Physical chemistry:

Description of the chemical phenomena with the help of the physical laws.

THERMODYNAMICS

It is able to explain/predict

- direction
- equilibrium
- factors influencing the way to equilibrium

Follow the interactions during the chemical reactions

VOCABULARY (TERMS IN THERMODYNAMICS)

System: the part of the world which we have a special interest in. E.g. a reaction vessel, an engine, an electric cell.

Surroundings: everything outside the system.

There are two points of view for the description of a system:

Phenomenological view: the system is a continuum, this is the method of thermodynamics.

Particle view: the system is regarded as a set of particles, applied in statistical methods and quantum mechanics.

Classification based on the interactions between the system and its surrounding

Q: heat
W: work

Homogeneous: macroscopic properties E.g. are the same everywhere in the system.

Inhomogeneous: certain macroscopic properties change from place to place; their distribution is described by continuous function.
E.g. a copper rod is heated at one end, the temperature changes along the rod.

Heterogeneous: discontinuous changes of macroscopic properties.

E.g. water-ice system

One component
Two phases

Phase: part of the system which is uniform throughout both in chemical composition and in physical state. The phase may be dispersed, in this case the parts with the same composition belong to the same phase.

Component: chemical compound

Characterisation of the macroscopic state of the system

The state of a thermodynamic system is characterized by the collection of the measurable physical properties.
amount of substance: mass (m, g), chemical mass ($n, m o l$) volume (V, m^{3})
pressure (p, Pa)
temperature (T, K)
concentration (c, mol/L; x,)

State equation: relationship between the characteristics

$$
\text { e.g.: } \quad p V=n R T \quad R=8.314 \mathrm{~J} / \mathrm{molK}
$$

also diagrams

Classification of thermodynamic quantities:

Extensive quantities:

depend on the extent of the system and are additive:
mass (m)
volume (V) internal energy (U), etc.

Intensive quantities:

 do not depend on the extent of the system and are not additive : temperature (T)pressure (p)
concentration (c)

A system is in thermodynamic equilibrium if none of the state functions are changing. In equilibrium no macroscopic processes take place. Dynamic!!!!!!!

In a non-equilibrium system the state functions change in time, the system tends to be in equilibrium.

Meta-stable state: the state is not of minimal energy, energy is necessary for crossing an energy barrier.

A reversible change is one that can be reversed by an infinitesimal modification of one variable. A reversible process is performed through the same equilibrium positions from the initial state to the final state as from the final state to the initial state.

The following processes are frequently studied:
isothermal ($T=$ const.)
isobaric ($p=$ const.)
isochoric ($V=$ const.)
adiabatic $(Q=0)$

State function: a property of a system that depends only on the current state of the system, not on the way in which the system acquired that state (independent of path). A state function describes the equilibrium state of a system.

Important state functions in thermodynamics:
U - internal energy
H - enthalpy
S - entropy
A - Helmholtz free energy
G - Gibbs free energy
U, H, A, G
change: Δ, d; joule, J; kJ
s
J/K

Process quantities: their values depend on the specific transition (or path) between two equilibrium states.
W, Q
$\delta W, \delta Q ;$ joule, J; kJ

Work as a process function

$$
W_{\text {mech }}=\vec{F} \cdot \vec{\ell}
$$

$$
\delta W_{\text {vol }}=-p A_{s} d x=-p d V
$$

sign convention
$\delta W_{\text {vol }}=-p d V \quad W_{\text {volf }}=-\int_{V_{i}} p d V$

$W_{\text {vol }}=-\int_{V_{i}}^{V_{i}} p d V=-\int_{V_{i}}^{V_{i}} \frac{n R T}{V} d V=$
$=-n R T \ln \frac{V_{f}}{V_{i}}$
isothermal work
isobaric work

THE INTERNAL ENERGY

The energy of the system

$$
\begin{aligned}
& E=E_{p o t}+E_{k i n}+U \\
& E_{\text {pot }}=m \cdot g \cdot h \\
& E_{k i n}=\frac{1}{2} m \cdot v^{2}
\end{aligned}
$$

The internal energy

$$
\begin{aligned}
& U=U_{0}+U_{\text {trans }}+U_{\text {rot }}+U_{\text {vibr }}+U_{\text {inter }} \\
& \text { chemical structure } \\
& \text { (e.g. nucleus, chem. bonds) } \\
& \text { thermal energy } \\
& \text { intermolecular interactions }
\end{aligned}
$$

The absolute value of the internal energy U cannot be determined only its change ΔU

Interactions among particles

Strong
1
nuclear energy
among particles having charges or electric/magnetic momentum

Coulomb H-bridge
van der Waals dispersion hydrophobic

80-100 RT 10-15 RT
0.5-20 RT

Electromagnetic 10^{-2}

The FIRST LAW OF THERMODYNAMICS expresses the conservation of energy

Isolated system: $\quad d U=0$
Closed system
$d U=\delta W+\delta Q$
If no work:
$d U=\delta Q$

WORK: in general the work can be expressed as the product of an intensive quantity and the change of an extensive quantity:

Type	Intensive
of work	quantity
pV	Pressure $(-p)$
Surface	Surface tension (γ)
Electric	Potential (φ)

Extensive
quantity
Volume V
Surface (A)
Charge (q)

Elementary work
$\delta W=-p d V$
$\delta W=\gamma \mathrm{dA}$
$\delta W=\varphi d q$

The work is an energy transport through the boundary of the system. The driving force (or potential function) is the gradient of the intensive parameter belonging to the process.

The heat is the transport of energy (without material transport) through the boundary of a system. The driving force is the gradient of the temperature.
The heat (like the work) is not a state function. We have to specify the path.

Processes accompanied by heat transfer:

A) Heating, cooling
B) Phase change
C) Chemical reaction

Processes at constant volume are well characterized by the internal energy. In

 chemistry (and in the environment) constant pressure is more frequent than constant volume. Therefore we define a state function which is suitable for describing processes at constant pressure:$$
H \equiv U+p V
$$

THE CHARACTERSITICS OF THE ENTHALPY FUNCTION

Extensive quantity (depends on the amount of the material)
State function: similarly to the internal energy U only its change ΔH is known, not the absolute value

$$
\Delta H=H_{f}-H_{i}=\int_{f}^{i} d H
$$

It can be deduced that in isobaric conditions ($p=$ const.)
if only pV work takes place:

$$
d H=\delta Q
$$

A) Heating, cooling
$Q=n \cdot \int_{T_{1}}^{T_{2}} C_{m} d T$

C_{m} : molar heat capacity

Most frequently heating and cooling are performed either at constant pressure or at constant volume:

$$
Q_{p}=n \int_{T_{1}}^{T_{2}} C_{m p} d T \quad Q_{v}=n \int_{T_{1}}^{T_{2}} C_{m v} d T
$$

$C_{m p}>C_{m v}$ because heating at constant pressure is accompanied by $\mathrm{p} V$ work. The difference is the most significant in case of gases

$$
\text { If } C_{m} \neq f(T) \quad Q=n \cdot C_{m} \cdot \Delta T
$$

B) Phase transition

Phase changes are isothermal and isobaric processes.

Heat of.... (latent heat)
evaporation - condensation
melting - freezing
sublimation - condensation
Molar heat of...

C) Chemical reaction (see later)
thus the change of enthalpy during
1- Isobaric heating/cooling

$$
\Delta H=Q_{p}=n \int C_{m, p}(T) \cdot d T
$$

The molar heat capacity is generally expressed as a polynom:

$$
C_{m, p}=a+b T+c T^{-2}+d \cdot T^{2}
$$

After substituting into the integral expression:

$$
\Delta H=n\left[a\left(T_{2}-T_{1}\right)+\frac{b}{2}\left(T_{2}^{2}-T_{1}^{2}\right)-c\left(T_{2}^{-1}-T_{1}^{-1}\right)+\frac{d}{3}\left(T_{2}^{3}-T_{1}^{3}\right)\right]
$$

2- Phase transition: isobaric+isothermic
e.g.: molar enthalpy (=heat) of vaporisation; symbol: ΔH_{m} (vap)

3-Chemical reactions

$\Delta_{r} \mathrm{H}$ enthalpy (=heat) of reaction

Chemical reaction: the electron energies connected to chemical bonds change.
E.g. in the reaction $2 \mathrm{H}_{2}+\mathrm{O}_{2}=2 \mathrm{H}_{2} \mathrm{O}$ the $\mathrm{H}-\mathrm{H}$ and $\mathrm{O}-\mathrm{O}$ bonds break and $\mathrm{O}-\mathrm{H}$ bonds are formed.

The heat of reaction is the heat entering the system (or released from the system) if the amounts of substances expressed in the reaction equation react at constant temperature.

Exothermic: energy is released
Endothermic: energy is needed to perform the reaction at constant temperature

When a chemical reaction is performed, according to the heat involved (exo, endo) and the conditions set (eg., adiabatic, isothermal):

The heat of the reaction can be expressed by the enthalpy $\Delta_{r} \mathrm{H}$ (at constant pressure).

Each component has an enthalpy. For a reaction to obtain the enthalpy change during the reaction we have to calculate the Δ between the final and the initial state:

$$
\begin{gathered}
2 \mathrm{H}_{2}+\mathrm{O}_{2}=2 \mathrm{H}_{2} \mathrm{O} \\
\Delta_{\mathrm{r}} H=2 H_{\mathrm{m}}\left(\mathrm{H}_{2} \mathrm{O}\right)-2 \mathrm{H}_{\mathrm{m}}\left(\mathrm{H}_{2}\right)-H_{\mathrm{m}}\left(\mathrm{O}_{2}\right)
\end{gathered}
$$

The heat of reaction defined this way depends on T, p and the concentrations of the reactants and products.
To avoid the confusion standardisation of the database is needed.

Standard heat of reaction: is the heat entering the reactor (or leaving the reactor) if the amounts of substances expressed in the reaction equation react at constant temperature, and both the reactants and the products are pure substances at p^{0} pressure.

The standard state will always be denoted by a superscript 0

Standard pressure:

$$
p^{0}\left(=10^{5} \mathrm{~Pa}=1 \text { bar }\right)
$$

Temperature is not fixed but most data are available at $25^{\circ} \mathrm{C}$

A generalized approach:

A general reaction equation: $\sum v_{A} M_{A}=\sum v_{B} M_{B}$
v : stoichiometric coefficient,
M : molecules,
A: for reactants, B for products.

The standard heat of reaction (enthalpy of reaction):

$$
\Delta_{\mathrm{r}} \mathrm{H}^{0}=\sum_{\mathrm{B}} V_{\mathrm{B}} \mathrm{H}_{\mathrm{mB}}^{0}-\sum_{\mathrm{A}} V_{\mathrm{A}} H_{\mathrm{mA}}^{0}
$$

H_{m}^{0} is the standard molar enthalpy of the substances

Example: $2 \mathrm{H}_{2}+\mathrm{O}_{2}=2 \mathrm{H}_{2} \mathrm{O}$

$$
\Delta_{r} H^{0}=2 H_{m}^{0}\left(H_{2} O\right)-2 H_{m}^{0}\left(H_{2}\right)-H_{m}^{0}\left(O_{2}\right)
$$

We have to specify the reaction equation, the state of the compounds and the temperature

Reaction
Standard reaction enthalpy at $25^{\circ} \mathrm{C}$

$$
\begin{array}{ll}
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & -571.6 \mathrm{~kJ} \\
\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})=\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & -285.8 \mathrm{~kJ} \\
\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})=\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \\
\hline
\end{array}
$$

As enthalpy is a state function its change depends on the initial and final states only. This stateIment is also valid for the reaction enthalpy.
Therefore, the reaction enthalpy is independent of the intermediate states, it only depends on the initial and the final state.

The significance of this law discovered by Hess is that reaction enthalpies, which are difficult to measure, can be determined by calculation.

Example: $\mathrm{C}($ graphite $)+\mathrm{O}_{2}=\mathrm{CO}_{2}$ (1)
The reaction enthalpy of this reaction is equal to the sum of reaction enthalpies of the following two reactions:
C (graphite) $+1 / 2 \mathrm{O}_{2}=\mathrm{CO}$ (2)
$\mathrm{CO}+1 / 2 \mathrm{O}_{2}=\mathrm{CO}_{2}$ (3)
$\Delta_{r} H(1)=\Delta_{r} H(2)+\Delta_{r} H(3)$
So if we know two of the three reaction enthalpies, the third one can be calculated.

Most data available are heats of combustion or heats of formation. Let's see how these data can be used to calculate the heat of a reaction

Heat of reaction from heat of combustion data

Suppose we burn the reactants and then we perform a reverse combustion in order to make the products.
$\Delta_{c} H$: heat (enthalpy) of combustion
Combustion products

Reactants
$\xrightarrow{\Delta_{r} \mathrm{H}}$

Products

$$
\begin{gathered}
\Delta_{\mathbf{r}} \boldsymbol{H}=\Delta_{\boldsymbol{r}} \boldsymbol{H}(\boldsymbol{I})+\Delta_{\boldsymbol{r}} \boldsymbol{H}(\boldsymbol{I I})=\sum \boldsymbol{v}_{\boldsymbol{A}} \Delta_{\boldsymbol{c}} \boldsymbol{H}_{\boldsymbol{A}}-\sum \boldsymbol{v}_{\boldsymbol{B}} \Delta_{\boldsymbol{c}} \boldsymbol{H}_{\boldsymbol{B}}=-\Delta_{\boldsymbol{r}}\left(\Delta_{\boldsymbol{c}} \boldsymbol{H}\right) \\
3 \boldsymbol{c}_{2} \mathrm{H}_{2}=\boldsymbol{C}_{6} \mathrm{H}_{6} \\
\Delta_{r} H=3 \Delta_{c} H\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)-\Delta_{c} H\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)
\end{gathered}
$$

The heat (enthalpy) of formation $\left(\Delta_{f} H\right)$ of a compound is the enthalpy change occurring when the compound is built up from (the most stable forms of) its elements.

Example: The heat of formation of SO_{3} is the heat of the following reaction

$$
\mathrm{S}+3 / 2 \mathrm{O}_{2}=\mathrm{SO}_{3}
$$

It follows from the definition that the heat of formation of an element is zero (at 298 K).

Suppose we first decompose the reactants to their elements (reverse of the formation reaction), then we recompose the products from the elements,

$$
\Delta_{r} \boldsymbol{H}=\Delta_{r} \boldsymbol{H}(I)+\Delta_{r} \boldsymbol{H}(I I)=\sum \boldsymbol{v}_{\boldsymbol{B}} \Delta_{f} \boldsymbol{H}_{\boldsymbol{B}}-\sum \boldsymbol{v}_{A^{\Delta_{f}}} \boldsymbol{H}_{\boldsymbol{A}}=\Delta_{r}\left(\Delta_{f} \boldsymbol{H}\right)
$$

$$
3 C_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}
$$

$$
\Delta_{r} H=\Delta_{f} H_{C 6 H 6}-3 \cdot \Delta_{\boldsymbol{f}} H_{C 2 H 2}
$$

THE DIRECTION OF PROCESSES IN NATURE

(spontaneity)
$-\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$ and not the reverse

- gases uniformly fill the space available (expand)
- a hot object cools down to the temperature of its environment (heat is dissipated)

In the processes occurring spontaneously energy is dissipating.

We introduce a new state function, which can be used as the measure of the disorder. In spontaneous processes in isolated systems its change should be positive: S : entropy, the measure of disorder

$$
Q_{r e v}=T \cdot S \quad[S]=\mathrm{J} / \mathrm{K}
$$

Heat input: the motion becomes more disordered Work input: makes the system more ordered

Any changes can be characterized by an entropy change.
State function, extensive property (depends of the amount)

$$
S=n S_{m} \quad \text { molar entropy }
$$

Spontaneous macroscopic processes in isolated systems always increase the entropy. The system gets into equilibrium when its entropy reaches its maximum value.
(This is the 2nd law of thermodynamics.)

T dependence of entropy:

\rightarrow Unlike U and H, the absolute value of entropy is known 3^{5}

Entropy at phase transitions (isothermal-isobaric processes)

$$
\begin{aligned}
& \text { e.g. } \begin{aligned}
\Delta S(\text { melting }) & =\frac{\Delta H(\text { melting })}{T_{\text {melting }}} \\
\Delta S(\text { evap }) & =\frac{\Delta H(\text { evap })}{T_{\text {boiling }}}
\end{aligned}
\end{aligned}
$$

S increases
heating
melting
evaporation
expansion
Disorder increases
S decreases
cooling
freezing
condensation
compression
Disorder decreases

Entropy of evaporation at the normal boiling point ($p=1 \mathrm{~atm}$)

chemical	$\Delta \mathrm{S}($ evap $), \mathrm{JK}^{-1} \mathrm{~mol}^{-}$
bromine	88.6
benzene	87.2
carbon	85.9
tetrachloride	
cyclohexane	85.1
$\mathrm{H}_{2} \mathrm{~S}$	87.9
ammonia	97.4
water	109.1
mercury	94.2

EXERCISE 1

Problem:

The entropy of evaporation of cyclohexane at its normal boiling point ($1 \mathrm{~atm}, 197.3^{\circ} \mathrm{C}$) is $85.1 \mathrm{~J} /$ (molK). Calculate its heat of evaporation at this temperature.

Solution:

EXERCISE 2

Problem:

The melting point of nitrogen is $-196^{\circ} \mathrm{C}$.
What will be the change of entropy if 15 liter of liquid nitrogen is evaporated at atmospheric pressure? The density of the liquid nitrogen is $0.81 \mathrm{~g} / \mathrm{cm}^{3}$?
What will be the sign of the change and explain why.

Solution:

EXERCISE 3

Problem:

How much heat should be removed from the system if we intend to cool $5 \mathrm{~m}^{3}$ ethane gas from $140^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$? The temperature dependence of the molar heat can be neglected.

Solution:

EXERCISE 4

Problem:

The mass of a single cube of sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ is ca. 1.5 g . How much heat is evolved when a cube is completely burned in excess oxygen?

Solution:

In spontaneous macroscopic processes the entropy always increases.

In isolated system
$$
\Delta S_{\text {system }} \geq 0
$$

If not isolated

$$
\Delta S_{\text {system }}+\Delta S_{\text {surrounding }} \geq 0
$$

The entropy change of an arbitrary process:
$\Delta S_{\text {total }}=\Delta S_{\text {system }}+\Delta S_{\text {surrounding }}$

$$
\Delta S=\frac{Q_{r e v}}{T}=\frac{\Delta H}{T}
$$

if p and T are constant

$$
\Delta S_{\text {Surroundina }}=-\frac{\Delta H_{\text {system }}}{T}
$$

$$
\Delta S_{\text {total }}=-\frac{\Delta H_{\text {system }}}{T}+\Delta S_{\text {system }}
$$

$$
T \Delta S_{\text {total }}=-\Delta H_{\text {system }}+T \Delta S_{\text {system }}
$$

$$
G \equiv H-T S \quad G i b b s \text { free energy }
$$

$$
-T \Delta S_{\text {total }}=\Delta H-T \Delta S \equiv \Delta G
$$

Direction of changes

In a closed system at constant T and p in spontaneous processes G decreases. When equilibrium is reached, it has a minimum (if no work occurs).

Spontaneity \Leftrightarrow rate

$$
G_{m, \text { graphite }}-G_{m, \text { diamond }}=-3 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

Most important properties of \mathcal{G} :

1. State function
2. Extensive quantity $\quad G=n G_{m}$
3. $G=H-T S$

Total energy
stored in the system

Energy stored by the thermal motion of the atoms/molecules

The spontaneity of a process depends on the sign of ΔG during the transition:
e.g., in phase transition (no chemical changes) PHASE $1 \longrightarrow$ PHASE 2

$$
\begin{gathered}
G=n \cdot G_{m} \\
n \cdot G_{m}(2)-n \cdot G_{m}(1)=n\left[G_{m}(2)-G_{m}(1)\right]<0 \quad ?
\end{gathered}
$$

$G(T) \quad p=$ const. $\quad d G=-S d T$

$$
\begin{gathered}
G=H-T S \\
H \equiv U+p V
\end{gathered}
$$

$$
\left(\frac{\partial G}{\partial T}\right)_{p}=-S
$$

$G(p) \quad T=$ const.

$$
d G=V d p
$$

p-T phase diagram

Solid \rightarrow liquid melting positive slope (except for water) Solid \rightarrow gas sublimation

Liquid \rightarrow gas boiling
Equilibrium of two phases, p and T are not independent
A: triple point, three phases are in equilibrium. Its temperature and pressure are characteristic of the substance.
E.g. Water: 6,11 mbar, $273,16 \mathrm{~K}$
$\mathrm{CO}_{2}: 5,11 \mathrm{bar}, 216,8 \mathrm{~K}$
At atmospheric pressure CO_{2} does not exist in liquid state.

C: critical point: The difference between liquid and vapor phase diminishes.

At greater temperatures and pressures only one phase exists: fluid (supercritical) state.

Let us heat a liquid-vapor system in a vessel of an appropriate volume. (We are going from left to right on the vapor pressure curve.) It can be observed:
The density of the liquid decreases. The density of the vapor increases.
Other physical properties (e.g. refractive index) also approach each other. Finally we reach to a point where the difference between the two phases diminishes \rightarrow critical point.

Critical temperature: above which a gas cannot be liquified
Critical pressure: necessary to liquify the gas at its critical temperature.

Critical volume: occupied by 1 mol gas occupies at its critical pressure and temperature

The critical data are characteristic of the substance

$$
\begin{aligned}
& \text { E.g. Water: } T_{C}=647,4 \mathrm{~K}, \quad \mathrm{p}_{\mathrm{C}}=221,2 \text { bar } \\
& \mathrm{CO}_{2}: \mathrm{T}_{\mathrm{C}}=304,2 \mathrm{~K}, \quad \mathrm{p}_{\mathrm{C}}=73,9 \text { bar }
\end{aligned}
$$

T_{C} below room temperature: $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{CO}, \mathrm{CH}_{4}$
These gases cannot be liquified at room temperature.
T_{C} above room temperature : $\mathrm{CO}_{2}, \mathrm{NH}_{3}, \mathrm{Cl}_{2}, \mathrm{C}_{3} \mathrm{H}_{8}$ These gases can be liquified at room temperature ${ }^{50}$

Thermodynamic interpretation of the $\mathrm{p}-\mathrm{T}$ diagram (the Clapeyron equation)

PHASE EQUILIBRIUM

At given T and p the condition of equilibrium is the minimum of G.

One component, two phases (a and b)
At equilibrium the molar Gibbs free energy of the component must be equal in the two phases. (Otherwise there is a flow of the substance from the phase where G_{m} is higher to the phase where G_{m} is lower.)

Three cases:

1. $\mathrm{G}_{\mathrm{m}}{ }^{\mathrm{a}}>\mathrm{G}_{\mathrm{m}}{ }^{\mathrm{b}}$: substance goes from a to b Macroscopic
2. $\mathrm{G}_{\mathrm{m}}{ }^{\mathrm{a}}<\mathrm{G}_{\mathrm{m}}{ }^{\mathrm{b}}$: substance goes from b to a process takes place
3. $\mathrm{G}_{\mathrm{m}}{ }^{\mathrm{a}}=\mathrm{G}_{\mathrm{m}}{ }^{\mathrm{b}}$:
equilibrium

No macroscopic process

On the molecular level there are changes. The rates of the processes in opposite direction are the same (e.g. in liquid vapor equilibrium the macroscopic rates of evaporation and of condensation are equal).

The equilibrium is dynamic (and not static), fluctuation occurs.

$$
\begin{gathered}
G_{m}(1)=G_{m}(2) \\
G_{m}(1)+d G_{m}(1)=G_{m}(2)+d G_{m}(2) \\
d G_{m}(1)=d G_{m}(2) \\
d G_{m}=V_{m} d p-S_{m} d T \\
d G_{m}(1)=V_{m}(1) d p-S_{m}(1) d T \\
d G_{m}(2)=V_{m}(2) d p-S_{m}(2) d T \\
V_{m}(1) d p-S_{m}(1) d T=V_{m}(2) d p-S_{m}(2) d T \\
{\left[S_{m}(2)-S_{m}(1)\right] d T=\left[V_{m}(2)-V_{m}(1)\right] d p} \\
\frac{d p}{d T}=\frac{\Delta S_{m}}{\Delta V_{m}} \\
\text { The phase transition is an isothermal and isobaric process: } \\
\Delta S_{m}=\frac{\Delta H_{m}}{T} \quad \frac{d p}{d T}=\frac{\Delta S_{m}}{\Delta V_{m}}=\frac{\Delta H_{m}}{T \Delta V_{m}} \quad \text { Clapeyron }
\end{gathered}
$$

$$
\frac{d p}{d T}=\frac{\Delta H_{m}}{T \cdot \Delta V_{m}}
$$

Clapeyron equation (the equation of one component phase equilibrium).

Nothing was
neglected in the
derivation.

It is valid for: liquid-vapor solid-liquid
solid-vapor
solid-solid equilibrium

(a)

Temperature
$\frac{d p}{d T}=\frac{\Delta S_{m}}{\Delta V_{m}}$

Temperature
(b)
$\left(V_{m} d p\right)_{S} \stackrel{?}{=}\left(V_{m} d p\right)_{L}$
Water
ice: $19,7 \mathrm{~cm}^{3} / \mathrm{mol}$ water: $18,0 \mathrm{~cm}^{3} / \mathrm{mol}$

Temperature

The liquid - gas transition: evaporation and condensqution Let's apply the Clapeyron equation for liquid-vapor equilibrium:
molar heat

$$
\frac{d p}{d T}=\frac{\Delta_{\text {evap }} H_{m}}{T \Delta V_{m} \longleftarrow} \begin{aligned}
& \text { of vaporization } \\
& \text { change of molar } \\
& \text { volume at vaporization }
\end{aligned}
$$

mperature

1. We neglect the molar volume of the liquid (compared to vapor).

$$
\Delta V=V_{m}(\text { gas })-V_{m}(l i q) \cong V_{m}(\text { gas })
$$

2. We regard the vapor as ideal gas.

$$
\begin{aligned}
V_{m}(\text { gas })= & \frac{R T}{p^{\prime}} \\
\frac{d p}{d T} & =\frac{p \Delta_{\text {evap }} H_{m}^{\prime}}{R T^{2}}
\end{aligned}
$$

Clausius-Clapeyron
$\frac{d p}{p}=\frac{p \Delta_{\text {evap }} H_{m}^{\prime}}{R T^{2}} d T$
The saturation pressure of a pure liquid only depends on T.
$\frac{d p}{p}=d \ln p \quad \frac{d T}{T^{2}}=-d \frac{1}{T} \quad d(1 / T) / d T=-1 / T^{2}$
$\ln p=-\frac{\Delta_{\text {evap }} H_{m}^{\prime}}{R} \cdot \frac{1}{T}+C$

$$
\int_{p_{k}}^{p_{v}} d \ln p=\int_{T_{k}}^{T_{v}} \frac{\Delta_{e v a p} H^{\prime}}{R T^{2}} d T
$$

$$
\ln \{p\}=-\frac{A}{T}+B \quad\{p\}=\frac{p(P a)}{1 P a}
$$

If the logarithm of the vapor pressure is plotted against the reciprocal of temperature, we obtain a straight line:
$\lg \{\mathrm{p}\} \quad \ln \frac{p_{v}}{p_{k}}=\frac{\Delta_{\text {e }}}{}$

$$
\lg \{p\}=-\frac{A}{T}+B
$$

A, B: constants

$$
\begin{aligned}
\tan \alpha & =-\mathrm{A} \\
\qquad\{p\} & =\frac{p(P a)}{1 P a}
\end{aligned}
$$

1/T

Equilibrium in chemical reactions

Spontaneity: $\triangle G<0, p$ and T are constant

Condition of equilibrium: $\Delta_{r} G=0, p$ and T are constant

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

General form of the chemical equation:

$$
\begin{gathered}
\sum \boldsymbol{v}_{\boldsymbol{r}} \boldsymbol{M}_{\boldsymbol{r}}=\sum \boldsymbol{v}_{\boldsymbol{p}} \boldsymbol{M}_{\boldsymbol{p}} \\
\Delta_{r} G=\sum \nu_{p} G_{p}-\sum \nu_{r} G_{r} \\
G_{i}=\left(\frac{\partial G_{\text {mixture }}}{\partial n_{i}}\right)_{T, p, n_{j}}=\mu_{i} \\
\mu_{i}: \text { chemical potential }
\end{gathered}
$$

$$
\Delta_{r} G=\Sigma v_{p} \mu_{p}-\Sigma v_{r} \mu_{r}
$$

$$
\mu_{i}=G_{i}^{\varnothing}+R T \ln a_{i}=\mu_{i}^{\varnothing}+R T \ln a_{i} \approx \mu_{i}^{\varnothing}+R T \ln c_{i}
$$

Quantitative discussion

$$
\sum v_{r} M_{r}=\sum v_{p} M_{p}
$$

$\Delta_{r} G=\Sigma v_{p} G_{p}^{\phi}-\Sigma v_{r} G_{r}^{\phi}+R T\left(\Sigma v_{p} \ln a_{p}-\Sigma v_{r} \ln a_{r}\right)$
Sum of logarithms = logarithm of the product
Difference of logarithms = logarithm of the ratio Constant times logarithm = logarithm of the power

$$
\Delta_{r} G=\Delta_{r} G^{\phi}+R T \ln \frac{\Pi\left(a_{p}\right)^{v^{\prime} p}}{\Pi\left(a_{r}\right)^{v_{r}}}=\Delta_{r} G^{\phi}+R T \ln Q
$$

In equilibrium

$$
\begin{aligned}
& \Delta_{r} G=\Delta_{r} G^{\varnothing}+R T \ln Q=0 \\
& \Delta_{r} G^{\varnothing}=-R T \ln K \quad \text { Thermodynamic equilibrium constant }
\end{aligned}
$$

The equilibrium constant K only depends on temperaturé!

$$
\text { e.g. } \quad N_{2}+3 H_{2}=2 \mathrm{NH}_{3} \quad K=\frac{a_{N H_{3}}^{2}}{a_{N_{2}} a_{H_{2}}^{3}}
$$

K does not depend on either pressure or concentration. (The concentrations or partial pressures take up values to fulfil the constancy of K).
K defines the composition of the reaction mixture in equilibrium

$$
K=\frac{\Pi\left(a_{p}\right)^{v^{p} p}}{\Pi\left(a_{r}\right)^{v_{r}}} \approx \frac{\Pi\left(c_{p}\right)^{v^{\prime} p}}{\Pi\left(c_{r}\right)^{v_{r}}}
$$

Temperature dependence of the equilibrium constant

$$
\begin{gathered}
\Delta_{r} G^{\varnothing}=\Delta_{r} H^{\varnothing}-T \Delta_{r} S^{\varnothing}=-R T \ln K \\
\ln K=-\frac{\Delta_{r} G^{\varnothing}}{R T}=-\frac{\Delta_{r} H^{\varnothing}}{R T}+\frac{\Delta_{r} S^{\varnothing}}{R} \\
\ln K^{\prime}=-\frac{\Delta_{r} G^{\varnothing \prime}}{R T^{\prime}}=-\frac{\Delta_{r} H^{\varnothing}}{R T^{\prime}}+\frac{\Delta_{r} S^{\varnothing}}{R}
\end{gathered}
$$

$$
\ln \frac{K^{\prime}}{K}=\frac{\Delta_{r} H^{\varnothing}}{R}\left(\frac{1}{T}-\frac{1}{T^{\prime}}\right)
$$

It is the standard reaction enthalpy that determines the temperature dependence of K

$$
\ln \frac{K^{\prime}}{K}=\frac{\Delta_{r} H^{\varnothing}}{R}\left(\frac{1}{T}-\frac{1}{T^{\prime}}\right)
$$

endothermic reactions (heat is absorbed form the environment, i.e., $\Delta_{r} H^{\infty}>0$) the right hand side is positive, so $\ln K-\ln K>0$ with increasing temperature.
exothermic reactions (heat is released to the environment, i.e., $\left.\Delta_{r} H^{\infty}<0\right)$ so $\ln K-\ln K<0$ with increasing temperature

Le Chatelier Principle: The equilibrium shifts towards the endothermic direction if the temperature is raised, and in the exothermic direction if the temperature is lowered. For exothermic reactions low temperature favours the equilibrium but at too low temperatures the rate of reaction becomes very low. An optimum temperature has to be found.

$\operatorname{lnK}-1 / \mathrm{T}$ diagram for an endothermic (a) and for an exothermic (b) reaction

$$
\Delta_{r} G^{\varnothing}=-R T \ln K=\Delta_{r} H^{\varnothing}-T_{r} \Delta_{r} S^{\varnothing}
$$

When is the $\quad \Delta_{r} G^{\varnothing}<0 \quad$ condition fulfilled?

$$
\Delta_{r} G^{\varnothing}=\Delta_{r} H^{\varnothing}-T \Delta_{r} S^{\varnothing}<0 \quad \text { (spontaneity) }
$$

In practice $K \gg 1$, at leas $\dagger K>10^{3}$ is needed

The equilibrium constant is a very important quantity in thermodynamics that characterizes several types of equilibria of chemical reactions
in gas, liquid, and solid-liquid phases;
in different types of reactions between neutral and charged reactants;
Can be expressed using several parameters like pressure, mole fraction, (chemical) concentration, molality.

Chemical equilibrium in gas phase

$$
\Delta_{r} G^{0}=-R T \ln K
$$

Ideal gases:

$$
\boldsymbol{K}=\frac{\Pi \boldsymbol{a}_{p}^{v_{p}}}{\Pi \boldsymbol{a}_{r}^{v_{r}}}
$$

$$
\boldsymbol{K}=\frac{\Pi\left(\frac{\boldsymbol{p}_{p}}{\boldsymbol{p}^{0}}\right)^{v_{p}}}{\Pi\left(\frac{\boldsymbol{p}_{r}}{\boldsymbol{p}^{0}}\right)^{v_{r}}} \quad \boldsymbol{K}=\frac{p^{0}}{\Pi \boldsymbol{p}_{p}^{v_{p}}} \boldsymbol{p}_{r}^{v_{r}} \cdot\left(\boldsymbol{p}^{0}\right)^{\sum v_{r}-\sum v_{p}}
$$

$$
a_{i}=\frac{p_{i}}{p^{0}}
$$

Δv : change in number of molecules

$$
\begin{aligned}
& \text { e.g. } \mathrm{SO}_{2}+1 / 2 \mathrm{O}_{2}=\mathrm{SO}_{3} \\
& \Delta v=1-0,5-1=-0,5
\end{aligned}
$$

Effect of pressure on equilibrium

The equilibrium constant is independent of pressure. On the other hand, the equilibrium composition in a gas reaction can be influenced by the pressure. Assume that the participants are ideal gases.

$$
\begin{aligned}
& \boldsymbol{K}=\frac{\Pi\left(\frac{\boldsymbol{p}_{p}}{\boldsymbol{p}^{0}}\right)^{v_{p}}}{\Pi\left(\frac{\boldsymbol{p}_{r}}{\boldsymbol{p}^{0}}\right)^{v_{r}}} \quad \text { Dalton's law: } \mathrm{p}_{\mathrm{i}}=\mathrm{y}_{\mathrm{i}} \cdot \mathrm{p} \\
& \boldsymbol{K}=\frac{\Pi\left(\frac{\boldsymbol{y}_{p} \boldsymbol{p}}{\boldsymbol{p}^{o}}\right)^{v_{p}}}{\Pi\left(\frac{\boldsymbol{y}_{r} \boldsymbol{p}}{\boldsymbol{p}^{0}}\right)^{v_{r}}}=\boldsymbol{K}_{y}\left(\frac{\boldsymbol{p}}{\boldsymbol{p}^{0}}\right)^{\Delta v} \quad \boldsymbol{K}_{\boldsymbol{y}}=\frac{\Pi \boldsymbol{y}_{p}^{v_{p}}}{\Pi \boldsymbol{y}_{r}^{v_{r}}} \\
& \Delta v=\Sigma v_{\boldsymbol{p}}-\Sigma v_{\boldsymbol{r}}
\end{aligned}
$$

$$
K_{y}=K \cdot\left(\frac{p}{p^{0}}\right)^{-\Delta v}
$$

The effect of pressure on equilibrium composition depends on the sign of Δv.

If $\Delta v>0$ (the number of molecules increases), increasing the pressure, decreases K_{y}, i.e., the equilibrium shifts towards the reactants ($-\Delta v$ exponent!)

If $\Delta v<0$ (the number of molecules decreases), increasing the pressure, favours the products (K_{y} increases).

Le Chatelier Principle: a system at equilibrium, when subjected to a perturbation, responds in a way that tends to minimize its effect.
Equilibrium gas reaction: Increasing the pressure, the equilibrium shifts towards the direction where the number of molecules decreases.

Reactions where the volume decreases at constant pressure $(\Delta \nu<0)$ are to be performed at high pressure.

$$
\begin{aligned}
& \text { E.g. } \mathrm{N}_{2}+3 \mathrm{H}_{2}=2 \mathrm{NH}_{3} \quad \Delta v=-2 \\
& \text { Several hundred bars are used. }
\end{aligned}
$$

Reactions where the volume increases at constant pressure $(\Delta \nu>0)$ are to be performed at low pressure or in presence of an inert gas.

Chemical equilibrium in liquid electrolytes

Even very dilute solutions cannot be regarded ideal (because of the strong electrostatic interaction between ions). if chemical concentrations are used:

$$
\begin{gathered}
\mu_{i}=\mu_{i}^{0}+\boldsymbol{R} \boldsymbol{T} \ln \frac{\gamma_{i} \boldsymbol{c}_{i}}{\boldsymbol{c}^{0}} \quad \Delta_{r} \mu^{0}=-R T \ln K \\
\boldsymbol{K}=\frac{\Pi\left(\frac{\gamma_{p} \boldsymbol{c}_{\boldsymbol{p}}}{\boldsymbol{c}^{0}}\right)^{v_{p}}}{\Pi\left(\frac{\gamma_{r} \boldsymbol{c}_{r}}{\boldsymbol{c}^{0}}\right)^{v_{r}}}=\frac{\Pi \gamma_{p}^{v_{p}}}{\Pi \gamma_{r}^{v_{r}}} \cdot \frac{\Pi \boldsymbol{c}_{p}^{v_{p}}}{\Pi \boldsymbol{c}_{r}^{v_{r}}} \cdot\left(\boldsymbol{c}^{0}\right)^{\Sigma v_{p}-\sum v_{r}} \\
K=K_{\gamma} \cdot K_{c} \cdot\left(c^{0}\right)^{-\Delta v} \quad \boldsymbol{K}_{\boldsymbol{c}}=\frac{\Pi \boldsymbol{c}_{\boldsymbol{p}}^{v_{p}}}{\Pi \boldsymbol{c}_{r}^{v_{r}}}
\end{gathered}
$$

K_{c} can be frequently used as equilibrium constant (it is assumed that the activity coefficients are independent of concentration, so K_{γ} is taken constant).

Dissociation equilibrium

$$
\mathrm{KA}=\mathrm{K}^{+}+\mathrm{A}^{-}
$$

K^{+}: cation
$\mathrm{A}^{\text {: }}$: anion

$$
c_{0}(1-\alpha) \quad c_{0} \cdot \alpha \quad c_{0} \cdot \alpha
$$

$$
K_{c}=\frac{\alpha^{2} c_{0}}{1-\alpha}
$$

c_{0} : initial concentration
α : degree of dissociation

$$
0 \leq \alpha \leq 1
$$

Strong and weak electrolytes ${ }^{73}$

ACID-BASE EQUILIBRIA

Brönsted-Lowry proton donor / acceptor
$\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})$
hidronium ion + conjugated base of HA

Very limited ionization, very low conc. of the ions. therefor $\mathrm{a}_{\mathrm{H}_{2} \mathrm{O}}=1$

$$
\begin{gathered}
K_{a}=\frac{a_{H_{3} \mathrm{O}^{+}} \cdot a_{b a s e}}{a_{H A}} \quad \text { Acidic dissociation constant } \\
p K_{a}=-\lg K_{a}
\end{gathered}
$$

The standard Gibbs free energy of the protondonation:

$$
\Delta G^{\varnothing}=-R T \ln K_{a}
$$

K_{a} values of selected acids/bases, 298 K

Water

Dual behaviour acid + water \leftrightarrows As a base base + water \leftrightarrows As an acid

Ampholitic
autoprotolysis

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \\
K_{w}=a_{\mathrm{H}_{3} \mathrm{O}^{+}} \cdot \mathrm{a}_{\mathrm{OH}^{-}} \quad p K_{w}=-\log K_{w}
\end{gathered}
$$

In pure water $\mathrm{a}_{\mathrm{H} 3 \mathrm{O}_{+}}=\mathrm{a}_{\mathrm{OH}-}$

$$
\begin{aligned}
& K_{w}=a_{\mathrm{H}_{3} \mathrm{O}^{+}}^{2} \rightarrow a_{\mathrm{H}_{3} \mathrm{O}^{+}}=\sqrt{K_{w}} \\
& \quad-\lg a_{\mathrm{H}_{3} \mathrm{O}^{+}}=\mathrm{pH} \approx-\lg c_{\mathrm{H}^{+}} \quad \mathrm{pH} \text { scale } \\
& \mathrm{pK}_{w}=\mathrm{pH}+\mathrm{pOH}=\mathrm{f}(\mathrm{~T})
\end{aligned}
$$

Temperature dependence of K_{w} and pH

Temperature,
K_{w}
pH
${ }^{\circ} \mathrm{C}$

0	0.13×10^{-14}	7.45
10	0.36×10^{-14}	7.07
20	0.86×10^{-14}	7.04
22	1.00×10^{-14}	7.00
25	1.27×10^{-14}	6.95
30	1.89×10^{-14}	6.87
40	3.80×10^{-14}	6.71

Relationship between a base and its conjugated acid

$$
\begin{gathered}
\mathrm{B}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \underset{\text { Conjugated acid }}{\rightleftarrows} \mathrm{BH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
K_{b}=\frac{a_{\mathrm{BH}^{+}} \cdot a_{\mathrm{OH}^{-}}}{a_{\mathrm{B}}}
\end{gathered}
$$

$\mathrm{BH}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{B}(\mathrm{aq})$

$$
\begin{gathered}
K_{a}=\frac{a_{\mathrm{H}_{3} \mathrm{O}^{+}} \cdot a_{\mathrm{B}}}{a_{\mathrm{BH}^{+}}} \\
K_{a} K_{b}=a_{\mathrm{H}_{3} \mathrm{O}^{+}} \cdot a_{\mathrm{OH}^{-}}=K_{w} \\
p K_{a}+p K_{b}=p K_{w}
\end{gathered}
$$

Weak acids/bases: only partial dissociation

$$
K_{a}=\frac{\alpha^{2} c_{0}}{1-\alpha}
$$

α : degree of dissociation
acid/base ($\mathrm{pH}-$) indicators
$\mathrm{HInd}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+$Ind $^{-}$

Indicator	Low pH color	Transition pH range	High pH color
Gentian violet (Methyl violet 10B)	yellow	0.0-2.0	blue-violet
Malachite green (first transition)	yellow	0.0-2.0	green
Malachite green (second transition)	green	11.6-14	colorless
Thymol blue (first transition)	red	1.2-2.8	yellow
Thymol blue (second transition)	yellow	8.0-9.6	blue
Methyl yellow	red	2.9-4.0	yellow
Bromophenol blue	yellow	3.0-4.6	purple
Congo red	blue-violet	3.0-5.0	red
Methyl orange	red	3.1-4.4	yellow
Screened methyl orange (first transition)	red	0.0-3.2	grey
Screened methyl orange (second transition)	grey	3.2-4.2	green
Bromocresol green	yellow	3.8-5.4	blue
Methyl red	red	4.4-6.2	yellow
Azolitmin	red	4.5-8.3	blue
Bromocresol purple	yellow	5.2-6.8	purple
Bromothymol blue	yellow	6.0-7.6	blue
Phenol red	yellow	6.4-8.0	red
Neutral red	red	6.8-8.0	yellow
Naphtholphthalein	colorless to reddish	7.3-8.7	greenish to blue
Cresol Red	yellow	7.2-8.8	reddish-purple
Cresolphthalein	colorless	8.2-9.8	red
Phenolphthalein	colorless	8.3-10.0	fuchsia
Thymolphthalein	colorless	9.3-10.5	blue
Alizarine Yellow R	yellow	10.2-12.0	red

A buffer is an aqueous solution consisting of a mixture of a weak acid and its conjugate base or a weak base and its conjugate acid (blood, natural waters, gastric juice, etc.).

HX / MX

$$
\mathrm{HX}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{X}^{-}(\mathrm{aq})
$$

$$
K_{a} \approx \frac{{ }^{C_{\mathrm{H}_{3} \mathrm{O}^{+}} \cdot{ }^{-} \mathrm{X}_{-}^{-}}}{c_{\mathrm{HX}}}
$$

$$
c_{\mathrm{H}_{3} \mathrm{O}^{+}}=K_{a} \cdot \frac{c_{\mathrm{HX}}}{c_{\mathrm{X}^{-}}}
$$

$$
\mathrm{pH}=\mathrm{p} K_{a}-\lg \frac{c_{\mathrm{acid}}}{C_{\text {conj. base }}}
$$

$$
\mathrm{pOH}=\mathrm{p} K_{b}-\log _{10} \frac{a_{\text {base }}}{a_{\text {conj. acid }}}
$$

SOLUBILITY

Salts with limited solubility

$$
\begin{gathered}
\mathrm{AgCl}(\mathrm{~s}) \leftrightarrows \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \\
K=\frac{a_{A g^{+}(a q)} \cdot a_{C l^{-}(a q)}}{a_{\mathrm{AgCl}(\mathrm{~s})}}=\frac{c^{c}{ }^{A g^{+}(a q)} \cdot{ }^{c} \mathrm{Cl}^{-}(a q)}{c_{\mathrm{AgCl}(\mathrm{~s})}}
\end{gathered}
$$

Solubility product

$$
\begin{aligned}
& \mathrm{L}=\mathrm{c}_{\mathrm{Ag}^{+}(a q)} \cdot{ }^{c} \mathrm{Cl}^{-}(a q) \quad 1,77 \times 10^{-10}=\mathrm{L}_{\mathrm{AgCl}} \\
& \mathrm{Ag}_{2} \mathrm{~S}(\mathrm{~s}) \leftrightarrows 2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{S}^{-}(\mathrm{aq}) \\
& L=c_{A g^{+}(a q)}^{2} \cdot c_{s^{2-}(a q)}
\end{aligned}
$$

PROBLEM SOLVING

1. Show the equation of the deprotonation process of lactic acid, $\mathrm{CH}_{3}-\mathrm{CH}(\mathrm{OH})-\mathrm{COOH}$ in an aqueous solution. Calculate its degree of dissociation, pH and pOH in its $46 \mathrm{mg} / \mathrm{L}$ aqueous solution at $22^{\circ} \mathrm{C}$.
2. Propionic acid (E280) is one of the carboxylic acid occurring in nature Its formula is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ and its $\mathrm{p} \mathrm{K}_{\mathrm{a}}$ value at $22{ }^{\circ} \mathrm{C}$ is 4.88 . Show its dissociation equation in aq. medium. Calculate its degree of Dissociation, pH and pOH in its $2 \mathrm{mmol} / \mathrm{L}$ solution at this temperature.
3. Ammonia (NH3) is produced in the catalytic reaction of N_{2} and H_{2}. Write the equation of the equilibrium reaction and its equilibrium constant.
a) How can you force a better yield by adjusting pressure?
b) Advise alternative solutions to anhance the yield.
