Calculate the activity of 1 kg KCl. 0.012 % of the K atoms is radioactive <sup>40</sup>K. The half life of <sup>40</sup>K is 1.13.10<sup>9</sup> years.

We prepared a <sup>35</sup>S labelled protein at 12:00, 10 September 2014. The half life of the pure  $\beta^-$  emitter is 88 days. This sample was measured at noon on 26 September and the intensity was found 7000 imp/s. The overall efficiency of the measurement was 22 %. Calculate the activity of the sample in the time of synthesis.

The linear absorption coefficient of gamma radiation of 660 keV in aluminum is 3,4 cm<sup>-1</sup>. Calculate the half thickness. How efficiently will attenuate this radiation an 10 cm aluminum wall?

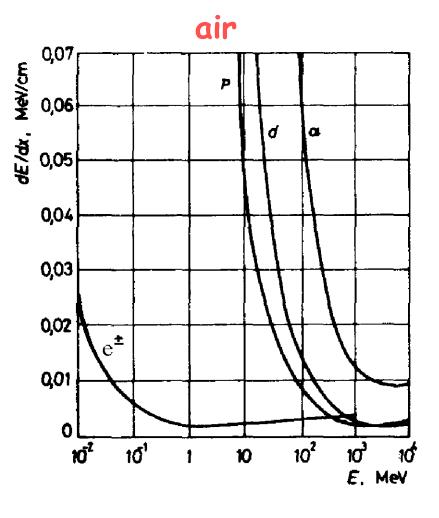
# Laboratory practise

3 measurements (30 October, 6 November, 13 November)

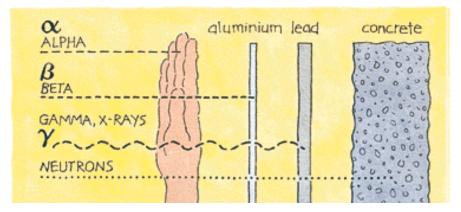
2 groups

#### Tests before the measurement

http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem/PHCR
→ Lab practise


Test

#### Next week (22 October)


CH 306!!!

# Detection of nuclear radiations

#### Interaction with matter: Linear energy transfer (LET)



## Path



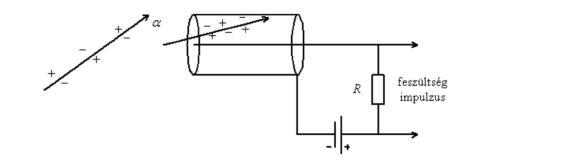
 $dE/dx \approx 1/v^2$ 

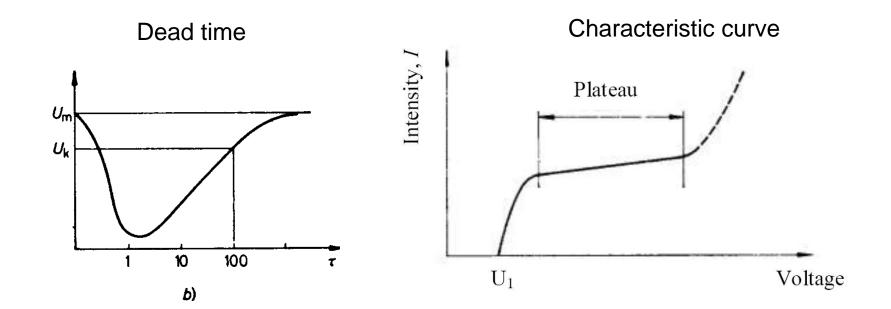
# The first step of the ionizing radiation in the matter:

- 1. Neutral excitation  $A + radiation \rightarrow A^* + radiation'$
- 2. External ionization
  - A + radiation  $\rightarrow A^+ + e^- + radiation'$   $A_2 + radiation \rightarrow A^+ + A^- + radiation'$   $A_2 + radiation \rightarrow A_2^+ + e^- + radiation'$  $A_2 + radiation \rightarrow 2A_2 + radiation'$

3. Internal ionization

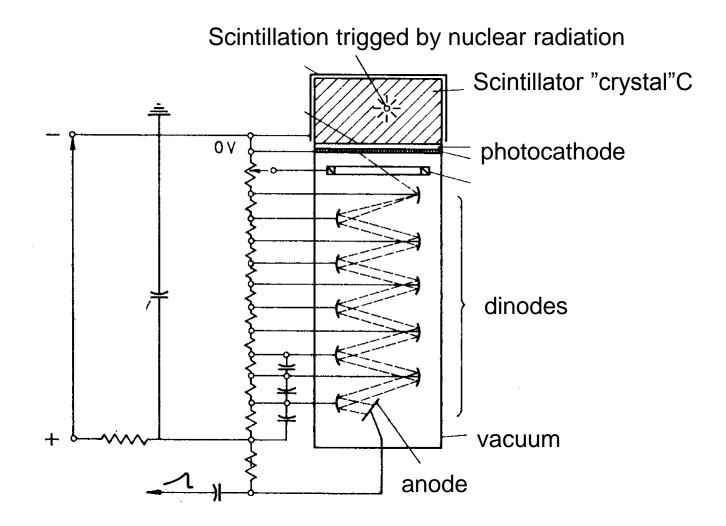
A + radiation  $\rightarrow A^{*+} + e^- + radiation'$   $A^{*+} \rightarrow A^+ + X_{char}$  $A^{*+} \rightarrow A^{2+} + e^-_{Auger}$ 


4. Bremsstrahlung (breaking radiation)


A + radiation  $\pm \rightarrow$  A + X<sub>b</sub> + radiation  $\pm$ 

#### FUNDAMETALS OF DETECTION

What do we want to know?


yes/no type of radiation energy of radiation source activity (I=kηA) integral real time evaluation delayed evaluation rate Geiger-Müller (GM) counter (gas ionisation detector)





## Scintillation detectors

Scintillator (material depends on the radiation) + photomultiplyer



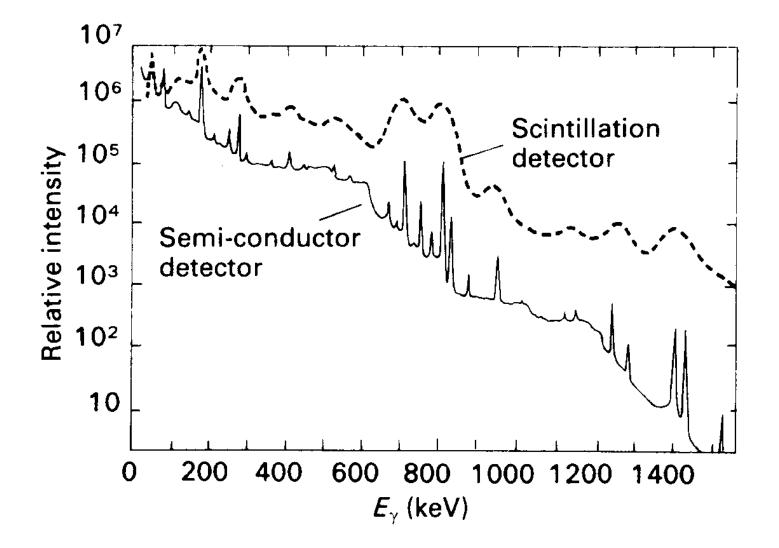
#### Typical scintillation crystals

## Depends on the type of radiation

- NaI(TI) gamma Plastic beta
- ZnS alpha

Liquid scintillation technique for low E isotopes (<sup>3</sup>H, <sup>14</sup>C) scintillator and radioactive material dissolved in the same solution

# Semiconductor detectors


Typical semiconductors

|                       | Si   | Ge   | CdTe    |
|-----------------------|------|------|---------|
| Atomic number, $Z$    | 14   | 32   | 48 - 52 |
| Energy gap, eV        | 1.12 | 0.74 | 1.47    |
| Ionisation energy, eV | 3.61 | 2.98 | 4.43    |

Ge(Li)

HPGe, Si(Li)

#### Comparison of a scintillation and a semiconductor spectrum



#### Comparison of the features of the main detector types

| Properties                                                                         | GM counter                                                                                   | Scintillation detector                                | Semiconductor detector                                                                   |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------|
| Field of application                                                               | Primarily for<br>particle radiation<br>measurements                                          | Measurements of any<br>radioactive radiation<br>types | Measurements of any radioactive radiation                                                |
| Measurement<br>efficiency                                                          | For particle<br>radiation (α, β, n)<br>near 100% for<br>electromagnetic<br>radiation 1 or 2% | Generally good                                        | Generally good strongly<br>temperature dependent<br>at some types                        |
| Dead time                                                                          | < 1 ms                                                                                       | <1 μs                                                 | <0.1 μs                                                                                  |
| Energy selectivity<br>(qualitative<br>identification of the<br>radioactive source) | Non-selective                                                                                | Selective                                             | Very selective                                                                           |
| Costs                                                                              | Low                                                                                          | High, due to<br>accessories                           | High                                                                                     |
| Other aspects                                                                      | Limited but usually<br>long life time                                                        | High counting rates                                   | For drifted<br>semiconductors, cooling<br>required both for<br>measurement an<br>storage |