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Novel approaches for biotechnological production and
application of L-arabinose
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ABSTRACT
L-arabinose is found in biopolymers such as hemicellulose,
pectin, arabinogalactan-protein complexes, and polysacchar-
ides of exudate plant gums. Recent studies have revealed
many possible applications of L-arabinose in the fields of
pharmaceutical, food and chemical industries. Novel
approaches to obtain L-arabinose are focused on the utiliza-
tion of lignocellulosic by-products, purified polysaccharides,
and residual hydrolysates containing a mixture of sugars. L-
arabinose can be released from lignocellulosic biomasses by
acid-catalysed or enzymatic hydrolysis. L-arabinose-enriched
solutions can be obtained from residual hydrolysates by yeast-
mediated biopurification. The most promising, novel processes
to obtain L-arabinose have combined the advantages of differ-
ent methods but technological barriers still exist impeding the
industrial implementation.
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Introduction

Shifting the dependence of our society from petroleum-based to renewable
biomass-based resources is considered to be crucial to the development of
a sustainable industry, energy independence and the effective management
of greenhouse gas emissions.[1,2] Plant-based raw materials have the
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potential to replace a large fraction of fossil resources as feedstocks for
industrial productions, addressing both the energy and non-energy, i.e.,
chemicals and materials, sectors.[3] The vast majority of the plant biomass
resources is lignocellulose, which is composed of three major constituents:
cellulose, hemicellulose and lignin. Lignocellulosic materials have the great-
est potential to be used as renewable sources to produce value-added mate-
rials and chemicals due to their low commercial value and abundant
availability. The sustainable use of lignocellulosic biomass requires inte-
grated manufacturing which has led to the development of the term biore-
finery, analogous to oil refinery. The biorefinery concept embraces a wide
range of technologies that are able to separate biomass resources such as
wood, grass, crop residues, etc. into their building blocks such as carbohy-
drates, proteins, oils, etc. and convert those into a wide spectrum of mar-
ketable products and energy.[4,5] In particular, the carbohydrate fraction of
lignocellulosic biomass is expected to play the major role in producing bio-
based chemicals, since it can be effectively hydrolysed to monosaccharides
which can then be converted into an array of value-added molecules via
fermentations or chemical synthesis.[3] Major research efforts in the field of
lignocellulose utilization over the last few decades have been focused on
the extraction of the main sugar components like glucose and xylose from
the lignocellulosic biomass and convert them into value-added products. In
contrast, less attention has been accorded to the valorisation of the minor
sugar components like L-arabinose. However, L-arabinose is the second
most abundant pentose beside D-xylose. It is mainly found in hemicellu-
lose, pectin and other plant polysaccharides. Although L-arabinose has
many interesting properties and possible applications, the recent utilization
of L-arabinose is limited partly due to the fact that high quality L-arabinose
have not been produced yet as commodity chemical.[6] Recently there are
commercial interest and accelerating research effort to investigate the
potential of L-arabinose for the development and production of high-value
bio-products and to develop new, high-performance methods for obtaining
high purity grade L-arabinose.[7,8]

Therefore, in this review the structure and properties, the potential applica-
tions in different fields and the new approaches in the biotechnological pro-
duction of L-arabinose are described. The proposed methods and achieved
results are detailed and the advantages and disadvantages of each method are
critically evaluated. The structure and chemical composition of the plant pol-
ysaccharides containing L-arabinose, in particular the anomers, enantiomers
and ring structure, the main features of the process of acid-catalysed release
of L-arabinose and the main properties and mode of action of the enzymes
hydrolysing arabinosyl linkages are also reviewed to provide wide and up-to-
date background for the novel methods of L-arabinose production.

252 C. FEH�ER



L-arabinose

L-arabinose (C5H10O5, molar mass of 150.13 g/mol, Fig. 1) is an aldopentose,
the second most abundant pentose next to D-xylose in nature. L-arabinose is
widely found in plant cell walls as a component of biopolymers including
hemicellulose[9] and pectin,[10] in arabinogalactan-protein complexes[11] and
in exudate plant gums.[12] Although most of the monosaccharides in plant
biopolymers are normally present in their D-form, arabinose is a rare excep-
tion, as their L-configuration is more common.[13] Conversely, arabinose is
present in the D-form in the cell wall[14,15] and exopolysaccharides[16,17] of
some bacteria. L-Arabinose is named after gum arabic from which it was first
isolated.[8] The furanose form of L-arabinose outnumbers the form of pyra-
nose in natural polysaccharides. However, in aqueous solution the pyranose
form of free L-arabinose is more stable,[7,18] although it possesses various iso-
mers: a- and b-pyranose and a- and b-furanose (Fig. 1) as well as a trace
amount of the open-chain aldehyde at equilibrium, hence giving more com-
plex spectra than the most monosaccharides.[19] However, the nature of sol-
vent and the presence of a particular substituent appear to have an effect on
the equilibrium composition of L-arabinose in a solution. The anomeric effect
is stronger in nonpolar solvents and therefore in these solvents the a-anomer
is present in higher proportion. Besides the pyranose/furanose ratio also
depends on the nature of the solvent.[19,20]

Possible utilizations of L-arabinose

As a natural sweetener and a starting material for the production of flavour

L-arabinose can be used in the food and flavour industry as a dietary,
natural sweetener or as a raw material to produce different flavours by
Maillard reaction.[8,21] L-arabinose has a very similar taste to sucrose, but

Figure 1. Different forms of L-arabinose presented in Haworth projection.
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with approximately half the sweetness of sucrose. Animal studies in
chickens and pigs indicate that the metabolizable energy of L-arabinose is
significantly less than that of D-glucose.[22,23] The apparent metabolizable
energy (AMEn) value of L-arabinose, which is corrected to zero nitrogen
balance, was found to be 60% and 40% of that of D-glucose at 5% and
10% dietary inclusion levels, respectively, in the case of chickens.[22]

Therefore, it has shown great merits as a sweetener and a food additive
to prevent obesity and maintain good health.[24,25]

As a blood-sugar-reducing agent and functional food additive

L-Arabinose has been reported to have highly interesting properties in blood
sugar reduction and for the treatment of human diabetes. In vitro studies per-
formed with porcine intestinal mucosa[26] and in vivo studies in rats,[27]

mice[26] and pigs[28] fed by sucrose in combination by L-arabinose revealed
the inhibitory effect of L-arabinose on intestinal sucrase activity resulting in a
delayed digestion of sucrose and consequently a slower absorption of glucose
that leads to a delayed and decreased blood glucose and insulin responses.
Krog-Mikkelsen et al.[29] investigated the dose-response effects of L-arabinose
on intestinal sucrase activity in vitro and glucose tolerance, appetite, and
energy intake in humans. The in vitro studies showed that L-arabinose inhib-
ited the brush border enzyme sucrase in an uncompetitive dose-dependent
manner. The in vivo human study with 3 different doses of L-arabinose in
sucrose beverages (250 g/L sucrose supplemented by 0, 1, 2, 3 g/L arabinose)
showed that L-arabinose supplementation suppressed the increases in blood
glucose, insulin, and C-peptide concentrations in plasma after sucrose inges-
tion and also augmented the postprandial increase in the incretin hormone
glucagon-like peptide-1 response in dose-dependent manner. No effects on tri-
acylglycerol, gastrointestinal symptoms, appetite ratings, or energy intake were
observed. These results are in great accord with the results of the study of
Inoue et al.[30] which was performed in both healthy subjects and in patients
with type 2 diabetes to investigate the effects of the addition of L-arabinose to
a sucrose-containing beverage or meal. Kaats et al.[31] reported that consump-
tion of formula containing L-arabinose and trivalent chromium after a 70-
gram oral challenge of sucrose was effective in safely lowering both circulating
glucose and insulin levels in humans. Hence, L-arabinose is a promising addi-
tive for functional foods and for the treatment of human diabetes.

As an antioxidative agent with protective activities against hyperglycemia

Hyperglycemia is the main characteristic of diabetes mellitus, in which oxi-
dative stress is one of the important risk factors of diabetic complications.
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Antioxidants to attenuate oxidative stress are considered as effective thera-
peutic agents to prevent pathological conditions associated with hyperglyce-
mia under diabetes mellitus.[32,33] Song et al.[32] investigated the radical
scavenging activity of pure L-arabinose and arabinan-rich sugar beet pulp
in vitro and their protective effects against high glucose-induced oxidative
stress using LLC-PK1 porcine renal epithelial cells. L-arabinose and sugar
beet pulp significantly inhibited the high glucose-induced cytotoxicity and
lipid peroxidation and also inhibited the formation of nitric oxide com-
pared with high glucose-treated control. The superoxide anion production
of groups treated with L-arabinose or sugar beet pulp was significantly
lower than that of the control treated with high glucose. Furthermore, L-
arabinose and sugar beet pulp elevated the glucose uptake, resulting in
lower glucose concentration compared with the non-treated control. L-ara-
binose or sugar beet pulp treatment down-regulated the expressions of pro-
teins related to high glucose-induced oxidative stress in LLC-PK1 cells.
Hence the results of the study indicated that L-arabinose and sugar beet
pulp are promising antioxidative agents with protective activities against
hyperglycemia.

As a precursor for antiviral drug development

Unlike other L-sugars, L-arabinose is relatively ample monosaccharide in
nature, hence it is a promising raw material for biotechnological produc-
tion of L-ribose.[34] L-ribose is a rare and expensive sugar that can be used
as a precursor for the production of L-nucleoside analogues which are used
as antiviral drugs.[35] L-ribose can be formed from L-ribulose, D/L-ribitol
and L-arabinose by enzymatic conversion using isomerases, oxidoreductases
and epimerases, respectively.[36] Recently, significant research efforts have
been made to investigate the biotechnological production of L-ribose from
naturally abundant L-arabinose. Helanto et al.[35] described a novel way of
L-ribose production from L-arabinose by using metabolically engineered
bacterial cells. For this purpose, an L-ribose isomerase was introduced into
L-ribulokinase-deficient mutants of Escherichia coli and Lactobacillus plan-
tarum. Resting cells of these mutants were used for the production of L-
ribose, while the use of protein precipitates for converting L-arabinose to
L-ribose was also achievable. Yeom et al.[37] demonstrated the production
of L-ribose from L-arabinose via a two-enzyme system from Geobacillus
thermodenitrificans, in which L-ribulose was first produced from L-arabi-
nose by L-arabinose isomerase and subsequently converted to L-ribose by
mannose-6-phosphate isomerase. Du et al.[38] developed a practical chemi-
cal synthesis of 20-deoxy-20-fluoro-5-methyl-b-L-arabinofuranosyl uracil (L-
FMAU) from L-arabinose through the intermediate of L-ribose with 8%
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overall yield. L-FMAU is a potential antivirial agent against hepatitis
B virus.

As a precursor for the production of other molecules with potential
therapeutic applications

Ketoheptoses are seven-carbon sugars with significant pharmacological
potential as inhibitors of sugar metabolism. L-gluco-heptulose is a rare, nat-
urally occurring ketoheptose that may have potential therapeutic applica-
tions in hypoglycaemia and cancer.[39] Subrizi et al.[39] reported efficient,
stereo-selective, one-step, biocatalytic preparation of L-gluco-heptulose
from L-arabinose using trans-ketolase variants of E. coli mutants on a prep-
arative laboratory scale.

As raw material for non-ionic surfactant production

The potential use of L-arabinose as the starting material in the synthesis of
non-ionic surfactants was reported by Bouquillon.[40] Due to the increasing
importance of carbohydrates as cheap and renewable starting material, the
use of these compounds as nucleophile agents in telomerisation reaction is
of great interest in regard to the production of biodegradable non-ionic
surfactants. Bouquillon[40] succeeded in the preparation of D-xylose-based
and L-arabinose-based surfactants using telomerisation of butadiene, glyco-
sylation or esterification reactions. The considered surfactants had excellent
amphiphilic properties and their syntheses and purification were described
to be clean and easy to handle. Derivatization of the surfactants was
also explored.

As a precursor for the production of amino acids

Corynebacterium glutamicum is a non-pathogenic, Gram-positive, soil bac-
terium which is primarily used for the biotechnological production of
amino acids. Amino acid production by using C. glutamicum is typically
based on media containing glucose from starch hydrolysis or fructose and
sucrose as present in molasses.[41] Schneider et al.[41] described the engi-
neering of recombinant C. glutamicum strains for the production of L-glu-
tamate, L-lysine, L-ornithine and L-arginine from L-arabinose as sole or
combined carbon and energy source with D-glucose. The araBAD operon
from E. coli was successfully expressed in wild-type, L-lysine-, L-ornithine-
and L-arginine producing strains of C. glutamicum to enable the utilisation
of L-arabinose in the production of amino acids.
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Other possible applications

Other possible applications of L-arabinose were also reported. For example,
it was used for bacteriological diagnostics,[42] for the photo-chemical con-
version of solar energy into electrical energy by a photogalvanic cell con-
taining Eosin-Arabinose system,[43] as raw material in second generation
biohydrogen production by using anaerobic mixed-cultures under extreme
thermophilic conditions,[44] for analytical purposes[45] to identify, differenti-
ate and characterize pentose sugar isomerases,[46] and as a precursor of
other bio-active compounds and platform molecules, e.g. arabinitol, for the
bio-renewable chemical industry.[47,48]

Production of L-arabinose

Exudate plant gums such as gum arabic and mesquite gum are considered to
be suitable raw materials for L-arabinose production. On an industrial scale L-
arabinose can be produced from gum arabic by acid hydrolysis followed by
multiple purification procedures containing neutralization reaction, ion
exchange and other chromatographic separations. However, the high cost of
gum arabic and the expensive purification steps required result in high cost of
pure L-arabinose which limits its widespread industrial applications.[8,49]

According to Cheng et al.,[8] in 2010 China produced about 500 tons of L-ara-
binose at the cost of more than 70 USD/kg. L-arabinose could also be industri-
ally produced from other arabinan-, arabinoxylan- or arabinogalactan-
containing plant materials, including wood materials, vegetable and fruit proc-
essing by-products or agro-industrial residues such as corncob and sugar beet
pulp. There are many patents about the production of crystalline L-arabinose
from sugar beet pulp. Generally these processes start with the alkaline extrac-
tion of arabinan. Purification of the arabinan fraction can occur by ion-
exchange chromatography or ultrafiltration. The arabinan fraction is hydrolysed
into arabinose monomers under acidic conditions at elevated temperature. The
arabinose solution can be purified by ion-exchange chromatography and
adsorbent resins or ultrafiltration. The neutralised and purified arabinose solu-
tion is concentrated and pure L-arabinose is recovered by crystallization.[50–52]

Recently, L-arabinose has become a valuable product with growing market
worldwide. However, it seems to be more common and widespread in China
compared to other countries. Hence, many of the significant manufacturers
are also located in China. The following companies are considered the main
manufacturers of L-arabinose: Danisco (US), Futaste (CN), Shandong Xieli
Bio-technology (CN), Shandong Longlive Bio-technology (CN), Healtang Co.
Ltd. (CN), Tangchuan Biotechnology (CN), Zhejiang Huakang Pharmaceutical
(CN), and Shandong Lujian Biological Technology (CN).
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Complex plant polysaccharides that are possible alternative sources to
produce L-arabinose

Pectins and hemicelluloses comprise a wide range of structurally different
polysaccharides from which several are considered as plant polysaccharides
that can be suitable sources of L-arabinose. In the following section the
structures of pectin and hemicellulose polysaccharides containing consider-
able amount of L-arabinose are detailed. Other arabinose-containing mole-
cules of plant biomass are also described briefly.

Pectins

Pectins represent a family of complex polysaccharides that contain 1,4-linked
a-D-galactopyranosyluronic acid residues.[53] Pectins are highly diverse poly-
saccharides regarding their chemical composition and structure which also dif-
fers depending on many factors such as the plant source, cell type and
physiological state of the cell. Depending on the composition of backbone and
side chains, pectins can be divided into distinct structural groups: homogalac-
turonan, rhamnoglacturonan I and substituted galacturonans such as rhamno-
galacturonan II, xylogalacturonan and apiogalacturonan.[54] Arabinose is
present in the pectin polymers of rhamnogalacturonans I and II.
Rhamnogalacturonan II contains a homogalacturonan backbone of 1,4-linked
a-D-galactopyranosyluronic acid units with complex side chains attached onto
the O-2 or O-3 positions.[55] The side chains are composed of 12 types of gly-
cosyl residues which are connected to each other by at least 22 different glyco-
sidic bonds. Arabinose is present in the side chains of rhamnogalacturonan II
in the form of b-L-arabinofuranose and a-L-arabinopyranose.[56] The rhamno-
galacturonan I contains a backbone of 1,2-a-L-rhamnopyranose-1,4-a-D-galac-
topyranosuronic acid repeats in which the rhamnopyranose units can be
decorated with various side chains at O-4 position and the galactopyranosur-
onic acid units may be acetylated on O-2 and/or O-3 position.[53,54] The pre-
dominant side chain of rhamnogalacturonan I contains individual, linear or
branched a-L-arabinofuranosyl and b-D-galactopyranosyl residues.[53]

Rhamnogalacturonan I side chain arabinan consists of a backbone of 1,5-
linked a-L-arabinofuranosyl residues which can be decorated with a-L-arabi-
nofuranose units on O-2 and O-3 positions and with 1,3-linked disaccharide
of a-L-arabinofuranosyl residues on O-3 position,[57] moreover the arabinan
chains may connect to each other forming diverse branched structure.[58]

Rhamnogalacturonan I side chain arabinogalactan (usually called arabinogalac-
tan I) also includes oligosaccharides with diverse structure. It is composed of
1,4-linked b-D-galactopyranosyl backbone with or without decorations of a-L-
arabinofuranosyl residues at O-3 position. Moreover internal, 1,5-linked a-L-
arabinofuranosyl[59] and 1,3-linked b-D-galactopyranosyl residues[60] were also
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identified in the b-D-galactopyranose backbone, as well as terminal a-L-ara-
binopyranose substitution at the non-reducing end.[59] Another type of arabi-
nogalactan, called arabinogalactan II, is also part of most of the cell walls
however there is no accordance in the literature regarding the question
whether it is part or not of the pectin structure. Arabinogalactan II can also
occur as part of arabinogalactan-proteins of the cell wall and as a polysac-
charide of exudate plant gums. A recent study has demonstrated that
arabinogalactan II of arabinogalactan-protein can be covalently linked
to rhamnogalacturonan I and also to arabinoxylan of the hemicellulose,
forming a so-called arabinoxylan-pectin-arabinogalactan-protein complex.[61]

Arabinogalactan II is composed of a 1,3-linked b-D-galactopyranose back-
bone having side chains of 1,6-linked b-D-galactopyranose oligosaccharides
attached to the backbone at O-6 position.[10] The side chains of arabinogalac-
tan II are usually highly decorated with L-arabinose residues however other
moieties can also attach to the side chain such as L-rhamnose, D-mannose,
D-xylose, D-glucose, L-fucose, D-glucosamine, D-glucuronic acid and D-gal-
acturonic acid.[11] The arabinose decorations of the side chain mainly exist
in the form of 1,3-linked a-L-arabinofuranose monomers however short oli-
gosaccharides containing a-1,3- or a-1,5- linked L-arabinofuranose units
may also be formed in some cases.[62] Moreover, further substitution of a
single a-L-arabinofuranose branch by b-L-arabinopyranosyl residue at O-3
position has been suggested recently.[18,63] The 1,6-linked b-D-galactopyra-
nose side chain may also be terminated by b-L-arabinopyranosyl residues
attached to the final galactopyranosyl residue at O-3 position.[63]

Hemicelluloses

Hemicelluloses are heterogeneous polymers with diverse structure which can
contain pentoses such as b-D-xylose and a-L-arabinose, hexoses such as
b-D-mannose, b-D-glucose and a-D-galactose, uronic acids such as a-D-glu-
curonic and 4-O-methyl-a-D-glucuronic acids, and other organic acids such
as acetic acid and hydroxycinnamic acids. Rarely, other sugars such as a-L-
rhamnose and a-L-fucose can also be present in small quantities.[64,65]

Hemicelluloses are traditionally referred to as polysaccharides extractable
from lignocellulose biomass by aqueous alkaline solutions; however, this kind
of determination is not exact. According to another definition, hemicelluloses
are polysaccharides in plant cell walls that have b-1,4-linked backbones with
an equatorial configuration at C1 and C4 carbons.[9] This definition excludes
b-1,4-galactans with an axial configuration, callose having a backbone of
b-1,3-linked glucoses, and arabinogalactans comprised of a b-1,3-linked gal-
actose backbone.[9] In this article, in concern with this definition, arabinoga-
lactans are considered as pectin polysaccharides however certain
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arabinogalactans, e.g. arabinogalactan II, can be covalently linked to hemicel-
lulose and pectins at the same time, as it was described previously.
According to the composition of the backbone chain and the presence and
ratio of their sidechain constituents, different type of hemicelluloses can be
distinguished such as arabinoxylan, glucuronoarabinoxylan, arabinoglucuro-
noxylan, glucuronoxylan, homoxylan, xyloglucan, arabinoxyloglucan, homo-
mannan, glucomannan, galactomannan and galactoglucomanan. Considerable
amount of L-arabinose is present in arabinoxylan, glucuronoarabinoxylan,
arabinoglucuronoxylan and arabinoxyloglucan.
Arabinoxylans have a backbone of 1,4-linked b-D-xylopyranosyl residues

which are highly decorated with monomeric sidechains of a-L-arabinofura-
nose linked to O-2 or O-3 positions however double substituted xylose resi-
dues can also occur. Acetyl groups can also attach to the xylose units of the
backbone at position O-2 and/or position O-3. The presence of hydroxycin-
namic acids, e.g., ferulic acid, p-coumaric acid and ferulic acid-containing
phenolic dimers and trimers, linked to O-5 position of a-L-arabinofuranose
moieties is a common feature of the arabinoxylan structure. Dimerization of
the phenolic compounds can lead to intra-molecular cross-links of arabinoxy-
lans and covalent interactions with other cell wall constituents.[65] However,
the phenolic compounds can also be referred to as building block of the lig-
nin structure instead of the hemicellulose fraction.[64] Arabinoxylans often
contain side chains of a-D-glucopyranosyluronic acid and/or 4-O-methyl-
a-D-glucopyranosyluronic acid linked at O-2 position to the xylose units.
Those arabinoxylans are referred to as arabinoglucuronoxylans or glucuro-
noarabinoxylans, depending on the molar ratio of glucopyranosyluronic acid
to arabinose. Generally that ratio is higher than one for arabinoglucuronoxy-
lans and less than one for glucuronoarabinoxylans.[64] Some arabinoxylans –
that sometimes are also referred to as hetero-xylans – have even more com-
plex structure. In those cases along the previously described decorations dif-
ferent oligomeric sidechains – mainly containing a-L-arabinofuranose, b-D-
xylopyranose, a-D-galactopyranose and hydroxycinnamic acids linked to a-L-
arabinofuranose – can be attached to the homoxylan backbone.
Xyloglucans have a linear backbone containing 1,4-linked b-D-glucopyra-

nose residues which are frequently decorated with a-D-xylopyranose residues
attached at O-6 position. The xylose moieties are frequently further elongated
at O-2 position by other sugars forming short side chains with wide structural
varieties. The xylose units can be substituted by b-D-galactopyranose or a-L-
arabinofuranose, and the b-D-galactopyranose unit can be further elongated at
O-2 position by a-L-fucopyranose.[9] Alpha-L-arabinofuranose can be directly
attached to the glucose residues at O-2 position too.[66] However, other
less common structural variants of the side-chains are also exist in which
the following sugars can also be part of the structure: b-L-arabinofuranose,
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a-L-arabinopyranose, b-D-galactopyranoslyuronic acid,[67] b-D-xylopyra-
nose,[68] a-L-galactopyranose.[69] In addition, xyloglucans can contain O-linked
acetyl groups too. In some plants, such as tobacco, tomato, and potato, the
xyloglucan is highly substituted with L-arabinose moieties, hence that polymers
are referred to as arabinoxyloglucans. In arabinose containing xyloglucans the
arabinose moieties are preferably located as terminal residues.[70]

Other arabinose-containing molecules

Hydroxyproline-rich glycoproteins occur in the extracellular matrix of land
plants and green algae and their carbohydrate content, varied from 2 to
95% of their dry weight, is predominantly present as oligoarabinosides and/
or as heteropolysaccharides which are O-linked to the hydroxyproline resi-
dues. Short arabinofuranoside oligosaccharides occur in every type of
hydroxyproline-rich glycoproteins examined thus far, including the Ser-
Hyp4-containing extensins, arabinogalactan-proteins, gum arabic glycopro-
tein, repetitive proline-rich proteins and the solanaceous lectins.[71] Small
glycoconjugates can also contain arabinose residues such as flavonols or
saponin constituents.[18]

Release of arabinose from polysaccharides

Chemical hydrolysis to release arabinose from complex polysaccharides

During chemical hydrolysis of polysaccharides to decompose them into
monomeric constituents, a complex series of chemical reactions happen
that disrupt molecular interactions within the polysaccharide and with
other cell wall components.[72] The presumed mechanism of acid-catalysed
hydrolysis of the glycosidic linkage is initiated by protonation of either gly-
cosidic oxygen or oxygen of the ring to form carbonium cation.
Subsequently, a water molecule is added to form two monomeric sugars
and release the proton. Thus, the polysaccharide hydrolysis involved multi-
ple steps: generation of protons, migration of protons to the reaction site,
disruption of molecular interactions, diffusion of hydrolysis products
through pores in lignocellulose particles, and mass transfer of products into
and within the bulk solution.[72] Hydrolysis is usually conducted with either
water/steam (autohydrolysis) or dilute acid solution. During autohydrolysis,
dissociation of water at high temperature generates proton, while for
hydrolysis in dilute acid the added acid dissociates into proton(s) and
anion.[72] The reaction rate and selectivity of the chemical hydrolysis of the
polysaccharide fraction are influenced by the temperature, reaction time,
pH as determined by acid concentration and type and buffer capacity of
the feedstock, chemical structures of the polysaccharides, reactor design,
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substrate loading and particle size of the feedstock.[73,74] One of the main
challenges of efficient hydrolysis is to identify the proper reaction condi-
tions and catalysts to completely decompose the polysaccharide into mono-
mers and at the same time avoid further degradation of released sugars.[75]

Several studies have reported preferential hydrolysis of arabinose attached
as side group compared to the backbone chain of the hemicellulose.
Kusema et al.[76] investigated the kinetics of homogenous mineral acid, e.g.
hydrochloride acid, hydrolysis of arabinogalactans and concluded that it is
easier to hydrolyse the arabinose units from the side chains of arabinoga-
lactan compared to the release of galactose from the main chain, the activa-
tion energies for the release of arabinose and galactose were 126 kJ/mol and
135 kJ/mol, respectively. Kusema et al.[75] also investigated the hydrolysis of
arabinogalactans by using solid acid catalysts of Smopex-101 and
Amberlyst 15 (cation exchangers). The experimental results revealed that
the hydrolysis of arabinogalactan by the heterogeneous catalyst of Smopex-
101 does not occur randomly, but starts from the arabinose side chains fol-
lowed by the gradual hydrolysis of galactose residues. Faster release of ara-
binose compared to xylose during acidic hydrolysis was also reported in
the case of nitric acid hydrolysis of sugar cane bagasse[77] and sulphuric
acid hydrolysis of wheat straw.[78]

M€aki-Arvela et al.[74] reviewed that the rate of acid hydrolysis of hemicellu-
lose is partially determined by the structure of the anhydrosugar, for example,
whether it is a- or a b-anomer or it is furanose or pyranose. The acid
hydrolysis proceeds faster for furanose sugars compared with pyranose ones.
The reason for the faster furanose hydrolysis rate compared with that of pyr-
anose is the higher structural angle strains in the furanose sugar units,
whereas pyranose rings are strain-free.[74] It is also widely agreed that in gen-
eral the a-glycosidic linkages hydrolyse more readily compared to b-glycosi-
dic ones.[73,79] These properties could explain the facilitated arabinose release
from hemicellulose-containing biomass that was observed in the above men-
tioned investigations, since arabinose is mainly present in furanose form con-
nected by a-glycosidic bond as side chain to the hemicellulose backbone.

Enzymatic release of arabinose moieties from complex polysaccharides

O-Glycoside hydrolases refer a group of enzymes that cleavage the O-glyco-
sidic linkages of carbohydrate containing molecules, such as di-, oligo- and
polysaccharides. They can be classified into various glycoside hydrolyse
(GH) families based on amino-acid sequence and structure similarities.
These families are available on the continuously updated carbohydrate-
active enzyme (CAZy, http://www.cazy.org) database.[80–82] Glycoside
hydrolases can attack within the oligo/polymeric chain or at one of the
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ends of the chain as well as at terminal side decorations, thus endo-acting
and exo-acting enzymes can be distinguished.[83] Enzymatic hydrolysis of
the glycosidic linkages takes place via general acid catalysis which requires
two critical residues: a proton donor and a nucleophile/base. It can occur
via two mechanisms resulting in either net retention or inversion of
anomeric configuration.[84,85] Glycoside hydrolases that are involved in the
hydrolysis of arabinosyl linkages can be referred to as arabinano-
lytic enzymes.[7]

As it was previously described, arabinose can occur in several forms and
can be attached with different types of linkages in plant polysaccharides. As
a consequence, several types of enzymes that are involved in the hydrolysis
of L-arabinosyl linkages exist in nature (Table 1).
However, arabinose is predominantly present in the form of a-L-arabino-

furanose connecting with 1,2-; 1,3- or 1,5-linkages to each other or to other
sugar moieties in the plant polysaccharides that have the potential for ara-
binose production. Thus, in this section arabinanolytic enzymes involved in
the cleavage of a-1,2-; a-1,3- and a-1,5-linkages of L-arabinose-containing
molecules are detailed with particular attention to a-L-arabinofuranosidases
(Fig. 2).
Endo-arabinanases (EC 3.2.1.99, 5-a-L-arabinan 5-a-L-arabinanohydrolase)

are endo-acting enzymes that hydrolyse the 1,5-a-arabinofuranosidic linkages
within the arabinan backbone mainly resulting in arabino-oligosaccharides

Table 1. Enzymes involved in hydrolysis of L-arabinose-containing molecules derived from the
CAZy database.[82]

EC number Systematic name Reaction GH family

endo-1,5-a-L-
arabinanase

EC 3.2.1.99 5-a-
L-arabinan 5-a-L-
arabinanohydrolase

Endohydrolysis of 1,5-a-arabi-
nofuranosidic linkages in
1,5-arabinans

GH43

exo-1,5-a-L-
arabinanase

EC 3.2.1.- ns Release 1,5-a-L-arabinobiose
from the nonreducing end
of its substrate

GH93

a-L-arabino-
furanosidase

EC 3.2.1.55 a-L-arabinofuranoside
non-reducing end a-L-
arabinofuranosidase

Hydrolysis of terminal non-
reducing a-L-arabinofura-
noside residues in a-L-
arabinosides

GH2, GH3, GH43,
GH51,
GH54, GH62

a-L-arabino-
pyranosidase

EC 3.2.1.- ns ns GH42

b-L-arabino-
furanosidase

EC 3.2.1.185 b-L-arabinofuranoside non-
reducing end b-L-
arabinofuranosidase

Hydrolysis of b-L-
arabinofuranosyl-
(1,2)-b-L-arabino-
furanose linkages
of its substrate

GH127, GH137,
GH142, GH121

b-L-arabino-
pyranosidase

EC 3.2.1.88 b-L-arabinopyranoside
non-reducing end b-L-
arabinopyranosidase

Removal of a terminal b-L-
arabinopyranose residue
from the non-reducing
end of its substrate

GH27

ns, not specified.
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with different length (Fig. 2b,c). Endo-arabinanases have thus far only been
described in GH 43 family. GH 43 also contains a-L-arabinofuranosidases
and other enzyme activities like xylosidase and galactosidase.[7] Endo-arabi-
nanases can act on both linear and branched arabinan however more slowly
on the latter.[86,87] Park et al.[88] reported that endo-arabinanase from

Figure 2. Typical modes of action of arabinanolytic enzymes involved in the cleavage of a-L-
arabinofuranosidic linkages of arabinoxylan (a), branched arabinan (b) and linear arabinan
(c) oligomers
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Bacillus licheniformis DSM13 (BLABNase) could hydrolyse debranched and
linear arabinan with over 500 times higher activity when compared to
branched sugar beet arabinan. The enzyme was found to be typical endo-
1,5-a-L-arabinanase that specifically hydrolyses branchless arabinan polymers
to produce mainly arabinobiose and arabinotriose, and small amounts of var-
ious arabino-oligosaccharide intermediates. Slightly higher activity against
debranched arabinan (100% relative specific activity) compared to branched
arabinan (48.4% relative specific activity) was published in the case of endo-
arabinanase from Rhizomucor miehei (RmArase) by Chen et al.[89] However,
in contrast with a typical endo-arabinanase, this enzyme resulted in signifi-
cant amount of monomer arabinose beside arabinobiose at the end of ara-
binan hydrolysis.[89]

Exo-arabinanases (EC 3.2.1.-, exo-1,5-a-L-arabinanase) release mainly
arabinobiose units from linear arabinan chain (Fig. 2c). Carapito et al.[90]

reported the production, biochemical characterization and structural analy-
sis of an exo-1,5-a-L-arabinanase of Fusarium graminearum which belongs
to GH 93. The enzyme releases 1,5-a-L-arabinobiose from the non-reduc-
ing end of linear 1,5-a-L-arabinan with net retention of the anomeric con-
figuration. Sakamoto et al.[91] reported the characterization of the exo-1,5-
a-L-arabinanase of Penicillium chrysogenum (produced by recombinant E.
coli) which catalysed the release of arabinobiose from debranched 1,5-a-L-
arabinan however the enzyme was found to be structurally distinct from
known arabinan-degrading enzymes based on its amino acid sequence and
a hydrophobic cluster analysis. McKie et al.[92] described and arabinanolytic
enzyme (ArbA) of Pseudomonas fluorescens subsp. cellulosa which predomi-
nantly releases arabinotriose from linear arabinan and arabino-oligosac-
charides suggesting that the enzyme displays significant exo-activity. The
authors suggested that the enzyme have sufficient endo-activity also as the
ratio of released reducing sugar to the decrease in viscosity during hydroly-
sis of linear arabinan was very similar to that observed for the well-docu-
mented endo-arabinanase (ABNA) of Aspergillus niger. Sequence
comparisons between ArbA and proteins of other glycosyl hydrolases
showed that ArbA exhibits greatest sequence identity with ABNA, placing
the enzyme in GH 43.
Alpha-L-arabinofuranosidases (EC 3.2.1.55, a-L-arabinofuranoside non-

reducing end a-L-arabinofuranosidase) are exo-acting enzymes that catalyse
the hydrolysis of terminal, non-reducing a-L-1,2-, a-L-1,3- and a-L-1,5-ara-
binofuranosyl residues from different arabinose-containing oligosaccharides,
polysaccharides (e.g. arabinoxylan, arabinogalactan, arabinan) and mole-
cules (Fig. 2a–c).[6,93] Substrate specificity of a-L-arabinofuranosidases
is determined by activity measurements under certain environmental
conditions on different model substrates which are predominantly the
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followings: linear arabinan polymer and oligomer, branched arabinan poly-
mer and oligomer, arabinoxlyan polymer and oligomer, arabinogalactan
polymer and oligomer and the artificial substrate of p-nitrophenyl-a-L-ara-
binofuranoside (pNPA). Beyond their substrate specificity, a-L-arabinofura-
nosidases can be distinguished regarding their linkage specificity too.
Linkage specificity determines the type of the cleavable linkages (a-L-1,2-,
a-L-1,3- and a-L-1,5-arabinofuranosyl linkages) and specifies that the
removable arabinose moieties are attached to mono- or di-substituted subu-
nit of the carbohydrate chain. The latter is predominantly important in
terms of the arabinofuranosidases that specifically act on arabinoxylans –
those enzymes are sometimes referred to as arabinoxylan arabinofuranohy-
drolases –, hence arabinoxylans often contain xylan units bearing two side
decorations of arabinose attached at O-3 and O-2 positions. The use of the
synthetic substrate of pNPA to determine a-L-arabinofuranosidase activity
is quite general however recent studies have revealed that many a-L-arabi-
nofuranosidases are not able to act on pNPA but show high activity against
their natural substrates.[94–96] Moreover some xylanases show significant
activity against pNPA resulting in the specification of those xylanases as a
bifunctional enzyme that displays both arabinofuranosidase and xylosidase
activities. However, the activity against pNPA does not prove the activity
against natural substrates, hence that kind of determination is debatable.
Nevertheless, true bifunctional enzymes have been reported which are able
to release arabinose from arabinoxylans and hydrolyse xylo-
oligosaccharides.[97,98]

Previously, there have been attempts to classify a-L-arabinofuranosidases
based on their source and substrate specificity or their mode of action and
substrate specificity. However these kinds of classifications seemed to be
ineffectual, because they are too broad to usefully characterise the proper-
ties of the enzymes classified in one group. Newly isolated enzymes often
show different properties than that of classified before which would
require the addition of several new subclasses, making the classification
too complex for the effective use.[93] Recently, the CAZy classification is
generally accepted however enzymes within a single GH family usually
show wide variety regarding their substrate specificity. According to the
CAZy classification a-L-arabinofuranosidases are present in six GH
families: GH 2, GH 3, GH 43, GH 51, GH 54 and GH 62.
Arabinofuranosidases show broad variety in their substrate and linkage
specificity. Arabinofuranosidases belonging to GH3, GH51, GH54 and
GH93 result in hydrolysis of the glycosidic linkages with retention of the
anomeric configuration. Arabinofuranosidases belonging to GH43 and
GH62 result in the inversion of the anomeric configuration during hydrol-
ysis of the glycosidic bonds.[13]
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Alpha-L-arabinofuranosidases play key role during the decomposition of
arabinoxylan- containing biomass, since the L-arabinose side chains can
hinder the action of xylanases[99] and can also act as substrate specificity
determinants.[100] Alpha-L-arabinofuranosidases can act in synergy with
endoxylanases, since endo-xylanases usually hydrolyse more effectively the
xylan chains from which arabinose moieties are removed, while most of
the a-L-arabinofuranosidases are more active on soluble arabinose-substi-
tuted xylo-oligosaccharides obtained after xylanase treatment.[6] The activity
of different a-L-arabinofuranosidases is strongly influenced by the type of
the glycosidic bond (a-1,2, a-1,3 or a-1,5), the location of the arabinose
unit (connect to mono- or di-substituted xylose subunit), the frequency of
the arabinose moieties and the presence of other side decorations.[93,101,102]

L-arabinose-containing lignocellulosic residues

L-arabinose presents in the side chains of the hemicellulose and pectin pol-
ymers, and in smaller quantities compared to the backbone-forming sugar
components. However, there are some biomasses, mainly available from the
agro-industrial and food sector as by-products, which contain significant
amount of L-arabinose making them promising raw materials for arabinose
production. Table 2 summarizes the arabinose content of some widely
available lignocellulosic agro-industrial by-products. L-arabinose content of
the cell wall in a certain plant can vary in a broad range depending on the
type of the plant tissue. Promising agro-industrial by-products for L-arabi-
nose production are corn fibre, wheat bran, brewer’s spent grain and sugar
beet pulp containing around 12%, 11%, 9% and 18% of L-arabinose, respec-
tively (Table 2). In comparison, plant gums such as flaxseed gums of
Norman, Omega, Foster and Arabic gum contain around 14%, 9%, 11%
and 24% of L-arabinose, respectively.[12]

Table 2. Arabinose content of agro-industrial by-products.

Raw material
Arabinose content (expressed as arabinan
polymer in percentage of dry matter) References

corn fibre 12.0 [103]

corn cob 2.4 [104]

corn stover 2.7 [105]

wheat bran 10.6 [106]

wheat straw 3.0 [107]

barley husk 5.7 [108]

barley straw 3.0 [109]

rice husk 1.7 [110]

rice straw 3.4 [111]

sunflower stalk 0.8 [112]

sugar beet pulp 18.0 [113]

brewer’s spent grain 8.7 [114]

sugar cane bagasse 1.3 [115]

JOURNAL OF CARBOHYDRATE CHEMISTRY 267



Novel methods of biotechnological production of L-arabinose

Dilute acid catalysed hydrolysis of corn fibre, wheat bran and pinewood

Dilute acid hydrolysis of destarched corn fibre was investigated by
Shibanuma et al.[116] for the purpose of studying L-arabinose production.
The concentrations of oxalic acid, hydrochloric acid and sulphuric acid
were varied between 0.01–2 N, 0.01–0.1 N and 0.05–0.5 N, respectively at
100 �C using 10% (w/w) dry matter content, and the reaction time was
changed from 0.5 to 6 h at the selected acid concentrations. Oxalic acid
hydrolysis was concluded as the most suitable method regarding the prefer-
ential release of L-arabinose. During oxalic acid hydrolysis of destarched
corn fibre, arabinose was liberated rapidly at the beginning of hydrolysis
and then slowed down when the yield reached 50–54% of theoretical.
Arabinose yield then slowly increased until around 70% of theoretical.
Conversely, xylose liberation was relatively slow but linearly increased to
more than 66% of theoretical. (Throughout section entitled novel methods
of biotechnological production of L-arabinose, theoretical yields for the
hydrolyses are calculated based on raw material composition by assuming
complete liberation of the relevant component.) The authors concluded
that the most suitable conditions for preferential release of arabinose were
0.3–1 N oxalic acid concentration and 1 hour reaction time. Hydrolysis
with 1 N oxalic acid concentration and 1 hour reaction time resulted in an
arabinose yield of 62% and xylose yield of around 40%, based on theoreti-
cal. Although significant amount of oligosaccharides were also produced
during the acidic treatments, data about the amount of solubilised oligom-
ers were not published.
Dilute acid catalysed hydrolysis of enzymatically destarched wheat bran

using water bath or microwave irradiation for heating was investigated by
Aguedo et al.[48] Experiments using water as heating medium were carried
out at pH 1, 2, 3 adjusted by hydrochloride acid, at 80 �C and 100 �C using
10% (w/w) dry matter for 2, 6, and 24 hours reaction times. The arabinose
yield changed according to a saturation curve as a function of the reaction
time, and an arabinose yield of 70% of theoretical was reached at 100 �C
and pH 1 within 6 hours. During these conditions significant amount of
xylose was also recovered, but the exact amount of the solubilised xylose
was not published. Microwave heating was investigated at 4.75% (w/w) dry
matter content according to a Box-Behnken experimental design in which
the effect of temperature (130, 140, 150 �C), irradiation duration (1, 3,
5minutes) and pH of the medium (1, 2, 3) on the arabinose yield was
examined. Microwave heating for 4–5minutes at 150 �C and pH 1 appeared
as a fast and highly efficient method to recover more than 90% of the ara-
binose content of destarched wheat bran. The experimental design gave an
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adequate model to describe the release of xylose and arabinose. According
to the proposed model a range of conditions could be selected to minimise
xylose release and hydrolyse around 50% of the total arabinose, yielding a
high purity arabinose fraction, whereas when an arabinose yield of 80–90%
was achieved the xylose yield was more than 80% of theoretical. The micro-
wave treatment at 140 �C and pH 2 for 3minutes resulted in an average
arabinose yield of 46% and xylose yield of 3% of theoretical. Sugar oligom-
ers were probably produced along the sugar monomers however oligosac-
charides were not analysed in this study.
Soft acid hydrolysis of Pinus sp. sawdust in order to selectively recover

arabinose and/or hemicellulose was investigated by Bravo et al.[117] First a
one-step hydrolysis was studied in which experiments were carried out at
different temperatures (60, 65, 70 and 80 �C), reaction times (4 and
18 hours, with sampling at selected times) and hydrochloric acid concentra-
tions (1%, 2% and 3%). Fifty grams air-dried sawdust (with 9.6% moisture
content) with an average diameter of 0.6mm was mixed with 500mL water
in glass reactor and stirred at 500 rpm. According to the authors the best
result was obtained at 65 �C, 3% hydrochloric acid and 18 hours reaction
time resulting in 52% arabinose recovery in monomeric form which corre-
sponds to 3.81 g/L arabinose concentration. The arabinose selectivity was
52% in this case. Arabinose selectivity was probably calculated as the ratio
of arabinose to all monosaccharides solubilised however definition was not
provided by the authors. During the acidic hydrolysis oligomer sugars were
also produced in relevant concentration (5.4 g/L) resulting in total (oligom-
ers and monomers) hemicelullose recovery of 41.3%. The sugar composi-
tion of the oligomers was not studied. Under the same reaction conditions
higher arabinose selectivity was achieved (almost 70%) at 4 hours reaction
time however the arabinose recovery was only 20% in that case. As a sec-
ond alternative a two-step acidic hydrolysis was also tested resulting in
liquid streams with much lower arabinose concentration compared with
the one-step process.
These results implied that the a-1,2 and a-1,3 bonds connecting arabino-

furanose moieties to the xylan backbone are more sensitive to the effects of
pH and temperature than the b-1,4 bonds of the xylopyranose units in the
backbone. This is in accord with the results of previous investigations –
detailed in section entitled chemical hydrolysis to release arabinose from
complex polysaccharides. – proposing the preferential hydrolysis of arabi-
nose side moieties over the hemicellulose backbone. Acid hydrolysis under
mild conditions seems to be an appropriate method to selectively release a
significant part of the arabinose from the hemicellulose of lignocellulosic
residues. Nevertheless, restricted information is available in the literature
about selective arabinose hydrolysis by mild acid treatments, especially in
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terms of the determination of all hydrolysis products including monomer
and oligomer sugars. The main advantages of these methods are the cheap
and readily available raw materials used and the simple process applied.
The main disadvantages are the relatively low arabinose concentrations and
purity achieved in the obtained solutions from which the recovery of pure
arabinose crystals requires further purification steps (Table 3). The recovery
process of arabinose was not investigated in these studies.

Enzymatic hydrolysis of purified sugar beet pulp arabinan or corn hull
arabinoxylan

Lim et al.[118] investigated arabinose production from purified debranched
arabinan and sugar beet arabinan using thermostable a-L-arabinofuranosi-
dase and endo-a-1,5-arabinanase of Caldicellulosiruptor saccharolyticus
simultaneously. The enzymes were produced by recombinant E. coli, and
after cell disruption the enzymes were purified through a multistep process
involving chromatography and dialysis. The effects of the dosage and ratio
of the enzymes, the temperature, the pH and the substrate concentration
on the arabinose yield and productivity were examined. In the case of sugar
beet arabinan the most favourable conditions were the following: pH 6.0,
75 �C, 20 g/L sugar beet arabinan, 3U/mL endo-1,5-a-L-arabinanase and
24U/mL a-L-arabinofuranosidase. Under these conditions 16 g/L arabinose
was obtained after 2 hours, resulting in a volumetric productivity of 8 g/
(L� h). (One unit (U) of endo-1,5-a-L-arabinanase activity was defined as
the amount of enzyme required to liberate 1 mmol arabinose per minute at
75 �C and pH 6.5 from debranched arabinan. One unit of a-L-arabinofura-
nosidase activity was defined as the amount of enzyme required to liberate
1 mmol of p-nitrophenyl per minute at 80 �C and pH 5.5 from p-nitro-
phenyl-a-L-arabinofuranoside.) Based on these results Kim et al.[21] devel-
oped a continuous process of arabinose hydrolysis from sugar beet
arabinan by immobilised enzymes in a packed-bed bioreactor that resulted
in a productivity of 9.9 g/(L� h) (Table 3).
Kurakake et al.[119] investigated arabinose production from purified corn

hull arabinoxylan using a-L-arabinofuranosidase of Arthobacter aurescens
MK5. The cells were grown in a liquid medium containing corn hull arabi-
noxylan in which the arabinose/xylose ratio was 0.6. The suspension of the
separated and washed cells of Arthobacter aurescens MK5 was used in the
determination of enzyme activities and the hydrolysis of corn hull arabi-
noxylan. The cell suspension had relatively high arabinoxylan hydrolase
activity, while its a-L-arabinofuranosidase and b-xylosidase activities were
low. Enzymatic hydrolysis of the soluble corn hull arabinoxylan was per-
formed at pH 7 and 40 �C for 43 hours using 1U/mL arabinoxylan hydrolyse
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activity at different substrate concentrations (2%, 4.5% and 16% (w/w)).
(One unit was defined as the amount of the cell suspension that could pro-
duce 1 mmol of reducing sugar (glucose base) in 1minute from corn hull
arabinoxylan.) The arabinose yields achieved were 45%, 44% and 16% of the-
oretical at 2%, 4.5% and 16% (w/w) substrate concentrations, respectively
(Table 3). During the hydrolysis only arabinose was released.
The advantages of these methods are the mild reaction conditions

applied and the pure arabinose solution obtained, considering the solubi-
lised monosaccharides. The drawbacks are that the production of the inves-
tigated starting materials (purified arabinan and arabinoxylan) and the
purification of the applied enzymes (a-L-arabinofuranosidase and endo-
a-1,5-arabinanase) require complex and expensive processes. Moreover, the
purification and recovery of arabinose from the hydrolysates can be chal-
lenging since the starting materials are also soluble in water.

Biopurification of hemicellulose hydrolysis-derived products

Hydrolysis of the whole hemicellulose content of lignocelluloses generally
results in a mixture of xylose, arabinose and other sugars from which the
arabinose can be separated by chromatographic methods. However, on an
industrial scale it might be difficult and expensive. Biopurification of hemi-
cellulosic hydrolysate is an interesting and inexpensive strategy to produce
pure arabinose solution through the depletion of other sugars (e.g. glucose,
xylose, galactose) using the adequate microorganisms.[8,120]

Cheng et al.[8] performed yeast-mediated arabinose biopurification on
xylose mother liquor using Pichia anomala Y161 which was selected by
screening of 306 strains of yeasts. Xylose mother liquor is an acid hydroly-
sate by-product derived from the preparation of xylose from corncob or
sugarcane bagasse. It generally contains 350–400 g/L xylose, 150–180 g/L
arabinose and 150–180 g/L glucose and galactose. Biopurification experi-
ments were carried out with a mixture of yeast extract-containing fermen-
tation medium and xylose mother liquor under aerobic conditions in shake
flasks. In order to determine the optimal conditions of the arabinose bio-
purification response surface methodology was employed. The fermentation
time (50, 60, 70, 80, 90 hours), temperature (30, 31, 32, 33, 34 �C) and con-
centration of xylose mother liquor in the medium (15, 20, 25, 30, 35% (v/
v)) were investigated according to central composite experimental design in
terms of the purity of arabinose solution obtained. Under the optimised
condition of biopurification (32.5 �C, 75 hours and 21% (v/v) xylose mother
liquor) an arabinose purity of 86% (of total sugars) was achieved.
Biopurification under the optimised condition was also accomplished in a
3-L bioreactor. After cell removal, the fermentation broth subjected to
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consecutive process steps of activated carbon treatment, ion-exchange treat-
ment, concentration and crystallization. The yeast-mediated arabinose bio-
purification and the downstream processes resulted in arabinose crystals
with a purity of 99% and with a recovery of 69% of theoretical (Table 3).
Biopurification of arabinose-rich residual streams seems to be an effective

method with the potential to implement on an industrial scale. Nevertheless,
the main drawback of arabinose biopurification is wasting the other sugars
convertible into value-added products. Utilisation of the cell mass obtained as
by-product of the biopurification is also an issue to be solved.

Enzymatic hydrolysis of purified corn fibre arabinoxylan combined with
hydrolysate biopurification

Park et al.[120] developed a method to produce arabinose from purified corn
fibre arabinoxylan by enzymatic hydrolysis followed by arabinose biopurifica-
tion. Commercially available enzyme preparation (Cellulase C-0901) derived
from Penicillium funiculosum was used for the enzymatic hydrolysis of the
purified arabinoxylan containing 28% (w/w) arabinose and 33% (w/w) xylose.
The purified arabinoxylan was obtained from alkali treatment of corn fibre
however the conditions of extraction and purification were not published.
Enzymatic hydrolysis was performed at 40 �C, 3.5 pH and 45.5 g/L substrate
concentration using an enzyme dosage corresponding to 5940 units b-xyla-
nase, 9 units b-xylosidase and 21 units a-L-arabinofuranosidase in a 5-L jar
fermenter. (One unit of the enzyme activity was defined as the amount of
enzyme which released 1 mmol xylose from soluble 4-O-methyl-D-glucurono-
D-xylan or p-nitrophenyl from the corresponding p-nitrophenyl-glucosides
per minutes.) At the end of the hydrolysis (72 hours) the resultant superna-
tant contained xylose, arabinose and small amount of other mono- and oligo-
saccharides. The arabinose and xylose concentrations were 9.7 g/L and 8.5 g/
L, respectively. Williopsis saturnus var. saturnus yeast was cultured on the
hydrolysate aerobically at 30 �C, 4.5 pH and 96 hours residence time. After
72 hours of biopurification almost all of the xylose was consumed without
any loss of arabinose however the concentrations of other components were
not reported. The solution obtained after biopurification was decolorized
with activated carbon, deionized with cation- and anion-exchange resins,
concentrated under reduced pressure and then subjected to crystallization.
Finally, 57% of the arabinose of initial arabinoxylan was obtained as crude
crystals. However, in order to get pure crystals further purification was per-
formed by recrystallization 3 times using ethanol-water mixture, resulting in
61% (w/w) yield based on the crude crystalline arabinose. Hence in the final
pure product 35% of the arabinose content of the raw material was recovered
(Table 3).
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Although this is a promising method to produce crystalline arabinose, the
difficulties of the production of purified arabinoxylan which was used as raw
material, and the significant arabinose loss during the downstream processes
might cause a strict barrier in terms of industrial implementation.

Acidic hydrolysis of corn fibre combined with hydrolysate biopurification for
biorefining

Feh�er et al.[103] invented an integrated biorefinery process based on a two-step
acidic fractionation of corn fibre and microbial conversions by using Candida
boidinii NCAIM Y.01308 in which pure arabinose solution and xylitol solution
were produced. The fractionation process of corn fibre included two sequential
hydrolyses catalysed by sulphuric acid. In the first step of fractionation corn
fibre was treated under mild acidic conditions (90 �C, 1.1% (w/w) sulphuric
acid, 51minutes, 10% (w/w) dry matter) which is followed by an oligomer
hydrolysis step on the liquid fraction (120 �C, 1.1% (w/w) sulphuric acid,
60minutes). After the oligomer hydrolysis step a glucose- and arabinose-rich
liquid fraction was obtained containing 15 g/L glucose, 8.4 g/L xylose
(þgalactose), 10.5 g/L arabinose and 0.9 g/L acetic acid. After the first acidic
and the oligomer hydrolysis steps the yields of glucose, xylose (þgalactose),
arabinose and acetic acid were 40%, 32%, 74% and 27% of theoretical, respec-
tively. In the second hydrolysis step (120 �C, 1.1% (w/w) sulphuric acid,
30minutes,10% (w/w) dry matter) the solid residue of the first step was uti-
lised to produce xylose-rich supernatant (3 g/L glucose, 28 g/L xylose
(þgalactose), 6.6 g/L arabinose and 2.3 g/L acetic acid.) for xylitol production.
The glucose- and arabinose-rich hydrolysate was utilised to produce pure ara-
binose solution through aerobic biopurification using Candida boidinii
NCAIM Y.01308. Biopurification was carried out at 30 �C in rotary shaker
(220 rpm) for 96hours in 100-mL cotton-plugged Erlenmeyer flasks containing
20mL of pH-adjusted (pH ¼6) glucose- and arabinose-rich hydrolysate. After
three days of biopurification the glucose, xylose and acetic acid content of the
hydrolysate were completely depleted and 43% of the initial galactose was con-
sumed. Sugar alcohols (e.g. xylitol) were not produced during the biopurifica-
tion due to the aerobic conditions. The arabinose concentration was constant
through the whole biopurification process. This process resulted in a superna-
tant containing 9.2 g/L arabinose and 1 g/L galactose, which corresponds to the
arabinose purity of 90% of total sugars (Table 3). The cell mass was separated
and part of that was reused as inoculum in the xylitol fermentation step of the
biorefinery process. Arabinose biopurification of the glucose- and arabinose-
rich hydrolysate of corn fibre was also tested in 3-L benchtop bioreactor by
using Ogataea zsoltii NCAIM Y.01540 yeast.[121] The biopurification was car-
ried out in 1.2 L reaction volume at 37 �C and pH 6 using 1 vvm aeration and
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400 rpm stirring speed. The arabinose concentration was constant during the
fermentation and after three days of biopurification the supernatant contained
1.3 g/L xylose (þgalactose) and 11.6 g/L arabinose, corresponding to the arabi-
nose purity of 90% of total sugars (Table 3).
The proposed process does not require expensive purifications to

obtain appropriate starting material and the acidic fractionation enables
to minimize the loss of valuable sugars during the biopurification.
Furthermore, that kind of integration of the xylitol fermentation and the
arabinose biopurification enables the utilization of the by-product cell
mass of biopurification and results in a more effective carbon utilization
regarding the xylitol fermentation step. The main drawback of the proc-
ess is the relatively low concentration of arabinose in the biopurified
supernatant which could cause high downstream costs in the case of
industrial implementation.[122]

Conclusions

L-arabinose can be used as natural sweetener, blood-sugar-reducing and
antioxidative agent, precursor for drugs syntheses, raw material for sur-
factant, amino acid and other platform molecules. Novel approaches to
obtain L-arabinose focus on the utilisation of lignocellulosic by-products,
purified polysaccharides and sugar-containing residual streams and are
based on the methods of mild acidic hydrolysis, enzymatic hydrolysis or
yeast-mediated biopurification however the most promising ones combine
the advantages of different methods. The main challenge of effective L-
arabinose production is to obtain an arabinose solution with sufficiently
high concentration and acceptable purity through a relatively
short process.
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