\mathrm{PCl}_{3}$ | $\mathrm{Cl}_{2}$ | $\Sigma$ |
| :--- | :---: | :---: | :---: | :---: |
| Equilibrium molar ratio | 1 | $1-\alpha$ | 0 | 0 |
| Equlibrium mole fraction | $\frac{1-\alpha}{1+\alpha}$ | $\frac{\alpha}{1+\alpha}$ | $\frac{\alpha}{1+\alpha}$ | $1+\alpha$ |
| $K_{y}=\frac{y_{P C l_{3}} \cdot y_{C l_{2}}}{y_{P C l_{5}}}=\frac{\alpha}{1+\alpha} \times \frac{\alpha}{1+\alpha}$ |  |  |  |  |
| $\frac{1-\alpha}{1+\alpha}$ | $\frac{\alpha^{2}}{(1-\alpha)(1+\alpha)}=\frac{\alpha^{2}}{1-\alpha^{2}}$ | 1 |  |  |
| $\mathrm{~K}=\left(\frac{\mathrm{p}}{\mathrm{p}^{0}}\right)^{\Delta v} \frac{\alpha^{2}}{1-\alpha^{2}}=\frac{2 \times 10^{5}}{1 \times 10^{5}} \frac{\alpha^{2}}{1-\alpha^{2}}=1,13$ |  |  |  |  |
| $2 \alpha^{2}=1,13-1,13 \alpha^{2}$ |  |  |  |  |
| $\alpha^{2}=\frac{1,13}{3,13}$ |  |  |  |  |
| $\alpha=0,601$ |  |  |  |  |

The initial molar ratio is $\mathrm{PCl}_{5}: \mathrm{Cl}_{2}=1: 2$

|  | $\mathrm{PCl}_{5}$ | $\mathrm{PCl}_{3}$ | $\mathrm{Cl}_{2}$ | $\Sigma$ |
| :--- | :---: | :---: | :---: | :---: |
| Initial molar ratio | 1 | 0 | 2 | 3 |
| Equlibrium molar ratio | $1-\alpha$ | $\alpha$ | $2+\alpha$ | $3+\alpha$ |
| Equilibrium mole fraction | $\frac{1-\alpha}{3+\alpha}$ | $\frac{\alpha}{3+\alpha}$ | $\frac{\alpha}{3+\alpha}$ | $\mathbf{1}$ |

$K_{y}=\frac{\frac{\alpha}{3+\alpha} \times \frac{2+\alpha}{3+\alpha}}{\frac{1-\alpha}{3+\alpha}}=\frac{\alpha(2+\alpha)}{(1-\alpha)(3+\alpha)}=\frac{2 \alpha+\alpha^{2}}{3-2 \alpha-\alpha^{2}}$
$\mathrm{K}=\left(\frac{\mathrm{p}_{0}}{\mathrm{p}^{0}}\right)^{+1} \frac{2 \alpha+\alpha^{2}}{3-2 \alpha-\alpha^{2}}=\frac{2 \times 10^{5}}{1 \times 10^{5}} \frac{2 \alpha+\alpha^{2}}{3-2 \alpha-\alpha^{2}}=1,13$
$4 \alpha+2 \alpha^{2}=3,39-2,26 \alpha-1,13 \alpha^{2}$
$3,13 \alpha^{2}+6,26 \alpha-3,39=0$
$\alpha=\frac{-6,26 \pm 9,035}{6,26}=-1 \pm 1,443$
$\alpha_{1}=0,443 \quad \alpha_{2}=-2,443 \quad$ (meaningless result)

## b. What is the ratio of dissociation at constant volume and 200 kPa initial pressure?

The volume is constant, it is practical to calculate with $K_{p} ; \mathrm{p}_{0}=200 \mathrm{kPa}$.
$\mathrm{K}=\left(\mathrm{p}^{0}\right)^{-\Delta v} \mathrm{~K}_{\mathrm{p}}$
$\sum_{A} v_{A} M_{A}=\sum_{B} v_{B} M_{B}$
$K_{p}=\frac{\prod_{B} p_{B}^{v_{B}}}{\prod_{A} p_{A}^{v_{A}}}$
Starting with pure $\mathrm{PCl}_{5}$ :

|  | $\mathrm{PCl}_{5}$ | $\mathrm{PCl}_{3}$ | $\mathrm{Cl}_{2}$ | $\sum$ |
| :--- | :---: | :---: | :---: | :---: |
| Initial molar ratio | 1 | 0 | 0 | 1 |
| Equilibrium molar ratio | $1-\alpha$ | $\alpha$ | $\alpha$ | $1+\alpha$ |
| Equilibrium pressure | $\mathrm{p}_{0}(1-\alpha)$ | $\mathrm{p}_{0} \alpha$ | $\mathrm{p}_{0} \alpha$ | $\mathrm{p}_{0}(1+\alpha)$ |

$$
\begin{aligned}
& \quad \mathrm{K}_{\mathrm{p}}=\frac{\mathrm{p}_{0} \alpha \times \mathrm{p}_{0} \alpha}{\mathrm{p}_{0}(1-\alpha)}=\mathrm{p}_{0} \frac{\alpha^{2}}{(1-\alpha)} \\
& \mathrm{K}=\left(\mathrm{p}^{0}\right)^{-\Delta v} \mathrm{p}_{0} \frac{\alpha^{2}}{1-\alpha}=\frac{2 \times 10^{5}}{1 \times 10^{5}} \frac{\alpha^{2}}{1-\alpha}=1,13 \\
& 2 \alpha^{2}=1,13-1,13 \alpha \\
& 2 \alpha^{2}+1,13 \alpha-1,13=0 \\
& \alpha=\frac{-1,13 \pm 3,212}{4} \\
& \alpha_{1}=0,520 \quad \alpha_{2}=-1,086 \text { (meaningless result) }
\end{aligned}
$$

Starting with $\mathrm{PCl}_{5}: \boldsymbol{C l}_{2}=1: 2$ :

|  | $\mathrm{PCl}_{5}$ | $\mathrm{PCl}_{3}$ | $\mathrm{Cl}_{2}$ | $\sum$ |
| :--- | :---: | :---: | :---: | :---: |
| Initial molar ratio | 1 | 0 | 2 | 3 |
| Initial pressure | $\frac{1}{3} \mathrm{p}_{0}$ | 0 | $\frac{1}{3} .2 \mathrm{p}_{0}$ | $\mathrm{p}_{0}$ |
| Equilibrium molar ratio | $1-\alpha$ | $\alpha$ | $2+\alpha$ | $3+\alpha$ |
| Equilibrium pressure | $\frac{1}{3} \mathrm{p}_{0}(1-\alpha)$ | $\frac{1}{3} \mathrm{p}_{0} \alpha$ | $\frac{1}{3} \mathrm{p}_{0}(2+\alpha)$ | $\frac{1}{3} \mathrm{p}_{0}(3+\alpha)$ |

$\mathrm{K}_{\mathrm{p}}=\frac{\frac{1}{3} \mathrm{p}_{0} \alpha \times \frac{1}{3} \mathrm{p}_{0}(2+\alpha)}{\frac{1}{3} \mathrm{p}_{0}(1-\alpha)}=\frac{1}{3} \mathrm{p}_{0} \frac{\alpha(2+\alpha)}{(1-\alpha)}$
$\mathrm{K}=\left(\mathrm{p}^{0}\right)^{-\Delta v} \frac{1}{3} \mathrm{p}_{0} \frac{\alpha(2+\alpha)}{1-\alpha}=\frac{\frac{1}{3} 2 \times 10^{5}}{1 \times 10^{5}} \frac{\alpha(2+\alpha)}{1-\alpha}=1,13$
$4 \alpha+2 \alpha^{2}=3,39-3,39 \alpha$
$2 \alpha^{2}+7,39 \alpha-3,39=0$
$\alpha=\frac{-7,39 \pm 9,041}{4}$
$\alpha_{1}=0,412 \quad \alpha_{2}=-4,108 \quad$ (meaningless result)

J5. What is the full pressure in the equilibrium gas mixture, if $\boldsymbol{P C l}_{3}$ és $\boldsymbol{a} \boldsymbol{C l}_{2}$ are equimolar?

## a./ The partial pressure of $\mathrm{PCl}_{5}$ is $0,1 \mathrm{MPa}$

Let regard the volume constant, it is practical to use $\mathrm{K}_{\mathrm{p}}$. The initial pressure is $\mathrm{p}_{0}$.
$\mathrm{K}=\left(\mathrm{p}^{\mathrm{o}}\right)^{-\Delta v} \mathrm{~K}_{\mathrm{p}}$
$\sum_{A} v_{A} M_{A}=\sum_{B} v_{B} M_{B}$
$K_{p}=\frac{\prod_{B} p_{B}^{v_{B}}}{\prod_{A}^{v_{A}}}$

|  | $\mathrm{PCl}_{5}$ | $\mathrm{PCl}_{3}$ | $\mathrm{Cl}_{2}$ | $\sum$ |
| :--- | :---: | :---: | :---: | :---: |
| Initial molar ratio | 1 | 0 | 0 | 1 |
| Equilibrium molar ratio | $1-\alpha$ | $\alpha$ | $\alpha$ | $1+\alpha$ |
| Equilibrium pressure | $\mathrm{p}_{0}(1-\alpha)$ | $\mathrm{p}_{0} \alpha$ | $\mathrm{p}_{0} \alpha$ | $\mathrm{p}_{0}(1+\alpha)$ |

$\Delta v=1$
$\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{p}_{0} \alpha \times \mathrm{p}_{0} \alpha}{\mathrm{p}_{0}(1-\alpha)}$
$K=\left(p^{0}\right)^{-1} p_{0} \frac{\alpha^{2}}{1-\alpha}$

## For $\mathrm{PCl}_{5}$ :

$\mathrm{p}_{\mathrm{PCl}_{5}}=(1-\alpha) \mathrm{p}_{0}=10^{5} \mathrm{~Pa} \quad \mathrm{p}_{0}=\frac{10^{5}}{1-\alpha}$
$\mathrm{K}=\left(\mathrm{p}^{0}\right)^{-1} \mathrm{p}_{0} \frac{\alpha^{2}}{1-\alpha}=\frac{1}{10^{5}} \frac{10^{5}}{1-\alpha} \frac{\alpha^{2}}{(1-\alpha)^{2}}=1,13$
$\frac{\alpha}{1-\alpha}=1,0630$
$\alpha=0,515$
$\mathrm{p}_{0}=2,063 \times 10^{5} \mathrm{~Pa}$
$\mathrm{p}=\mathrm{p}_{0}(1+\alpha)=2,063 \times 10^{5} \times 1,515=312,5 \mathrm{kPa}$
b./Yet inert gas with 0,1MPa pressure is added.
$\mathrm{p}_{2}=\mathrm{p}+\mathrm{p}_{\mathrm{k}}=412,5 \mathrm{kPa}$
$K$ does not change, neither the partial pressures change at constant volume.

## Further remarks:

1. K depends only on temperature.
2. The same chmical reaction may describe in several equivalent forms, e.g.. az like

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2}=2 \mathrm{NH}_{3} \text { or } \frac{1}{2} \mathrm{~N}_{2}+\frac{3}{2} \mathrm{H}_{2}=N H_{3} .
$$

The dividing with 2 means the equilibrium constant of the second equation is the square root of the first.
3. The values of the stoichiometric coefficients must be considered in the description of the equilibrium state: Let $2 \mathrm{SO}_{2}+\mathrm{O}_{2}=2 \mathrm{SO}_{3}$. Let mix at constant pressure $\mathrm{SO}_{2}$ and $\mathrm{O}_{2}$ (in presence of catalyst) in 3:1 ratio. If part $\alpha$ of oxygen is converted then in the equilibrium the participation of $\mathrm{SO}_{2}$ is $3-2 \alpha$, that of $\mathrm{SO}_{3}$ is $2 \alpha$, and from oxygen 1- $\alpha$.

