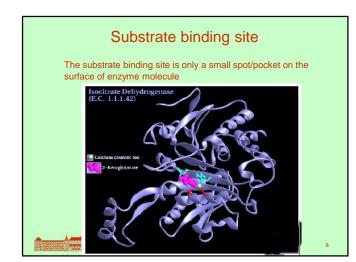
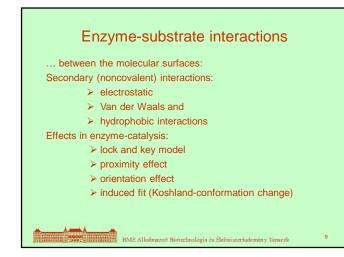
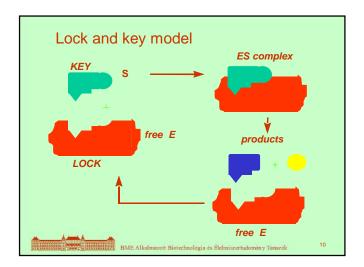


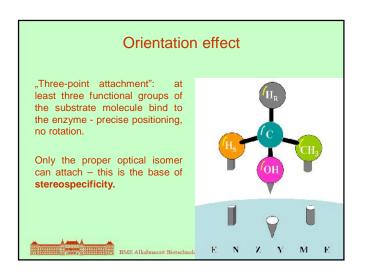
Reaction	Catalyst	Activation energy kJ/mol	k _{rel} 25 °C
H_2O_2 $H_2O + 1/2O_2$	-	75	1
	I ⁻¹	56,5	$2,1.10^{3}$
	catalase	26,8	$3,5.10^{8}$
Casein + nH_2O	H^+	86	1
(n+1) peptide	trypsin	50	2,1.106
Sucrose + H ₂ O	H+	107	1
glucose+fructose	invertase	46	5,6.1010
Linoleic acid + O ₂	-	150-270	1
linolene peroxide	Cu ²⁺	30-50	~10 ²
	lipoxygenase	16,7	~ 107

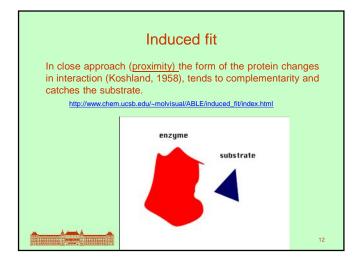


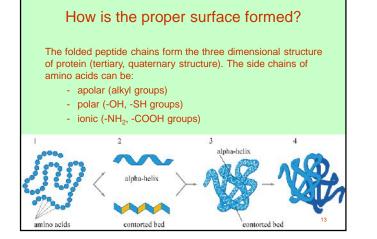


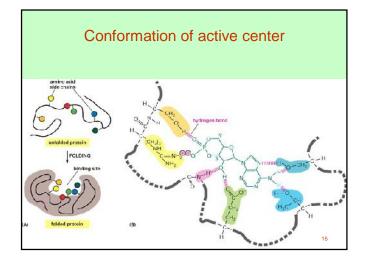


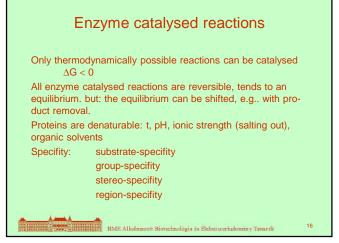
- \geq
- Sites for modulators (inhibitors, activators, S, P, metal ions) Sites for covalent modification of enzyme (phosphorylation, \triangleright glycosylation, proteolysis)

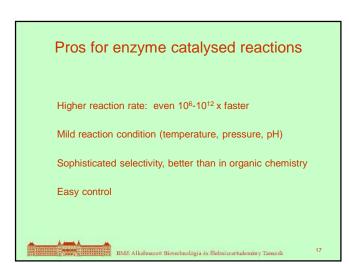

BME Alkalmazott Biotechnológia és Élelmiszertudomán y Tanszék

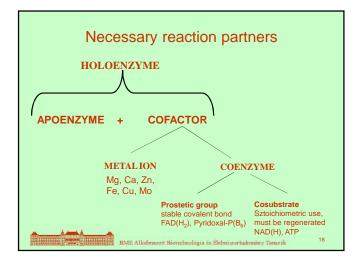


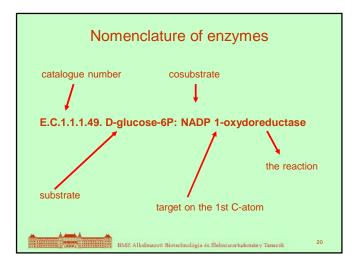







	Reactive	side chain	S	
	-COOH: Asp, Glu terminal –CO –CO-NH₂: Asn, Gl	OH and -NH ₂	Lys, Arg	
	H: Ser, Thr		-S-CH ₃ : Met	t
Imidazole	: His	Guanid	ine: Arg	
H-bonds:	С=О Н-О-	C=O H	-NH-	





BME Department of Applied Biotechnology and Food Science

Nomenclature of enzymes
1. To substrate: urea + water \implies CO ₂ + 2NH ₃
urease S-name + ase
2. To substrate and reaction: EtOH → AcO → AcOH
S-name + reaction name + ase
3. Trivial names:
pepsin, trypsin, rennin – all peptidases + -in
4. IUB, IUPAC, IUBMB 1964,1972,1978 Enzyme Commission: systematical nomenclature
BME Alkalmazott Biotechnologia és Élefmiszertudominy Tanszék 19

Group	Reaction catalyzed	Typical reaction	Enzyme example(s) with trivial name	
EC 1	To catalyze oxidation/reduction reactions; transfer of H and O atoms or electrons from	$AH + B \rightarrow A + BH$ (reduced)	Dehydrogenase,	
Oxidoreductases	one substance to another	A + O \rightarrow AO (oxidized)	oxidase	
EC 2	Transfer of a functional group from one substance to another. The group may be	$AB + C \rightarrow A + BC$	Transaminase, kinase	
Transferases	methyl-, acyl-, amino- or phosphate group		Kindoc	
EC 3	Formation of two products from a substrate by hydrolysis	$AB + H_2O \rightarrow AOH + BH$	Lipase, amylase,	
Hydrolases			peptidase	
EC 4	Non-hydrolytic addition or removal of groups from substrates. C-C, C-N, C-O or C-S bonds	$\begin{array}{l} RCOCOOH \rightarrow RCOH + \\ CO_2 \text{ or } [X\text{-}A\text{-}B\text{-}Y] \rightarrow \\ [A\text{=}B + X\text{-}Y] \end{array}$	Decarboxylase	
Lyases	may be cleaved		Decarboxylase	
EC 5	Intramolecule rearrangement, i.e. isomerization changes within a single	$AB \rightarrow BA$	Isomerase,	
Isomerases	molecule		mutase	
EC 6	Join together two molecules by synthesis of new C-O, C-S, C-N or C-C bonds with	X + Y+ ATP → XY + ADP	Synthetase	
Ligases	simultaneous breakdown of ATP	+ Pi	Syncheidse	

