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Fundamentals of Piezoelectricity

2.1 Introduction

This chapter is concerned with piezoelectric materials and their properties. We
begin the chapter with a brief overview of some historical milestones, such as
the discovery of the piezoelectric effect, the invention of piezoelectric ceramic
materials, and commercial and military utilization of the technology. We will
review important properties of piezoelectric ceramic materials and will then
proceed to a detailed introduction of the piezoelectric constitutive equations.

The main assumption made in this chapter is that transducers made from
piezoelectric materials are linear devices whose properties are governed by a
set of tensor equations. This is consistent with the IEEE standards of piezo-
electricity [154]. We will explain the physical meaning of parameters which
describe the piezoelectric property, and will clarify how these parameters can
be obtained from a set of simple experiments.

In this book, piezoelectric transducers are used as sensors and actuators in
vibration control systems. For this purpose, transducers are bonded to a flexi-
ble structure and utilized as either a sensors to monitor structural vibrations,
or as actuators to add damping to the structure. To develop model-based con-
trollers capable of adding sufficient damping to a structure using piezoelectric
actuators and sensors it is vital to have models that describe the dynamics of
such systems with sufficient precision.

We will explain how the dynamics of a flexible structure with incorporated
piezoelectric sensors and actuators can be derived starting from physical prin-
ciples. In particular, we will emphasize the structure of the models that are
obtained from such an exercise. Knowledge of the model structure is crucial
to the development of precise models based on measured frequency domain
data. This will constitute our main approach to obtaining models of systems
studied throughout this book.
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2.2 History of Piezoelectricity

The first scientific publication describing the phenomenon, later termed as
piezoelectricity, appeared in 1880 [48]. It was co-authored by Pierre and
Jacques Curie, who were conducting a variety of experiments on a range
of crystals at the time. In those experiments, they cataloged a number of
crystals, such as tourmaline, quartz, topaz, cane sugar and Rochelle salt that
displayed surface charges when they were mechanically stressed.

In the scientific community of the time, this observation was considered
as a significant discovery, and the term “piezoelectricity” was coined to ex-
press this effect. The word “piezo” is a Greek word which means “to press”.
Therefore, piezoelectricity means electricity generated from pressure - a very
logical name. This terminology helped distinguish piezoelectricity from the
other related phenomena of interest at the time; namely, contact electricity1

and pyroelectricity2.
The discovery of the direct piezoelectric effect is, therefore, credited to

the Curie brothers. They did not, however, discover the converse piezoelec-
tric effect. Rather, it was mathematically predicted from fundamental laws
of thermodynamics by Lippmann [118] in 1881. Having said this, the Curies
are recognized for experimental confirmation of the converse effect following
Lippmann’s work.

The discovery of piezoelectricity generated significant interest within the
European scientific community. Subsequently, roughly within 30 years of its
discovery, and prior to World War I, the study of piezoelectricity was viewed
as a credible scientific activity. Issues such as reversible exchange of electrical
and mechanical energy, asymmetric nature of piezoelectric crystals, and the
use of thermodynamics in describing various aspects of piezoelectricity were
studied in this period.

The first serious application for piezoelectric materials appeared during
World War I. This work is credited to Paul Langevin and his co-workers
in France, who built an ultrasonic submarine detector. The transducer they
built was made of a mosaic of thin quartz crystals that was glued between two
steel plates in a way that the composite system had a resonance frequency
of 50 KHz. The device was used to transmit a high-frequency chirp signal
into the water and to measure the depth by timing the return echo. Their
invention, however, was not perfected until the end of the war.

Following their successful use in sonar transducers, and between the
two World Wars, piezoelectric crystals were employed in many applications.
Quartz crystals were used in the development of frequency stabilizers for
vacuum-tube oscillators. Ultrasonic transducers manufactured from piezoelec-
tric crystals were used for measurement of material properties. Many of the
classic piezoelectric applications that we are familiar with, applications such

1 Static electricity generated by friction
2 Electricity generated from crystals, when heated
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as microphones, accelerometers, ultrasonic transducers, etc., were developed
and commercialized in this period.

Development of piezoceramic materials during and after World War II
helped revolutionize this field. During World War II, significant research was
performed in the United States and other countries such as Japan and the
former Soviet Union which was aimed at the development of materials with
very high dielectric constants for the construction of capacitors. Piezoceramic
materials were discovered as a result of these activities, and a number of
methods for their high-volume manufacturing were devised. The ability to
build new piezoelectric devices by tailoring a material to a specific application
resulted in a number of developments, and inventions such as: powerful sonars,
piezo ignition systems, sensitive hydrophones and ceramic phono cartridges,
to name a few.

2.3 Piezoelectric Ceramics

A piezoelectric ceramic is a mass of perovskite crystals. Each crystal is com-
posed of a small, tetravalent metal ion placed inside a lattice of larger divalent
metal ions and O2, as shown in Figure 2.1.

To prepare a piezoelectric ceramic, fine powders of the component metal
oxides are mixed in specific proportions. This mixture is then heated to form
a uniform powder. The powder is then mixed with an organic binder and is
formed into specific shapes, e.g. discs, rods, plates, etc. These elements are
then heated for a specific time, and under a predetermined temperature. As a
result of this process the powder particles sinter and the material forms a dense
crystalline structure. The elements are then cooled and, if needed, trimmed
into specific shapes. Finally, electrodes are applied to the appropriate surfaces
of the structure.

Above a critical temperature, known as the “Curie temperature”, each per-
ovskite crystal in the heated ceramic element exhibits a simple cubic symmetry
with no dipole moment, as demonstrated in Figure 2.1. However, at tempera-
tures below the Curie temperature each crystal has tetragonal symmetry and,
associated with that, a dipole moment. Adjoining dipoles form regions of local
alignment called “domains”. This alignment gives a net dipole moment to the
domain, and thus a net polarization. As demonstrated in Figure 2.2 (a), the
direction of polarization among neighboring domains is random. Subsequently,
the ceramic element has no overall polarization.

The domains in a ceramic element are aligned by exposing the element to
a strong, DC electric field, usually at a temperature slightly below the Curie
temperature (Figure 2.2 (b)). This is referred to as the “poling process”.
After the poling treatment, domains most nearly aligned with the electric
field expand at the expense of domains that are not aligned with the field,
and the element expands in the direction of the field. When the electric field is
removed most of the dipoles are locked into a configuration of near alignment
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Figure 2.1. Crystalline structure of a piezoelectric ceramic, before and after polar-
ization

(Figure 2.2 (c)). The element now has a permanent polarization, the remnant
polarization, and is permanently elongated. The increase in the length of the
element, however, is very small, usually within the micrometer range.

Properties of a poled piezoelectric ceramic element can be explained by
the series of images in Figure 2.3. Mechanical compression or tension on the
element changes the dipole moment associated with that element. This cre-
ates a voltage. Compression along the direction of polarization, or tension
perpendicular to the direction of polarization, generates voltage of the same
polarity as the poling voltage (Figure 2.3 (b)). Tension along the direction
of polarization, or compression perpendicular to that direction, generates a
voltage with polarity opposite to that of the poling voltage (Figure 2.3 (c)).
When operating in this mode, the device is being used as a sensor. That is,
the ceramic element converts the mechanical energy of compression or tension
into electrical energy. Values for compressive stress and the voltage (or field

Figure 2.2. Poling process: (a) Prior to polarization polar domains are oriented
randomly; (b) A very large DC electric field is used for polarization; (c) After the
DC field is removed, the remnant polarization remains.
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Figure 2.3. Reaction of a poled piezoelectric element to applied stimuli

strength) generated by applying stress to a piezoelectric ceramic element are
linearly proportional, up to a specific stress, which depends on the material
properties. The same is true for applied voltage and generated strain3.

If a voltage of the same polarity as the poling voltage is applied to a ceramic
element, in the direction of the poling voltage, the element will lengthen and
its diameter will become smaller (Figure 2.3 (d)). If a voltage of polarity
opposite to that of the poling voltage is applied, the element will become
shorter and broader (Figure 2.3 (e)). If an alternating voltage is applied to
the device, the element will expand and contract cyclically, at the frequency
of the applied voltage. When operated in this mode, the piezoelectric ceramic
is used as an actuator. That is, electrical energy is converted into mechanical
energy.

2.4 Piezoelectric Constitutive Equations

In this section we introduce the equations which describe electromechanical
properties of piezoelectric materials. The presentation is based on the IEEE
standard for piezoelectricity [154] which is widely accepted as being a good
representation of piezoelectric material properties. The IEEE standard as-
sumes that piezoelectric materials are linear. It turns out that at low electric
fields and at low mechanical stress levels piezoelectric materials have a linear
profile. However, they may show considerable nonlinearity if operated under
a high electric field or high mechanical stress level. In this book we are mainly
concerned with the linear behavior of piezoelectric materials. That is, for the
most part, we assume that the piezoelectric transducers are being operated
at low electric field levels and under low mechanical stress.

When a poled piezoelectric ceramic is mechanically strained it becomes
electrically polarized, producing an electric charge on the surface of the mate-
rial. This property is referred to as the “direct piezoelectric effect” and is the
3 It should be stressed that this statement is true when the piezoelectric material is

being operated under small electric field, or mechanical stress. When subject to
higher mechanical, or electrical fields, piezoelectric transducers display hysteresis-
type nonlinearity. For the most part, in this monograph, the linear behavior of
piezoelectric transducers will be of interest. However, Chapter 11 will briefly re-
view the issues arising when a piezoelectric transducer is operated in the nonlinear
regime.
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Figure 2.4. Schematic diagram of a piezoelectric transducer

basis upon which the piezoelectric materials are used as sensors. Furthermore,
if electrodes are attached to the surfaces of the material, the generated elec-
tric charge can be collected and used. This property is particularly utilized in
piezoelectric shunt damping applications to be discussed in Chapter 4.

The constitutive equations describing the piezoelectric property are based
on the assumption that the total strain in the transducer is the sum of me-
chanical strain induced by the mechanical stress and the controllable actuation
strain caused by the applied electric voltage. The axes are identified by numer-
als rather than letters. In Figure 2.4, 1 refers to the x axis, 2 corresponds to
the y axis, and 3 corresponds to the z axis. Axis 3 is assigned to the direction
of the initial polarization of the piezoceramic, and axes 1 and 2 lie in the plane
perpendicular to axis 3. This is demonstrated more clearly in Figure 2.5.

The describing electromechanical equations for a linear piezoelectric ma-
terial can be written as [154, 70]:

εi = SE
ijσj + dmiEm (2.1)

Dm = dmiσi + ξσ
ikEk, (2.2)

where the indexes i, j = 1, 2, . . . , 6 and m, k = 1, 2, 3 refer to different di-
rections within the material coordinate system, as shown in Figure 2.5. The
above equations can be re-written in the following form, which is often used
for applications that involve sensing:

εi = SD
ij σj + gmiDm (2.3)

Ei = gmiσi + βσ
ikDk (2.4)

where
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Figure 2.5. Axis nomenclature

σ . . . stress vector (N/m2)
ε . . . strain vector (m/m)
E . . . vector of applied electric field (V/m)
ξ . . . permitivity (F/m)
d . . . matrix of piezoelectric strain constants (m/V )
S . . . matrix of compliance coefficients (m2/N)
D. . . vector of electric displacement (C/m2)
g . . . matrix of piezoelectric constants (m2/C)
β . . . impermitivity component (m/F )

Furthermore, the superscripts D, E, and σ represent measurements taken
at constant electric displacement, constant electric field and constant stress.

Equations (2.1) and (2.3) express the converse piezoelectric effect, which
describe the situation when the device is being used as an actuator. Equations
(2.2) and (2.4), on the other hand, express the direct piezoelectric effect, which
deals with the case when the transducer is being used as a sensor. The converse
effect is often used to determine the piezoelectric coefficients.

In matrix form, Equations (2.1)-(2.4) can be written as:

⎡
⎢⎢⎢⎢⎢⎢⎣

ε1

ε2

ε3

ε4

ε5

ε6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

S11 S12 S13 S14 S15 S16

S21 S22 S23 S24 S25 S26

S31 S32 S33 S34 S35 S36

S41 S42 S43 S44 S45 S46

S51 S52 S53 S54 S55 S56

S61 S62 S63 S64 S65 S66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

σ1

σ2

σ3

τ23

τ31

τ12

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

d11 d21 d31

d12 d22 d32

d13 d23 d33

d14 d24 d34

d15 d25 d35

d16 d26 d36

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣E1

E2

E3

⎤
⎦ (2.5)

and
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⎡
⎣D1

D2

D3

⎤
⎦ =

⎡
⎣d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

σ1

σ2

σ3

σ4

σ5

σ6

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎣eσ

11 eσ
12 eσ

13

eσ
21 eσ

22 eσ
23

eσ
31 eσ

32 eσ
33

⎤
⎦

⎡
⎣E1

E2

E3

⎤
⎦ . (2.6)

Some texts use the following notation for shear strain

γ23 = ε4

γ31 = ε5

γ12 = ε6

and for shear stress

τ23 = σ4

τ31 = σ5

τ12 = σ6.

Assuming that the device is poled along the axis 3, and viewing the piezo-
electric material as a transversely isotropic material, which is true for piezo-
electric ceramics, many of the parameters in the above matrices will be either
zero, or can be expressed in terms of other parameters. In particular, the
non-zero compliance coefficients are:

S11 = S22

S13 = S31 = S23 = S32

S12 = S21

S44 = S55

S66 = 2(S11 − S12).

The non-zero piezoelectric strain constants are

d31 = d32

and
d15 = d24.

Finally, the non-zero dielectric coefficients are eσ
11 = eσ

22 and eσ
33. Subsequently,

the equations (2.5) and (2.6) are simplified to:
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⎡
⎢⎢⎢⎢⎢⎢⎣

ε1

ε2

ε3

ε4

ε5

ε6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

S11 S12 S13 0 0 0
S12 S11 S13 0 0 0
S13 S13 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S44 0
0 0 0 0 0 2(S11 − S12)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

σ1

σ2

σ3

τ23

τ31

τ12

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 d31

0 0 d31

0 0 d33

0 d15 0
d15 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣E1

E2

E3

⎤
⎦ (2.7)

and

⎡
⎣D1

D2

D3

⎤
⎦ =

⎡
⎣ 0 0 0 0 d15 0

0 0 0 d15 0 0
d31 d31 d33 0 0 0

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

σ1

σ2

σ3

σ4

σ5

σ6

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎣eσ

11 0 0
0 eσ

11 0
0 0 eσ

33

⎤
⎦

⎡
⎣E1

E2

E3

⎤
⎦ .

The “piezoelectric strain constant” d is defined as the ratio of developed
free strain to the applied electric field. The subscript dij implies that the elec-
tric field is applied or charge is collected in the i direction for a displacement
or force in the j direction. The physical meaning of these, as well as other
piezoelectric constants, will be explained in the following section.

The actuation matrix in (2.5) applies to PZT materials. For actuators
made of PVDF materials, this matrix should be modified to

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 d31

0 0 d32

0 0 d33

0 d25 0
d15 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

This reflects the fact that in PVDF films the induced strain is nonisotropic
on the surface of the film. Hence, an electric field applied in the direction of
the polarization vector will result in different strains in 1 and 2 directions.
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Figure 2.6. A piezoelectric transducer arrangement for d31 measurement

2.5 Piezoelectric Coefficients

This section reviews the physical meaning of some of the piezoelectric coeffi-
cients introduced in the previous section. Namely dij , gij , Sij and eij .

2.5.1 Piezoelectric Constant dij

The piezoelectric coefficient dij is the ratio of the strain in the j-axis to the
electric field applied along the i-axis, when all external stresses are held con-
stant. In Figure 2.6, a voltage of V is applied to a piezoelectric transducer
which is polarized in direction 3. This voltage generates the electric field

E3 =
V

t

which strains the transducer. In particular

ε1 =
Δ	

	

in which
Δ� =

d31V 	

t
.

The piezoelectric constant d31 is usually a negative number. This is due
to the fact that application of a positive electric field will generate a positive
strain in direction 3.

Another interpretation of dij is the ratio of short circuit charge per unit
area flowing between connected electrodes perpendicular to the j direction to
the stress applied in the i direction. As shown in Figure 2.7, once a force F is
applied to the transducer, in the 3 direction, it generates the stress

σ3 =
F

	w

which results in the electric charge

q = d33F
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Figure 2.7. Charge deposition on a piezoelectric transducer - An equal, but opposite
force, F , is not shown

flowing through the short circuit.
If a stress is applied equally in 1, 2 and 3 directions, and the electrodes

are perpendicular to axis 3, the resulting short-circuit charge (per unit area),
divided by the applied stressed is denoted by dp.

2.5.2 Piezoelectric Constant gij

The piezoelectric constant gij signifies the electric field developed along the
i-axis when the material is stressed along the j-axis. Therefore, in Figure 2.8
the applied force F , results in the voltage

V =
g31F

w
.

Another interpretation of gij is the ratio of strain developed along the
j-axis to the charge (per unit area) deposited on electrodes perpendicular to
the i-axis. Therefore, in Figure 2.9, if an electric charge of Q is deposited on
the surface electrodes, the thickness of the piezoelectric element will change
by

Δ	 =
g31Q

w
.

y(2)

z(3)

x(1)
t

+

F

−
V

w

�

Figure 2.8. An open-circuited piezoelectric transducer under a force in direction 1
- An equal, but opposite force, F , is not shown
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Figure 2.9. A piezoelectric transducer subject to applied charge

2.5.3 Elastic Compliance Sij

The elastic compliance constant Sij is the ratio of the strain the in i-direction
to the stress in the j-direction, given that there is no change of stress along
the other two directions. Direct strains and stresses are denoted by indices 1
to 3. Shear strains and stresses are denoted by indices 4 to 6. Subsequently,
S12 signifies the direct strain in the 1-axis when the device is stressed along
the 2-axis, and stresses along directions 1 and 3 are unchanged. Similarly, S44

refers to the shear strain around the 2-axis due to the shear stress around the
same axis.

A superscript “E” is used to state that the elastic compliance SE
ij is mea-

sured with the electrodes short-circuited. Similarly, the superscript “D” in
SD

ij denotes that the measurements were taken when the electrodes were left
open-circuited. A mechanical stress results in an electrical response that can
increase the resultant strain. Therefore, it is natural to expect SE

ij to be smaller
than SD

ij . That is, a short-circuited piezo has a smaller Young’s modulus of
elasticity than when it is open-circuited.

2.5.4 Dielectric Coefficient, eij

The dielectric coefficient eij determines the charge per unit area in the i-axis
due to an electric field applied in the j-axis. In most piezoelectric materials,
a field applied along the j-axis causes electric displacement only in that di-
rection. The relative dielectric constant, defined as the ratio of the absolute
permitivity of the material by permitivity of free space, is denoted by K.
The superscript σ in eσ

11 refers to the permitivity for a field applied in the 1
direction, when the material is not restrained.

2.5.5 Piezoelectric Coupling Coefficient kij

The piezoelectric coefficient kij represents the ability of a piezoceramic mate-
rial to transform electrical energy to mechanical energy and vice versa. This
transformation of energy between mechanical and electrical domains is em-
ployed in both sensors and actuators made from piezoelectric materials. The
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ij index indicates that the stress, or strain is in the direction j, and the
electrodes are perpendicular to the i-axis. For example, if a piezoceramic is
mechanically strained in direction 1, as a result of electrical energy input in
direction 3, while the device is under no external stress, then the ratio of
stored mechanical energy to the applied electrical energy is denoted as k2

31.
There are a number of ways that kij can be measured. One possibility

is to apply a force to the piezoelectric element, while leaving its terminals
open-circuited. The piezoelectric device will deflect, similar to a spring. This
deflection Δz , can be measured and the mechanical work done by the applied
force F can be determined

WM =
FΔz

2
.

Due to the piezoelectric effect, electric charges will be accumulated on the
transducer’s electrodes. This amounts to the electrical energy

WE =
Q2

2Cp

which is stored in the piezoelectric capacitor. Therefore,

k33 =
√ WE

WM

=
Q√

FΔzCp

.

The coupling coefficient can be written in terms of other piezoelectric
constants. In particular

k2
ij =

d2
ij

SE
ije

σ
ij

= gijdijEp, (2.8)

where Ep is the Young’s modulus of elasticity of the piezoelectric material.
When a force is applied to a piezoelectric transducer, depending on

whether the device is open-circuited or short-circuited, one should expect to
observe different stiffnesses. In particular, if the electrodes are short-circuited,
the device will appear to be “less stiff”. This is due to the fact that upon the
application of a force, the electric charges of opposite polarities accumulated
on the electrodes cancel each other. Subsequently no electrical energy can
be stored in the piezoelectric capacitor. Denoting short-circuit stiffness and
open-circuit stiffness respectively as Ksc and Koc, it can be proved that

Koc

Ksc
=

1
1 − k2

.
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2.6 Piezoelectric Sensor

When a piezoelectric transducer is mechanically stressed, it generates a volt-
age. This phenomenon is governed by the direct piezoelectric effect (2.2).
This property makes piezoelectric transducers suitable for sensing applica-
tions. Compared to strain gauges, piezoelectric sensors offer superior signal
to noise ratio, and better high-frequency noise rejection. Piezoelectric sen-
sors are, therefore, quite suitable for applications that involve measuring low
strain levels. They are compact, easy to embed and require moderate signal
conditioning circuitry.

If a PZT sensor is subject to a stress field, assuming the applied electric
field is zero, the resulting electrical displacement vector is:

⎧⎨
⎩

D1

D2

D3

⎫⎬
⎭ =

⎡
⎣ 0 0 0 0 d15 0

0 0 0 d15 0 0
d31 d31 d33 0 0 0

⎤
⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ1

σ2

σ3

τ23

τ31

τ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

The generated charge can be determined from

q =
∫ ∫ [

D1 D2 D3

]
⎡
⎣dA1

dA2

dA3

⎤
⎦ ,

where dA1, dA2 and dA3 are, respectively, the differential electrode areas in
the 2-3, 1-3 and 1-2 planes. The generated voltage Vp is related to the charge
via

Vp =
q

Cp
,

where Cp is capacitance of the piezoelectric sensor.
Having measured the voltage, Vp, strain can be determined by solving the

above integral. If the sensor is a PZT patch with two faces coated with thin
electrode layers, e.g. the patch in Figure 2.4, and if the stress field only exists
along the 1-axis, the capacitance can be determined from

Cp =
	weσ

33

t
.

Assuming the resulting strain is along the 1-axis, the sensor voltage is found
to be

Vs =
d31Epw

Cp

∫
�

ε1dx, (2.9)

where Ep is the Young’s modulus of the sensor and ε1 is averaged over the
sensor’s length. The strain can then be calculated from
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ε1 =
CpVs

d31Ep	w
. (2.10)

In deriving the above equation, the main assumption was that the sensor was
strained only along 1-axis. If this assumption is violated, which is often the
case, then (2.10) should be modified to

ε1 =
CpVs

(1 − ν)d31Ep	w
,

where ν is the Poisson’s ratio4.

2.7 Piezoelectric Actuator

Consider a beam with a pair of collocated piezoelectric transducers bonded to
it as shown in Figure 2.10. The purpose of actuators is to generate bending
in the beam by applying a moment to it. This is done by applying equal
voltages, of 180◦ phase difference, to the two patches. Therefore, when one
patch expands, the other contracts. Due to the phase difference between the
voltages applied to the two actuators, only pure bending of the beam will
occur, without any excitation of longitudinal waves. The analysis presented
in this section follows the research reported in references [42, 11, 76, 53].

When a voltage V is applied to one of the piezoelectric elements, in the
direction of the polarization vector, the actuator strains in direction 1 (the
x-axis). Furthermore, the amount of free strain is given by

εp =
d31V

tp
, (2.11)

where tp represents the thickness of the piezoelectric actuator.
Since the piezoelectric patch is bonded to the beam, its movements are

constrained by the stiffness of the beam. In the foregoing analysis perfect
bonding of the actuator to the beam is assumed. In other words, the shearing
effect of the non-ideal bonding layer is ignored [33]. Assuming that the strain
distribution is linear across the thickness of the beam5, we may write

ε(z) = αz. (2.12)

The above equation represents the strain distribution throughout the
beam, and the piezoelectric patches, if the composite structure were bent,
say by an external load, into a downward curvature. Subsequently, the por-
tion of the beam above the neutral axis and the top patch would be placed in

4 Notice that if d31 �= d32, e.g. if the sensor is a PVDF film, then this expression
for strain must be changed to ε1 =

CpVs

(1−ν
d32
d31

)d31Ep�w
.

5 This is consistent with the Kirchoff hypothesis of laminate plate theory[97].
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Figure 2.10. A beam with a pair of identical collocated piezoelectric actuators

tension, and the bottom half of the structure and the bottom patch in com-
pression. Although, the strain is continuous on the beam-actuator surface,
the stress distribution is discontinuous. In particular, using Hooke’s law, the
stress distribution within the beam is found to be

σb(z) = Ebαz, (2.13)

where Eb is the Young’s modulus of elasticity of the beam. Since the two
“identical” piezoelectric actuators are constrained by the beam, stress distri-
butions inside the top and the bottom actuators can be written in terms of
the total strain in each actuator (the strain that produces stress)

σt
p = Ep(αz − εp) (2.14)

σb
p = Ep(αz + εp), (2.15)

where Ep is the Young’s modulus of elasticity of the piezoelectric material
and the superscripts t and b refer to the top and bottom piezoelectric patches
respectively. Applying moment equilibrium about the center of the beam6

results in

∫ − tb
2

− tb
2 −tp

σb
p(z)zdz +

∫ tb
2

− tb
2

σp(z)zdz +
∫ tb

2 +tp

tb
2

σt
p(z)zdz = 0. (2.16)

After integration α is determined to be

α =
3Ep

(
( tb

2 + tp)2 − ( tb

2 )2
)

2
(
Ep

{
( tb

2 + tp)3 − ( tb

2 )3
}

+ Eb( tb

2 )3
)εp. (2.17)

6 Due to the symmetrical nature of the stress field, the integration need only

be carried out starting from the centre of the beam, i.e.
∫ tb

2
0

σp(z)zdz +∫ tb
2 +tp

tb
2

σt
p(z)zdz = 0.
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Figure 2.11. A beam with a single piezoelectric actuator

The induced moment intensity7, M in the beam is then determined by
integrating the triangular stress distribution across the beam:

M = EbIα, (2.18)

where I is the beam’s moment of inertia. Knowledge of M is crucial in deter-
mining the dynamics of the piezoelectric laminate beam.

If only one piezoelectric actuator is bonded to the beam, such as shown in
Figure 2.11, then the strain distribution (2.12) needs to be modified to

ε(z) = (αz + ε0). (2.19)

This expression for strain distribution across the beam thickness can be
decomposed into two parts: the flexural component, αz and the longitudinal
component, ε0. Therefore, the beam extends and bends at the same time. This
is demonstrated in Figure 2.12. The stress distribution inside the piezoelectric
actuator is found to be

σp(z) = Ep(αz + ε0 − εp). (2.20)

The two parameters, ε0 and α can be determined by applying the moment
equilibrium about the centre of the beam

Figure 2.12. Decomposition of asymmetric stress distribution (a) into two parts:
(b) flexural and (c) longitudinal components.

7 moment per unit length
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∫ tb
2

− tb
2

σb(z)zdz +
∫ tb

2 +tp

tb
2

σp(z)zdz = 0 (2.21)

and the force equilibrium along the x-axis

∫ tb
2

− tb
2

σb(z)dz +
∫ tb

2 +tp

tb
2

σp(z)dz = 0. (2.22)

Unlike the symmetric case, the force equilibrium condition (2.22) needs to
be applied. This is due to the asymmetric distribution of strain throughout
the beam. Solving (2.21) and (2.22) for ε0 and α we obtain

α =
6EbEptbtp(tb + tp)

E2
b t4b + EpEb(4t3btp + 6t2bt

2
p + 4tbt3p) + E2

ptp
εp (2.23)

and

ε0 =
{Ebt

3
p + Ept

3
p}Ep(tb/2)

E2
b t4b + EpEb(4t3btp + 6t2bt

2
p + 4tbt3p) + E2

ptp
εp. (2.24)

The response of the beam to this form of actuation consists of a moment
distribution

Mx = EbIα (2.25)

and a longitudinal strain distribution

εx = ε0. (2.26)

It can be observed that the moment exerted on the beam by one actuator
is not exactly half of that applied by two collocated piezoelectric actuators
driven by 180◦ out-of-phase voltages. This arises from the fact that the Ex-
pressions (2.25) and (2.23) do not include the effect of the second piezoelectric
actuator. However, if this effect is included by allowing for the stiffness of the
second actuator in the derivations, while ensuring that the voltage applied to
this patch is set to zero, then it can be shown that the resulting moment will
be exactly half of that predicted by (2.18) and (2.17). The collocated situa-
tion is often used in vibration control applications, in which one piezoelectric
transducer is used as an actuator while the other one is used as a sensor. This
configuration is appealing for feedback control applications for reasons that
will be explained in Chapter 3.

2.8 Piezoelectric 2D Actuation

This section is concerned with the use of piezoelectric actuators for excitation
of two-dimensional structures, such as plates in pure bending. The analysis
is similar to that presented in the previous section. A typical application is
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x

y
z

Figure 2.13. A piezoelectric actuator bonded to a plate

shown in Figure 2.13, which demonstrates a piezoelectric transducer bonded
to the surface of a plate. It is also assumed that another identical transducer
is bonded to the opposite side of the structure in a collocated fashion. If the
two patches are driven by signals that are 180◦ out of phase, the resulting
strain distribution, across the plate, will be linear as shown in Figure 2.14 a
and b. That is,

εx = αxz (2.27)
εy = αyz, (2.28)

where αx and αy represent the strain distribution slopes in the x−z and y−z
planes respectively.

Assuming that the piezoelectric material has similar properties in the 1
and 2 directions, i.e. d31 = d32, the unconstrained strain associated with the
actuator in both the x and y directions, under the voltage V , is given by

εp =
d31V

tp
.

Now the resulting stresses in the plate, in the x and y directions are

σx =
E

1 − ν2
(εx + νεy)

and
σy =

E

1 − ν2
(εy + νεx),

where ν is the Poisson’s ratio of the plate material. Representing the stresses
in the top piezoelectric patch as σp

x and σp
y , and the stresses in the bottom

patch as σ̃p
x and σ̃p

y , we may write
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εy

(a)

(b)

z

x

y

z

εx

Figure 2.14. Two dimensional strain distribution in a plane with two collocated
anti-symmetric piezoelectric actuators

σp
x =

Ep

1 − ν2
p

{εx + νpεy − (1 + νp)εp} (2.29)

σ̃p
x =

Ep

1 − ν2
p

{εx + νpεy + (1 + νp)εp} (2.30)

σp
y =

Ep

1 − ν2
p

{εy + νpεx − (1 + νp)εp} (2.31)

σ̃p
y =

Ep

1 − ν2
p

{εy + νpεx + (1 + νp)εp} , (2.32)

where νp is the Poisson’s ratio of the piezoelectric material.
Given that εp is the same in both directions and that the plate is homo-

geneous, we may write
εx = εy = ε.

Subsequently, the strain distribution across the plate thickness can be written
as

ε = αxz = αyz = αz.



2.9 Dynamics of a Piezoelectric Laminate Beam 29

The condition of moment of equilibrium about the x and y axes can now be
applied. That is, ∫ t

2

0

σxzdz +
∫ t

2+tp

t
2

σp
xzdz = 0

and ∫ t
2

0

σyzdz +
∫ t

2+tp

t
2

σp
yzdz = 0,

where t represents the plate’s thickness. Integrating and solving for α gives

α =
3Ep{( tb

2 + tp)2 − ( tb

2 )2}(1 − ν)
2Ep{( tb

2 + tp)3 − ( tb

2 )3}(1 − ν) + 2E( tb

2 )3(1 − νp)
εp.

The resulting moments in x and y directions are

Mx = My = EIα. (2.33)

For the symmetric case, i.e. when only one piezoelectric actuator is bonded
to the plate, similar derivations to the previous section can be made.

2.9 Dynamics of a Piezoelectric Laminate Beam

In this section we explain how the dynamics of a beam with a number of
collocated piezoelectric actuator/sensor pairs can be derived. At this stage we
do not make any specific assumptions about the boundary conditions since we
wish to keep the discussion as general as possible. However, we will explain
how the effect of boundary conditions can be incorporated into the model.

Let us consider a setup as shown in Figure 2.15, where m identical collo-
cated piezoelectric actuator/sensor pairs are bonded to a beam. The assump-
tion that all piezoelectric transducers are identical is only adopted to simplify
the derivations, and can be removed if necessary. The ith actuator is exposed
to a voltage of vai(t) and the voltage induced in the ith sensor is vpi(t).

We assume that the beam has a length of L, width of W , and thickness
of tb. Corresponding dimensions of each piezoelectric transducer are Lp, Wp,
and tp. Furthermore, we denote the transverse deflection of the beam at point
x and time t by z(x, t). The dynamics of such a structure are governed by the
Bernoulli-Euler partial differential equation

EbI
∂4z(x, t)

∂x4
+ ρAb

∂2z(x, t)
∂t2

=
∂2Mx(x, t)

∂x2
, (2.34)

where ρ, Ab, Eb and I represent density, cross-sectional area, Young’s mod-
ulus of elasticity and moment of inertia about the neutral axis of the beam
respectively. The total moment acting on the beam is represented by Mx(x, t),
which is the sum of moments exerted on the beam by each actuator, i.e.
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Figure 2.15. A beam with a number of collocated piezoelectric actuator/sensor
pairs

Mx(x, t) =
m∑

i=1

Mxi(x, t). (2.35)

The moment exerted on the beam by the ith actuator, Mxi(x, t) can be
written as

Mxi(x, t) = κ̄vai(t){u(x − x1i) − u(x − x2i)}, (2.36)

where u(x) represents the unit step function, i.e. u(x) = 0 for x < 0 and
u(x) = 1 for x ≥ 0. The term {u(x − x1i) − u(x − x2i)} is incorporated into
(2.36) to account for the spatial placement of the ith actuator. The constant κ̄
can be determined from (2.11), (2.17) and (2.18). The forcing term in (2.34)
can now be determined from Expressions (2.36) and (2.35), and using the
following property of Dirac delta function

∫ ∞

−∞
δ(n)(t − θ)φ(t)dt = (−1)nφ(n)(θ), (2.37)

where δ(n) is the nth derivative of δ, and φ is a continuous function of θ
[111]. Having determined the expression for the forcing function in (2.34) we
can now proceed to solving the partial differential equation. One approach to
solving this PDE is based on using the modal analysis approach [130]. In this
technique the solution of the PDE is assumed to be of the form

z(x, t) =
∞∑

k=1

wk(x)qk(t). (2.38)

Here wk(x), known as the modeshape, is the eigenfunction which is deter-
mined from the eigenvalue problem obtained by substituting (2.38) into (2.34)
and using the following orthogonality properties [130]

∫ L

0

wk(x)wp(x)dx = δkp (2.39)

∫ L

0

EbI

ρAb

d4wk(x)
dx4

wp(x)dx = ω2
kδkp, (2.40)
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where ωk describes the kth natural frequency of the beam and δkp is the
Kroneker delta function, i.e.

δkp =
{

1, k = p
0, otherwise

A solution to the eigenvalue problem requires precise knowledge of bound-
ary conditions. For specific boundary conditions, e.g. simply-supported and
cantilevered, mode shapes and resonance frequencies can be determined ana-
lytically from the eigenvalue problem. For further details, the reader is referred
to [130] and [50].

A set of uncoupled ordinary differential equations can be obtained from
(2.34) using the orthogonality properties (2.39) and (2.40) and the property
(2.37), as well as (2.38). It can be shown that the ordinary differential equa-
tions are of the form:

q̈k(t) + ω2
kqk(t) =

κ̄

ρAb

m∑
i=1

ψkivai(t), (2.41)

where k = 1, 2, . . . and qk(t) is the generalized coordinate of the kth mode.
Furthermore, the parameter ψki is found to be:

ψki =
∫ L

0

wk(x) {δ′(x − x1i) − δ′(x − x2i)} dx (2.42)

= w′
k(x2i) − w′

k(x1i), (2.43)

where f ′(x) represents the first derivative of the function f with respect to x,
and we have used (2.37) to obtain (2.43) from (2.42).

To this end we point out that the differential equation (2.41) does not
contain a term to account for the natural damping associated with the beam.
The presence of damping can be incorporated into (2.41) by adding the term
2ζk q̇k(t) to (2.41). This results in the differential equation

q̈k(t) + 2ζkωkq̇k(t) + ω2
kqk(t) =

κ̄

ρAb

m∑
i=1

ψkivai(t). (2.44)

Applying the Laplace transform to (2.44), assuming zero initial conditions,
we obtain the following transfer function from the vector of applied actuator
voltages Va(s) = [va1(s), . . . , vam(s)] to the beam deflection z(x, s) at loca-
tion x

G(x, s) = γ

∞∑
i=1

wk(x)ψ̄′
k

s2 + 2ζkωks + ω2
k

, (2.45)

where γ = κ̄
ρAb

and
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ψ̄k =

⎡
⎢⎣

ψk1

...
ψkm

⎤
⎥⎦ .

The piezoelectric voltage induced in the ith sensor can be obtained using
Expression (2.9). That is,

vpi(t) =
d31EpWp

Cp

∫ L

0

εxidx.

The expression for the mechanical strain in the ith sensor patch can be
obtained from

εxi = −
(

tb
2

+ tp

)
∂2z

∂x2
.

Now vpi is found to be

vpi(t) =
−d31EpWp

(
tb

2 + tp
)

Cp

∞∑
k=1

ψkiqk(t). (2.46)

Therefore, the transfer function matrix relating the voltages applied to the
piezoelectric actuators Va(s) = [va1(s), . . . , vam(s)] to the voltages measured
at the piezoelectric sensors Vp(s) = [vp1 (s), . . . , vpm(s)] is found to be:

Gvv(s) = γ̄

∞∑
k=1

ψ̄kψ̄′
k

s2 + 2ζkωks + ω2
k

, (2.47)

where

γ̄ =
−d31EpWp

(
tb

2 + tp
)
κ̄

CpρAb
.

To this end we need to explain how the systems represented by Infinite
Series (2.47) and (2.45) can be approximated with finite dimensional models.
In any controller design scenario we may only be interested in designing a
controller for a finite bandwidth. If N modes of the structure lie within that
bandwidth of interest, the series (2.47) and (2.45) are often truncated to obtain
a finite dimensional model of the structure, which is of minimum dimensions.
While the truncation may not be of concern in non-collocated models, e.g.
(2.45), it can be a serious problem for a collocated system, e.g. (2.47). Trun-
cation of a collocated model can result in perturbations in open-loop zeros of
the system, which in the worst case can cause closed-loop instabilities, and in
the best case will contribute to the loss of closed-loop performance [34].

A number of techniques have been proposed to compensate for the ef-
fect of truncated out-of-bandwidth modes on collocated structural models.
The reader is referred to [34, 207, 138, 135, 84] and references therein for an
overview of such techniques. We do, however, point out that the truncation
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Figure 2.16. (a) A flexible structure with a pair of collocated piezoelectric trans-
ducers, and (b) its electrical equivalent model

error can be minimized by appending the truncated model by a feed-through
term, i.e. to approximate (2.47) with

Gvv(s) = γ̄

N∑
k=1

ψ̄kψ̄′
k

s2 + 2ζkωks + ω2
k

+ D.

If chosen properly, the addition of this feed-through term to the truncated
model can result in an acceptable approximation. In this book, in most cases,
we will use system identification to directly identify this parameter, as well as
the rest of the dynamics of the system.

We conclude this chapter with an important observation that will be uti-
lized in the forthcoming chapters. Figure 2.16 (a) illustrates a flexible struc-
ture with a collocated piezoelectric actuator/sensor pair. The piezoelectric
transducer on the right functions as an actuator, and the one on the left as
a sensor. What is of importance here is the electrical model of the system
depicted in Figure 2.16 (b). Each piezoelectric transducer is modeled as a ca-
pacitor in series with a strain-dependent voltage source. The transfer function
from the voltage applied to the actuator, v to the voltage induced in the sen-
sor, vs = vp is given by (2.47). This observation is particularly important in
designing piezoelectric shunts, and to identify the connection between piezo-
electric shunt damping and feedback control of a collocated system. This will
be discussed in more detail in Chapter 5.

2.10 Active and Macro Fiber Composite Transducers

Active Fiber Composites (AFCs) are an alternative to traditional monolithic
piezoelectric transducers. First proposed in 1992 [20], longitudinally polarized
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Figure 2.17. A piezoelectric Active Fiber Composite (AFC) comprised of piezo-
electric fibers with interdigitated electrodes top and bottom

piezoelectric fibers, as shown in Figure 2.17, are encased in an epoxy resin
with interdigitated electrodes laminated onto the top and bottom surfaces of
the transducer. With an applied voltage, the interdigitated electrodes induce
longitudinal electric fields along the length of each fiber. The original motiva-
tion was to increase the electromechanical coupling by utilizing the high d33

piezoelectric strain constant rather than the lesser d31 constant.
Active fiber composites have a number of practical advantages over tradi-

tional monolithic transducers [19]:

• The fibers are encapsulated by the printed polymer electrodes and epoxy
resin thus increasing the reliability and service-life in harsh environments.

• The short length and diameter or the fibers together with their alignment
along the length of the transducer increases the conformability of AFC
transducers. They can be laminated onto structures with complex geome-
tries and curvatures.

• AFC transducers are more robust to mechanical failure than monolithic
transducers. In addition to their conformability, they can also tolerate local
and incremental damage. If some of the fibers are fractured, the transducer
will not be substantially damaged, in contrast, monolithic actuators will
fracture and fail if they are stressed beyond their yield limit.

• AFCs have been reported to develop greater strains than monolithic actu-
ators [19]. The strain actuation is also unidirectional.

Macro Fiber Composites (MFCs) [174] are similar in nature to AFCs as
they utilize the direct d33 piezoelectric effect through the use of interdigitated
electrodes. Rather than individual fibers, a monolithic transducer is simply
cut into a number of long strips. The resulting transducer is conformable in
one dimension and more robust to mechanical failure than monolithic patches.

The greatest disadvantages of AFC and MFC transducers is their high
present cost, and the large voltages required to achieve the same actuation
strain as monolithic transducers. The equivalent piezoelectric capacitance is
also much lesser making them unsuitable as low-frequency strain sensors (see
Section 6.2).
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The low capacitance of AFC and MFC transducers also causes difficulties
in the implementation of piezoelectric shunt damping systems, to be discussed
in Chapter 4. Device capacitances of less than 50 nF have been deemed im-
practical for shunt damping [18]. A performance comparison of monolithic,
AFC, and MFC transducers in a passive shunt damping application can be
found in references [18] and [148].

Although the piezoelectric transducers used throughout this book are ex-
clusively monolithic, all of the techniques discussed in the proceeding chapters
are equally as applicable to AFC and MFC variants. Indeed, from the control
engineers viewpoint, transducer physics is usually lumped into a simplified
electrical model, or identified as part of the structural system.


