Physical chemistry and radiochemistry

Prof. Krisztina László (463-)18-93 klaszlo@mail.bme.hu Building: F, Staircase: I, 1st floor, Room 135

http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem/PHCR

Requirements

Weekly contact: 2+0+1

Evaluation is based on continuous performance

Lectures: Participation at 67 % (2/3) on the lectures is obligatory

occasional short tests and 2 comprehensive tests

16 October4 December

Lab practice: All the measurements should be performed and the lab requirements fully completed (active and knowledgable participation + accepted report)

Comprehensive test on the lab practices will be held on 4 December

Make up testS: 11 December

Final grade: 80 % lecture related performance (short + comprehensive) 20 % lab practice

RADIOCHEMISTRY

- ✓ to understand the nuclear forces acting in the nucleus of the atoms
- \checkmark the kinds and source of nuclear radiations
- \checkmark interactions of nuclear radiation with the matter
- \checkmark applications

Antoine Henri *Becquerel* (1852 - 1908)

Maria *Skłodowska-Curie* (1867 – 1934)

The nucleus

after http://astronomyonline.org/Science/Images/Mathematics/AtomicStructureSmall.jpg

A=Z+N

A: mass number Z: atomic number m E, MeV p $1.6726 \times 10^{-24}g$ 938.27 n $1.6749 \times 10^{-24}g$ 939.55 e⁻ 9.109 $\times 10^{-28}g$ 0.51

 $\Delta E = mc^2$

Stable nuclides

 $A_{z}^{A}X$ A = Z + N

The role of the neutrons

Binding energy of the nucleus

Classification of the nuclides Isotope: identical Z Isobar: identical A Isotone: identical N

Isotope effect i Radioactive isotope !

applications spectroscopies (resonance, MS) solvent (NMR, neutron scattering) enrichment of isotopes CSIA: compound specific isotope analysis

Negligible? labelling unortodox organic synthesis routes

Radioactivity

<u>Spontaneous</u> transformation of the unstable nucleus.

The properties of the nucleus <u>change in time</u> and <u>energy is lost</u>.

All the conservation laws are met.

Types of radioactive decay

Isomeric transition

line spectrum

Z	Nuclide	T _{1/2}	Way of decay	Partie energ	cle _l y, MeV	Gamı energy,	ma MeV	η	Production	σ'	Daughter
27						2,02 2,60 2,99 3,25 3,47	11 % 16 % 1 % 12 % 1 %				
	57Co	270 d	E.X.		100 %	0,014 0,122 0,136	6 % 88 % 10 %	83 % 1 % 1 %	56 Fe(d,n) 60 Ni(p, α)	0,9	
	⁵⁸ Co	71,3 d	<i>Ε.Χ.</i> β ⁺	0,47	85 % 15 %	$\begin{matrix} 0,81 \\ 1,62 \\ 0,51 \ (\beta^+) \end{matrix}$	100 % 0,5 %		⁵⁸ Ni(<i>n</i> , <i>p</i>)		
	^{60m} Co	10,5 min	I		100 %	0,059	0%	≈100%	$^{59}\mathrm{Co}(n,\gamma)$	19	⁶⁰ Co
	⁶⁰ Co	5,27 a	β-	0,31 1,48	≈ 100 % 0,01 %	1,17 1,33	100 % 100 %		⁵⁹ Co(<i>n</i> ,γ)	37	
28	⁶³ Ni	92 a	β-	0,067	100 %				62 Ni (n,γ)	0,77	
	⁶⁵ Ni	2,521 h	β-	0,60 1,01 2,10	≈ 23 % ≈ 8 % ≈ 69 %	0,37 1,11 1,49	5 % 13 % 1 8 %		⁶⁴ Ni(<i>n</i> ,γ)	0,016	
29	⁶⁴ Cu	12,9 h	$\begin{array}{c} \beta^- \\ \beta^+ \\ E.X. \end{array}$	0,57 0,66	38 % 19 % 43 %	0,51 (β ⁺) 1,34	0,6 %		⁶³ Cu(<i>n</i> ,γ)	3,0	
	⁶⁶ Cu	5,10 min	β-	0,76 1,59 2,63	< 0,2 % ≈ 9 % ≈ 91 %	0,83 1,04	0,2 % 9 %		65 Cu (n, γ)	0,56	

$$\beta - \text{decays}$$

$$\beta^{-} - \text{decay}$$

$$\beta^{-} - \text{decay}$$

$$\beta^{-} - \text{decay}$$

$$\frac{A}{Z} X \rightarrow \frac{A}{Z+1} Y + \beta^{-} + \tilde{v} + [\gamma]$$

$$n \rightarrow p + \beta^{-} + \tilde{v} \quad \text{exothermic}$$

$$\beta^{+} - \text{decay}$$

$$\frac{A}{Z} X \rightarrow \frac{A}{Z-1} Y + \beta^{+} + v + [\gamma]$$

$$p \rightarrow n + \beta^{+} + v \quad \text{endothermic}$$
Electron capture
$$e^{-} + \frac{A}{Z} X \rightarrow \frac{A}{Z-1} Y + v + [\gamma]$$

$$e^{-} + p \rightarrow n + v \quad \text{endothermic}$$

$$\frac{\tilde{v}_{1}}{\tilde{v}_{1}} \qquad e^{-} + p \rightarrow n + v \quad \text{endothermic}$$

$$A^{-} = \text{constant}$$

$$\frac{A}{ZZ = \pm 1}$$

$$v \quad \text{or} \quad \tilde{v} \quad 14$$

Emax ŧ

E_β, MeV

14

Examples:	pure	β-	emitters
-----------	------	----	----------

nuclide	Energia, MeV	T _{1/2}
ЗН	0.018	12.26 y
¹⁴ C	0.159	5730 y
32 p	1.71	14.3 d
³⁵ S	0.167	88 d
⁹⁰ Sr	0.54	28.1 y
90 y	2.25	64 h

Examples: mixed (β + γ) emitters

nuclide	T _{1/2}	β -energy,	γ-energy,
		MeV	MeV
⁶⁰ Co	5,27 a	0,31	1,17/1,33
¹³¹ I	8,07 d	0,61	0,36
¹³⁷ Cs	30,23 a	0,51	0,662

15

nuklid	T _{1/2}	E _β +	
		MeV	
¹¹ C	20.3 min	0.97	
¹³ N	9.97 min	1.2	
¹⁵ O	124 s	1.7	
¹⁸ F	109.7 min	0.064	

Examples: EX (electron capture)

Nuclide	T _{1/2}	Ε _γ
		MeV
⁵⁴ Mn	303 d	0.84
¹²⁵ I	60 d	0.035

²²²Rn

line spectrum

3.8 d

Gamma ray/radiation Electromagnetic radiation, emmitted by the nucleus Line spectrum Isomeric transition ("escort" also)

Beta-radiations

e⁻ or e⁺ radiation coming from the nucleus Continuous spectrum May be exclusive (but v!)

May be escorted by gamma or characteristic X-rays

Alpha-radiation ⁴He²⁺ particles, emmitted by the nucleus Linear spectrum May be escorted by gamma radiation

Radioactivity

-Spontaneous decay

-Properties change in time chemical identity mass

-Energy is relea	ised	mass, MeV	typical energy, MeV
hv hv	from nucleus: gamma-ray	-	
e , e ⁻ ⁴ ₂ He ²⁺	from nucleus: deta-particle from nucleus: alpha-particle	~3700	4-9 MeV
	Charael	208	212 8:/700

spontaneous fission

Occurs in nature!!!

Kinetics of the decay

21

Radiocarbon dating (or simply carbon dating)

radiometric dating technique based on the decay of ¹⁴C to estimate the age of organic materials (wood, leather, etc.) up to 58,000 - 62,000 years.

Willard Libby, Nobel Prize in Chemistry (1949)

plant or animal alive : exchanging carbon with its surroundings \rightarrow same proportion of ${}^{14}C/{}^{12}C$ as the biosphere.

Once it dies ¹⁴C it contains decays, ¹⁴C/¹²C gradually reduce.

A mammoth was found in the Siberian permafrost. The ${}^{14}C$ content in the body was only 21 % of that found in living animals. Their ${}^{14}C/{}^{12}C$ ratio is 10^{-12} . How old is the mammoth ? The half-life of the radiocarbon is 5730 y.