Heat of reaction from heat of formation data

Suppose we first decompose the reactants to their elements (reverse of the formation reaction), then we recompose the products from the elements,

$$
\begin{gathered}
\Delta_{r} H=\Delta_{r} H(I)+\Delta_{r} \boldsymbol{H}(I I)=\sum v_{\boldsymbol{B}} \Delta_{\boldsymbol{f}} \boldsymbol{H}_{\boldsymbol{B}}-\sum v_{\boldsymbol{A}} \Delta_{\boldsymbol{f}} \boldsymbol{H}_{\boldsymbol{A}}=\Delta_{\boldsymbol{r}}\left(\Delta_{\boldsymbol{f}} \boldsymbol{H}\right) \\
3 C_{2} H_{2} \rightarrow C_{6} H_{6} \\
\Delta_{\boldsymbol{r}} \boldsymbol{H}=\Delta_{\boldsymbol{f}} \boldsymbol{H}_{\boldsymbol{C} 6} \boldsymbol{H} 6-3 \cdot \Delta_{\boldsymbol{f}} \boldsymbol{H}_{\boldsymbol{C} 2 \boldsymbol{H} 2}
\end{gathered}
$$

THE DIRECTION OF PROCESSES IN NATURE (spontaneity)

$-\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$ and not the reverse

- gases uniformly fill the space available (expand)
- a hot object cools down to the temperature of its environment (heat is dissipated)

In the processes occurring spontaneously energy is dissipating.

We introduce a new state function, which can be used as the measure of the disorder. In spontaneous processes in isolated systems its change should be positive:
S : entropy, the measure of disorder

$$
Q_{\mathrm{rev}}=T \cdot S \quad[S]=\mathrm{J} / \mathrm{K}
$$

Heat input: the motion becomes more disordered Work input: makes the system more ordered

Any changes can be characterized by an entropy change.
State function, extensive property (depends of the amount)

$$
S=n S_{m} \quad \text { molar entropy }
$$

Spontaneous macroscopic processes in isolated systems always increase the entropy. The system gets into equilibrium when its entropy reaches its maximum value.
(This is the 2nd law of thermodynamics.)

T dependence of entropy:

\rightarrow Unlike U and H, the absolute value of entropy is known ${ }^{35}$

Entropy at phase transitions (isothermal-isobaric processes)

$$
\begin{aligned}
& \text { e.g. } \Delta S(\text { melting })=\frac{\Delta H(\text { melting })}{T_{\text {melting }}} \\
& \qquad \Delta S(\text { evap })=\frac{\Delta H(\text { evap })}{T_{\text {boiling }}}
\end{aligned}
$$

Entropy of evaporation at the normal boiling point ($p=1 \mathrm{~atm}$)

chemical	$\Delta \mathrm{S}($ evap $), \mathrm{JK}^{-1} \mathrm{~mol}^{-}$
bromine	88.6
benzene	87.2
carbon	85.9
tetrachloride	
cyclohexane	85.1
$\mathrm{H}_{2} \mathrm{~S}$	87.9
ammonia	97.4
water	109.1
mercury	94.2

EXERCISE 1

Problem:

The entropy of evaporation of cyclohexane at its normal boiling point ($1 \mathrm{~atm}, 197.3^{\circ} \mathrm{C}$) is $85.1 \mathrm{~J} /($ molK $)$. Calculate its heat of evaporation at this temperature.

Solution:

EXERCISE 2

Problem:

The melting point of nitrogen is $-196^{\circ} \mathrm{C}$.
What will be the change of entropy if 15 liter of liquid nitrogen is evaporated at atmospheric pressure? The density of the liquid nitrogen is $0.81 \mathrm{~g} / \mathrm{cm}^{3}$?
What will be the sign of the change and explain why.

Solution:

EXERCISE 3

Problem:

How much heat should be removed from the system if we intend to cool $5 \mathrm{~m}^{3}$ ethane gas from $140^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$?
The temperature dependence of the molar heat can be neglected.

Solution:

EXERCISE 4

Problem:

The mass of a single cube of sugar $\left(C_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ is ca. 1.5 g . How much heat is evolved when a cube is completely burned in excess oxygen?

Solution:

In spontaneous macroscopic processes the entropy always increases.

In isolated system
$$
\Delta S_{\text {system }} \geq 0
$$

If not isolated

$$
\Delta S_{\text {system }}+\Delta S_{\text {surrounding }} \geq 0
$$

The entropy change of an arbitrary process:

$$
\Delta S_{\text {total }}=\Delta S_{\text {system }}+\Delta S_{\text {surrounding }} \quad \Delta S=\frac{Q_{\text {rev }}}{T}=\frac{\Delta H}{T}
$$

if p and T are constant

$$
\begin{gathered}
\Delta S_{\text {surrounding }}=-\frac{\Delta H_{\text {system }}}{T}{ }_{\text {endorthemic }}^{\text {encthermic }} \\
\Delta S_{\text {total }}=-\frac{\Delta H_{\text {system }}}{T}+\Delta S_{\text {system }} \\
T \Delta S_{\text {total }}=-\Delta H_{\text {system }}+T \Delta S_{\text {system }} \\
G \equiv H-T S \quad \text { Gibbs free energy } \\
-T \Delta S_{\text {total }}=\Delta H-T \Delta S \equiv \Delta G
\end{gathered}
$$

In a closed system at constant T and p in spontaneous processes G decreases. When equilibrium is reached, it has a minimum (if no work occurs).
Spontaneity \Leftrightarrow rate $\quad G_{m, \text { graphite }}-G_{m, \text { diamond }}=-3 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$

Most important properties of G :

1. State function
2. Extensive quantity $\quad G=n G_{m}$
3. $G=H-T S$

Total energy
stored in the system
Energy stored by the thermal motion of the atoms/molecules

The spontaneity of a process depends on the sign of ΔG during the transition:
e.g.. in phase transition (no chemical changes) PHASE $1 \longrightarrow$ PHASE 2

$$
\begin{gathered}
G=n \cdot G_{m} \\
n \cdot G_{m}(2)-n \cdot G_{m}(1)=n\left[G_{m}(2)-G_{m}(1)\right]<0 \quad ?
\end{gathered}
$$

$G(T) \quad p=$ const. $d G=-S d T$

$$
\begin{gathered}
G=H-T S \\
H \equiv U+p V
\end{gathered}
$$

$$
\left(\frac{\partial G}{\partial T}\right)_{p}=-S
$$

$$
\begin{array}{lrl}
G(p) \quad \mathbf{T}=\text { const. } & G=H-T S \\
d G & =V d p & H \equiv U+p V
\end{array}
$$

$$
\begin{gathered}
G_{m}(1)=G_{m}(2) \\
G_{m}(1)+d G_{m}(1)=G_{m}(2)+d G_{m}(2) \\
d G_{m}(1)=d G_{m}(2) \\
d G_{m}=V_{m} d p-S_{m} d T \\
d G_{m}(1)=V_{m}(1) d p-S_{m}(1) d T \\
d G_{m}(2)=V_{m}(2) d p-S_{m}(2) d T \\
V_{m}(1) d p-S_{m}(1) d T=V_{m}(2) d p-S_{m}(2) d T \\
{\left[S_{m}(2)-S_{m}(1)\right] d T=\left[V_{m}(2)-V_{m}(1)\right] d p} \\
\frac{d p}{d T}=\frac{\Delta S_{m}}{\Delta V_{m}}
\end{gathered}
$$

The phase transition is an isothermal and isobaric process:

$$
\Delta S_{m}=\frac{\Delta H_{m}}{T} \quad \frac{d p}{d T}=\frac{\Delta S_{m}}{\Delta V_{m}}=\frac{\Delta H_{m}}{T \Delta V_{m}}
$$

Clapeyron

$$
\frac{d p}{d T}=\frac{\Delta H_{m}}{T \cdot \Delta V_{m}}
$$

Clapeyron equation (the equation of one component phase equilibrium).

Nothing was
neglected in the derivation.

It is valid for: liquid-vapor
solid-liquid
solid-vapor
solid-solid equilibrium

(a)

Temperature

$$
\frac{d p}{d T}=\frac{\Delta S_{m}}{\Delta V_{m}}
$$

S/L reaction to increasing $p \quad\left(V_{m} d p\right)_{S} \stackrel{?}{=}\left(V_{m} d p\right)_{L}$

Water

CO_{2}

Temperature

ice: $19,7 \mathrm{~cm}^{3} / \mathrm{mol}$ water: $18,0 \mathrm{~cm}^{3} / \mathrm{mol}$

The liquid - gas transition: evaporation and condensation Let's apply the Clapeyron equation for liquid-vapor equilibrium:

$$
\frac{d p}{d T}=\frac{\Delta_{\text {evap }} H_{m}}{T \Delta V_{m} \longleftarrow} \begin{aligned}
& \begin{array}{l}
\text { molar heat } \\
\text { of vaporization } \\
\text { change of molar }
\end{array} \\
& \text { volume at vanori }
\end{aligned}
$$ volume at vaporization

Temperature

1. We neglect the molar volume of the liquid (compared to vapor).
$\Delta V=V_{m}($ gas $)-V_{m}(l i q) \cong V_{m}($ gas $)$
2. We regard the vapor as ideal gas.
$V_{m}($ gas $)=\frac{R T}{p}$

$$
\frac{d p}{d T}=\frac{p \Delta_{\text {evap }} H_{m}^{\prime}}{R T^{2}} \quad \text { Clausius-Clapeyron }
$$

$$
\frac{d p}{p}=\frac{p \Delta_{\text {evap }} H_{m}^{\prime}}{R T^{2}} d T
$$

The saturation pressure
of a pure liquid only depends on T.

$$
\frac{d p}{p}=d \ln p \quad \frac{d T}{T^{2}}=-d \frac{1}{T} \quad d(1 / T) / d T=-1 / T^{2}
$$

$$
\ln p=-\frac{\Delta_{\text {evap }} H_{m}^{\prime}}{R} \cdot \frac{1}{T}+C
$$

$$
\int_{p_{k}}^{p_{V}} d \ln p=\int_{T_{k}}^{T_{V}} \frac{\Delta_{\text {evap }} H^{\prime}}{R T^{2}} d T
$$

$$
\ln \{p\}=-\frac{A}{T}+B \quad\{p\}=\frac{p(P a)}{1 P a}
$$

If the logarithm of the vapor pressure is plotted against the reciprocal of temperature, we obtain a straight line: $\lg \{p\} \quad \ln \frac{p_{v}}{p_{k}}=\frac{\Delta_{\text {evap }} H_{m}^{\prime}}{R}\left(\frac{1}{T_{k}}-\frac{1}{T_{v}}\right)$

