4. ENZYME KINETICS

Enzyme kinetics

Investigation of enzymatic reaction rate, identification of parameters.

$$E + S \leftrightarrow E + P$$

For stoichiometric calculations all components should be given in moles or grams. But: enzymes are not pure proteins!

 \rightarrow amount of enzymes is measured through their catalytic effect \rightarrow *ACTIVITY*

Enzyme kinetics

One **UNIT** is the amount of the enzyme which consumes 1 μ mol substrate or forms 1 μ mol product during 1 minute *at given reaction circumstances*.

SI: 1 Katal: 1 mol substrate (product) during 1 s.

(too huge!!)
$$\rightarrow$$
 nKat = 10⁻⁹ Kat (nanoKatal)

1 Kat =
$$6*10^7$$
 U, 1 U = 1.666*10⁻⁸ Kat,

1 U=
$$1/60 \mu Kat$$
, 1 U = 16.67 nKat

Specific activity: U/mass or U/volume → U/mg, U/ml

$$E + S = \underbrace{\frac{k_1}{k_{-1}}}_{k_{-1}} ES = \underbrace{\frac{k_2}{k_{-2}}}_{k_{-2}} E + P$$

Conditions:

- $ightharpoonup k_{-2} = 0$ (the second step is irreversible)

Dissociation constant of (ES):
$$K_s = \frac{k_{-1}}{k_1} = \frac{S.E}{(ES)}$$

> stable ES complex, EP complex negligible

$$E + S \stackrel{k_1}{=} ES \stackrel{k_2}{=} E + P$$

- > one active centre, one substrate
- concentration can be applied (instead of activity)
- \rightarrow (S) >> (E₀) i.e. E₀ / S << 1

Reaction rate:
$$V = \frac{dP}{dt} = k_2(ES)$$

Mass balance for E:
$$E + (ES) = E_o$$

Divide these equations!

Divide the two equations:
$$\frac{V}{E_o} = \frac{k_2(ES)}{E + (ES)}$$

substitute:
$$K_s = \frac{k_{-1}}{k_1} = \frac{S.E}{(E.S.)}$$

$$\frac{V}{E_o} = \frac{k_2 \frac{S}{K_s} E}{E + \frac{S}{K_s} E}$$

$$\frac{V}{E_o} = \frac{k_2 \frac{S}{K_s} E}{E + \frac{S}{K_s} E}$$

Rearrange:
$$V = \frac{\frac{S}{K_s}}{1 + \frac{S}{K_s}} = \frac{S}{K_s + S}$$

$$V_{\text{max}} = k_2 E_o$$
 because $V = \frac{dP}{dt} = k_2 (ES)$

The rate equation:

$$V = V_{\text{max}} \frac{S}{K_s + S} \qquad \text{or} \qquad \frac{V}{V_{\text{max}}} = \frac{\frac{S}{K_s}}{1 + \frac{S}{K_s}}$$

M és M

Maud Menten 1879-1960

Leonor Michaelis 1875-1949

Michaelis, L., Menten, M. (1913) Die kinetik der invertinwirkung, *Biochemische Zeitung 49*, 333-369

Briggs-Haldane kinetics

$$E + S \stackrel{k_1}{=} ES \stackrel{k_2}{=} E + P$$

The same differential equtions but the condition:

$$\frac{dS}{dt} = -k_1 ES + k_{-1} (ES)$$

(quasi) steady state:

$$d(ES)/dt = 0$$

$$\frac{d(ES)}{dt} = k_{1}ES - k_{-1}(ES) - k_{2}(ES)$$

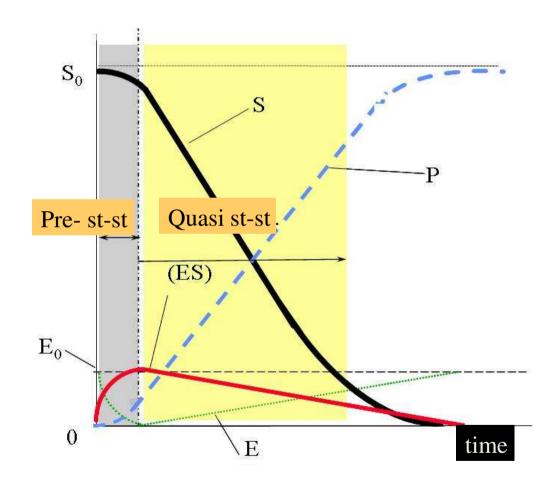
$$\frac{dP}{dt} = k_2 (ES)$$

(S) >> (E₀) i.e.
$$E_0/S << 1$$

 $k_1ES > k_{-1}(ES)$ ill. $k_1ES > k_2(ES)$

Briggs-Haldane kinetics

After a short transition period (pre-steady state) the rate is almost constant (quasi-steady state).



Briggs, G. E., and Haldane, J. B. (1925) A Note on the Kinetics of Enzyme Action, *Bio-chem J 19*, 338-339.

Briggs-Haldane kinetics

$$\frac{d(ES)}{dt} = k_1 \cdot E \cdot S - k_{-1}(ES) - k_2(ES) = 0$$

$$k_1 \cdot E \cdot S = (k_{-1} + k_2)(ES)$$

$$(ES) = \frac{k_1 \cdot E \cdot S}{(k_{-1} + k_2)}$$

$$E + (ES) = E_o$$

$$V = \frac{k_2 E_o S}{K_m + S} = V_{max} \frac{S}{K_m + S}$$

$$K_m = (k_{-1} + k_2) / k_1$$

Michaelis constant

Discussion

Michaelis-Menten

$$V = V_{\text{max}} \frac{S}{K_s + S}$$

$$\mathbf{K}_{\mathrm{s}} = \frac{\mathbf{k}_{-1}}{\mathbf{k}_{1}}$$

Briggs-Haldane

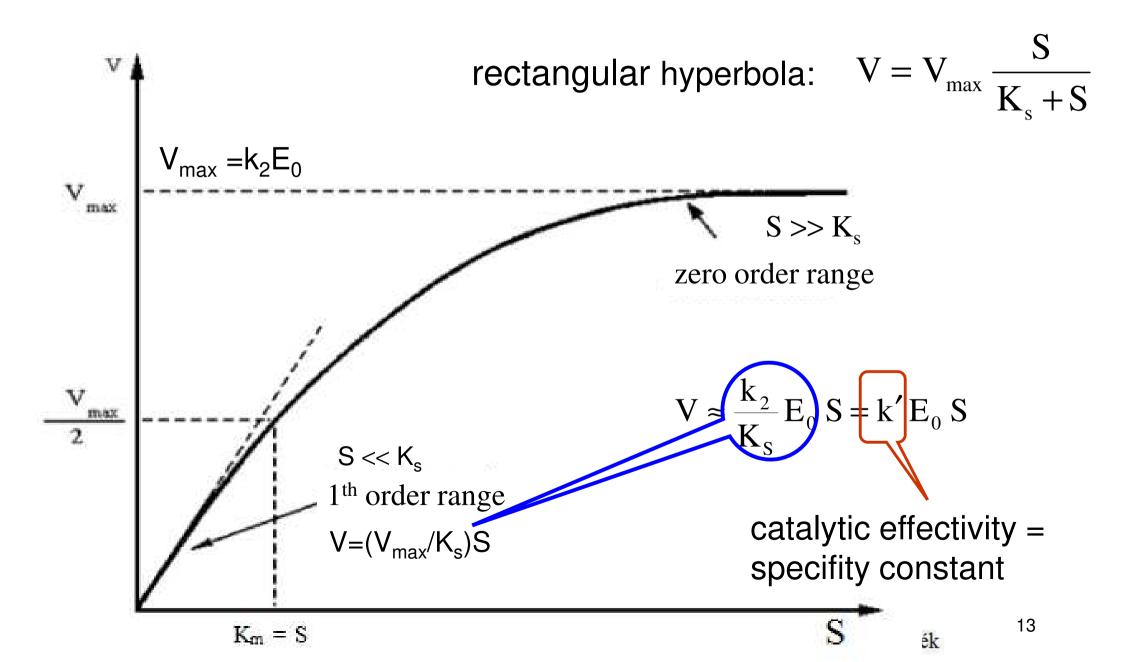
$$V = V_{\text{max}} \frac{S}{K_{\text{m}} + S}$$

$$K_{m} = \frac{k_{-1} + k_{2}}{k_{1}}$$

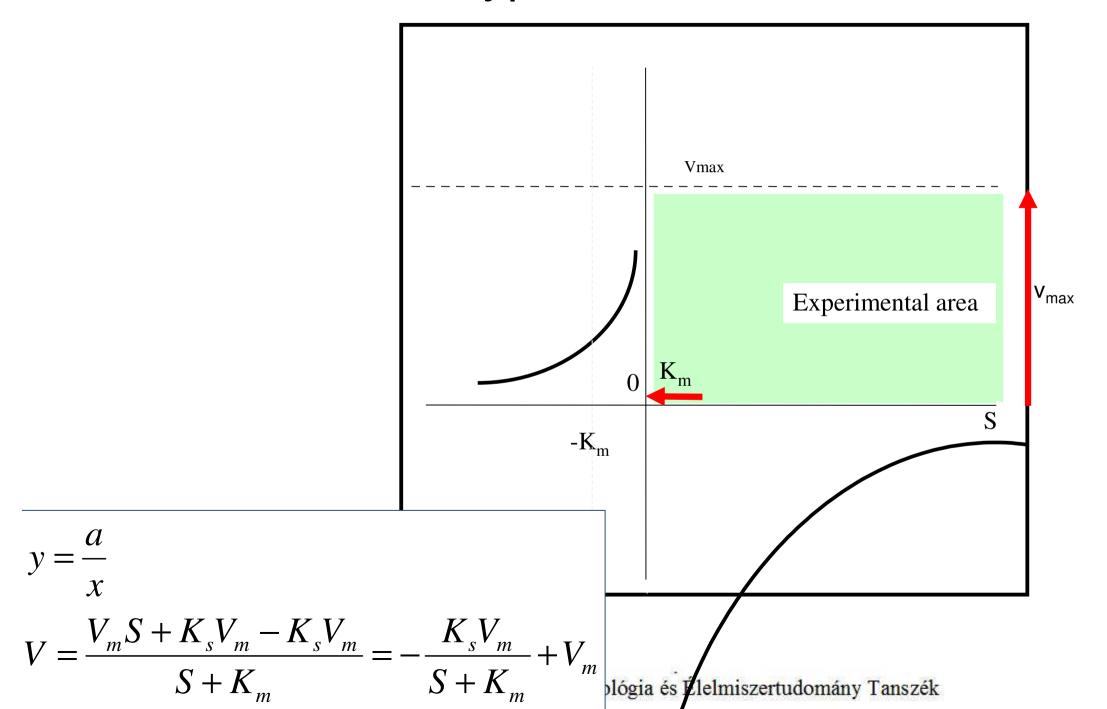
$$K_{m} = K_{s} + \frac{k_{2}}{k_{1}}$$

if $(k_1) \gg (k_2)$ the two constants are equal!

Discussion

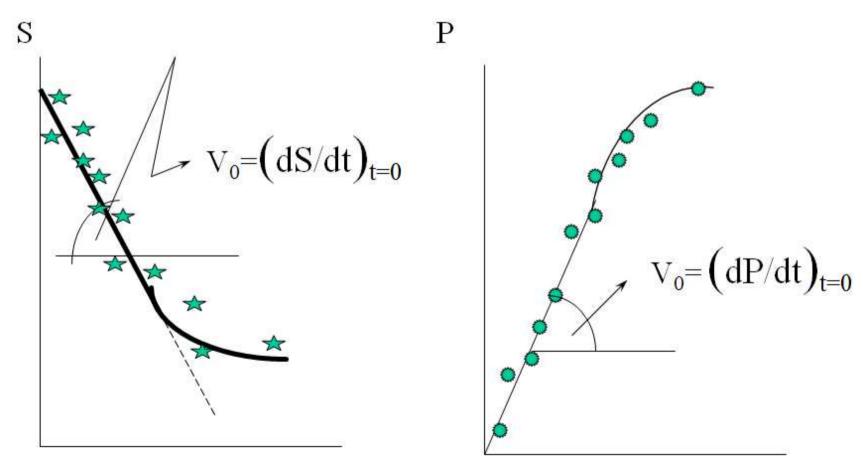


Hyperbola



How to measure reaction rate?

In M-M and B-H equations V means initial reaction rate $(V_0 \rightarrow \text{extrapolated to t=0}).$



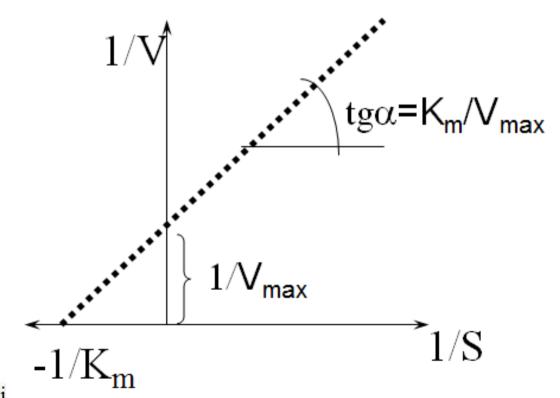
Parameter estimation

Linearised diagrams are used:

- Calculation of nonlinear regression was complicated without computers
- > It provides additional info about enzyme inhibition
- 1. Lineweaver-Burk plot

$$1/v - 1/S$$

$$\frac{1}{V} = \frac{1}{V_{max}} + \frac{K_m}{V_{max}} \cdot \frac{1}{S}$$



Linearised forms

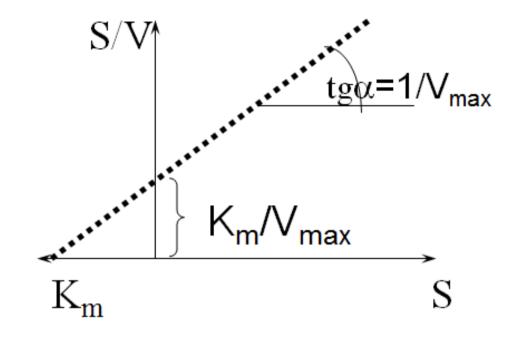
Hanes-Langmuir plotS/v – S

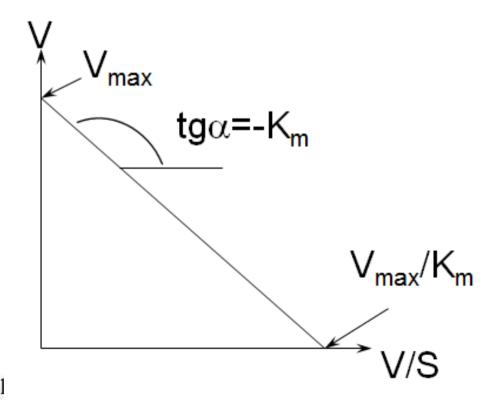
$$\frac{S}{V} = \frac{K}{V} + \frac{1}{V} \cdot S$$

$$\frac{S}{V} = \frac{K}{V} + \frac{1}{V} \cdot S$$

Eady-Hofstee plot
 v/S – v

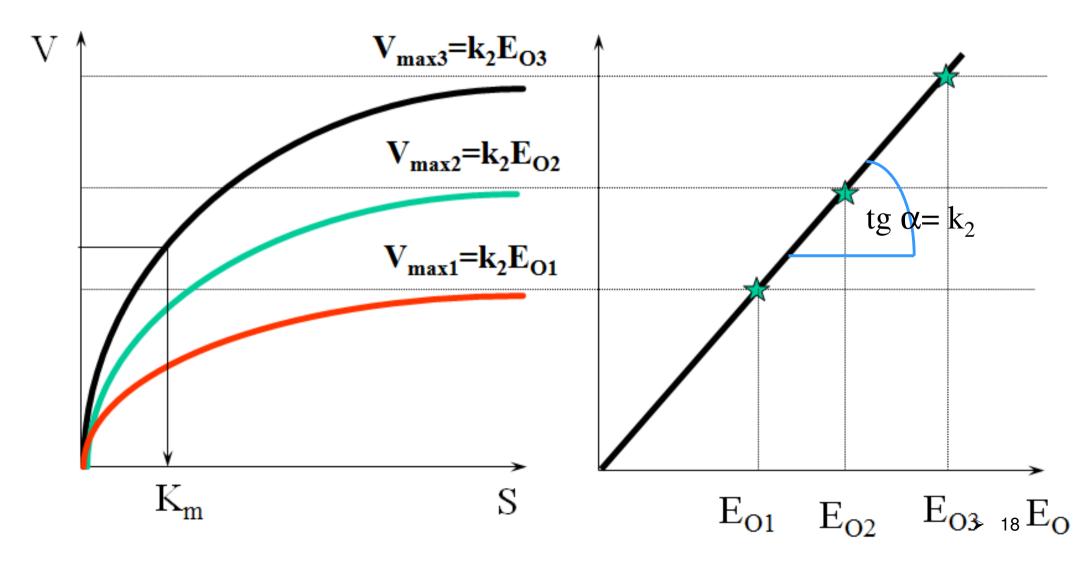
$$V = V_{max} - K_m \frac{V}{S}$$





Effect of enzyme concentration

If $v_{max} = k_2.E_0$, then:



Interpretation of kinetic parameters

 V_{max} : its not a climax, but limit \rightarrow border of rate

It's not an enzyme feature, it depends on E_0 :

$$V_{max} = k_2 \cdot E_0 \rightarrow = ACTIVITY$$

 $\mathbf{k_2}$ is the real enzyme feature = turnover number [s⁻¹] \rightarrow transformation frequency

Extending to every enzymes and every kinetics:

$$V_{\text{max}} = k_{\text{cat}} \cdot E_0$$

k_{cat} [s⁻¹]: Turnover frequency of one enzyme molecule (at S-saturation): how many substrate molecules are transformed in one second by one enzyme molecule.

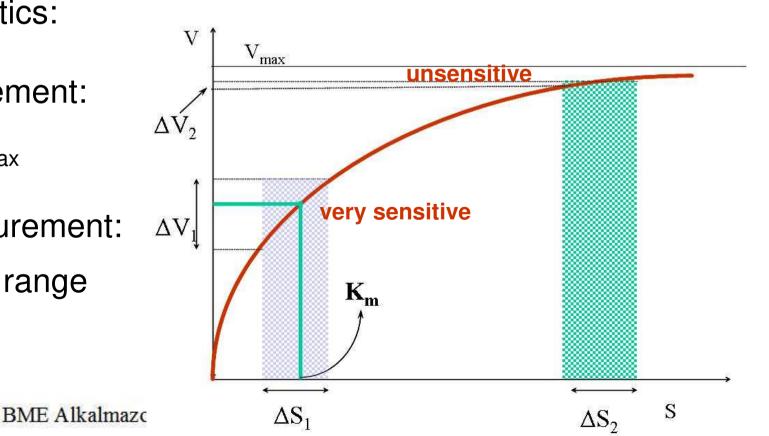
Kinetic parameters: K_s, K_m

- Affinity of enzyme to substrate
- Usually the S concentration in a living cell easy adaption to changes
- ➤ K_S has changed → Inhibitor? Activator?
- Enzyme analytics:
- activity measurement:

$$S >> K_S \quad V = V_{max}$$

- substrate measurement:

S<<K_S linear range

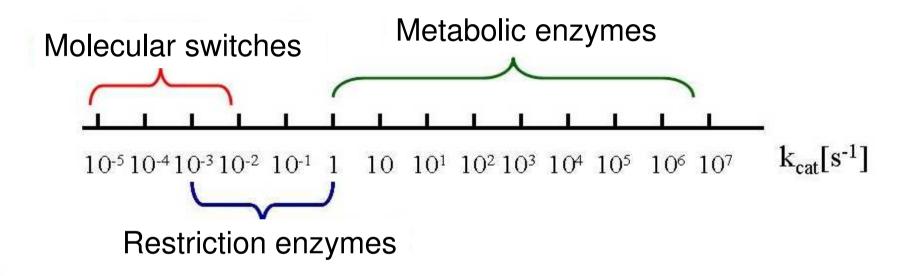


Interpretation of kinetic parameters

 k_1 10⁷-10¹⁰ dm³mol⁻¹min⁻¹ [max. value (~10¹¹) limited by diffusivity of small molecules] k_{-1} 10²-10⁶ min⁻¹ k_2 50-10⁷ min⁻¹ K_m 10⁻⁶ - 10⁻² mol/dm³

TABLE 13-1. THE VALUES OF K_M , k_{cat} , and k_{cat}/K_M for Some Enzymes and Substrates

Enzyme	Substrate	$K_{M}(M)$	$k_{\rm cat}$ (s ⁻¹)	$k_{\rm cat}/K_M (M^{-1} { m s}^{-1})$
Acetylcholinesterase	Acetylcholine	9.5 × 10 ⁻⁵	1.4×10^4	1.5×10^{8}
Carbonic anhydrase	CO ₂	1.2×10^{-2} 2.6×10^{-2}	1.0×10^{6}	8.3×10^{7}
Catalase	HCO ₃ H ₂ O ₂	2.5×10^{-2}	4.0×10^{5} 1.0×10^{7}	1.5×10^{7} 4.0×10^{8}
Chymotrypsin	N-Acetylglycine ethyl ester	4.4×10^{-1}	5.1×10^{-2}	1.2×10^{-1}
	N-Acetylvaline ethyl ester	8.8×10^{-2}	1.7×10^{-1}	1.9
	N-Acetyltyrosine ethyl ester	6.6×10^{-4}	1.9×10^2	2.9×10^{5}
Fumarase	Fumarate	5.0×10^{-6}	8.0×10^{2}	1.6×10^8
	Malate	2.5×10^{-5}	9.0×10^2	3.6×10^{7}
Urease	Urea	2.5×10^{-2}	1.0×10^4	4.0×10^{5}



Many enzyme catalysed reactions - mainly biopolymer hydrolysis - are highly shifted to the right hand side, practically k_{-2} may really be neglected.

But conversions like

glucose fructose (glucose isomerase) ~50:50 %

are of reversible character.

While $k_{-2} = 0$ in both kinetic models reactions seems to be irreversible. Models for reversible (equilibrium) reactions are built up from models of two countercurrent irreversible reaction.

$$K_{ms} = \frac{k_2 + k_{-1}}{k_1}$$

$$K_{mp} = \frac{k_2 + k_{-1}}{k_{-2}}$$

$$K_{ms} = \frac{k_{2} + k_{-1}}{k_{1}} \qquad k_{1} \qquad k_{2} \qquad V_{maxs} = k_{2}E_{o}$$

$$K_{mp} = \frac{k_{2} + k_{-1}}{k_{-2}} \qquad E + S \Longrightarrow E \Longrightarrow E + P \qquad V_{maxp} = k_{-1}E_{o}$$

$$V_{\text{maxs}} = k_2 E_0$$

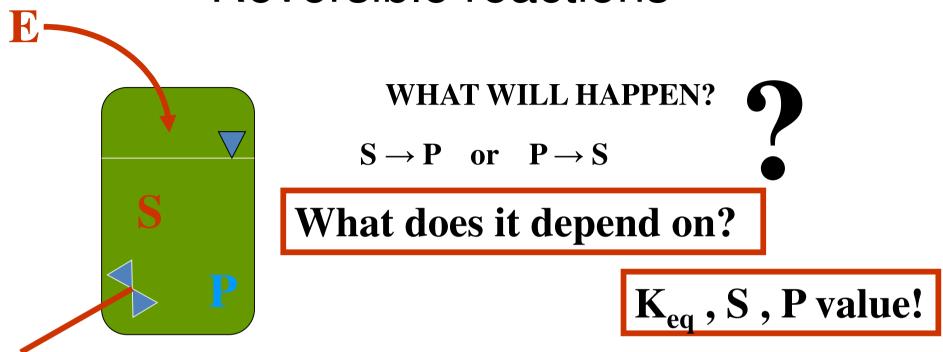
$$V_{\text{maxp}} = k_{-1} E_0$$

$$\mathbf{K}_1 = \frac{\mathbf{k}_1}{\mathbf{k}_{-1}}$$

$$K_1 = \frac{k_1}{k_{-1}}$$
 $K_2 = \frac{k_2}{k_{-2}}$

$$K_{\text{eq(uilibrium)}} = K_1 K_2 = \frac{k_1 k_2}{k_{-1} k_{-2}}$$

 $1/K_{\rm S}$



Presume the presence of EP complex:

The netto rate is the difference of the two processes:

$$V_{\text{netto}} = V_{\text{fore}} - V_{\text{back}} = k_2 (ES) - k_{-2} (EP)$$

Repeat the previous deduction, divide the equation with:

$$E_o = E + (ES) + (EP)$$

$$\frac{v_{\text{fore}}}{E_{\text{o}}} = \frac{k_2(ES)}{E + (ES) + (EP)}$$
 $\frac{v_{\text{back}}}{E_{\text{o}}} = \frac{k_{-2}(EP)}{E + (ES) + (EP)}$

From these:

$$\Delta v = \frac{E_0 k_2(ES) - E_0 k_{-2}(EP)}{E + (ES) + (EP)}$$

Substitute v_{max}:

$$\Delta v = \frac{v_{\text{max S}}(ES) - v_{\text{max P}}(EP)}{E + (ES) + (EP)}$$

Substitute complex concentrations:

$$(ES) = E \frac{S}{K_s} \qquad (EP) = E \frac{P}{K_P}$$

$$\Delta v = \frac{v_{\text{max S}} \frac{S}{K_{\text{s}}} E - v_{\text{max P}} \frac{P}{K_{\text{p}}} E}{E + \frac{S}{K_{\text{s}}} E + \frac{P}{K_{\text{p}}} E} \text{ equals } \Delta V = \frac{V_{\text{max S}} \left(S - \frac{P}{K_{\text{eq}}}\right)}{K_{\text{ms}} \left(1 + \frac{P}{K_{\text{mp}}}\right) + S}$$

$$\Delta V = \frac{V_{\text{maxs}} \left(S - \frac{P}{K_{\text{eq}}} \right)}{K_{\text{ms}} \left(1 + \frac{P}{K_{\text{mp}}} \right) + S}$$

Reversible M-M equation

 $= S_{equilibrium}$