ElektronSpin Rezonancia (ESR) spektroszkópia

(Elektron Paramágneses Rezonancia (EPR) spektroskópia)

May Nóra MTA Természettudományi Kutatóközpont 1117 Budapest, Magyar tudósok körútja 2, D1.11

may.nora@ttk.mta.hu

Spektroszkópiák a használt elektromágneses sugárzás frekvenciája alapján

NMR	ESR	Mikro- hullám	IR, Raman	UV-Vis	Foto- emissió	Röntgen módszerek	Mössbauer
Mag-Zeeman átmenet	Elektron- Zeeman átmenet	Forgási átmenetek	Rezgési átmenetek	elektron- gerjesztés	Vegyérték elektron ionizáció	Belső elektron ionizáció	Mag- átmenetek
			5		~~~ `	×	6
Buildings Humans	Butterflie	es Needle	e Point Pro	otozoans M	Nolecules	Atoms At	omic Nuclei
				www.www	www.www.		
1 km	1m 1	cm 1 mm	1 1	1 µm	1	nm 1Å	<u> </u>
$10^3 10^2 10^1 1 MHz$	10 ⁰ 10 ⁻¹ 1 1 GHz	10 ⁻² 10 ⁻³ 1 T	10 ⁻⁴ 10 ⁻⁵ Hz	10 ⁻⁶ 10 1 PHz	⁻⁷ 10 ⁻⁸ 1	0 ⁻⁹ 10 ⁻¹⁰ 1 1 EHz	0 ⁻¹¹ 10 ⁻¹² 1 ZHz
10^5 10^6 10^7 10^8	10 ⁹ 10 ¹⁰	10 ¹¹ 10	¹² 10 ¹³ 1	0 ¹⁴ 10 ¹⁵	10 ¹⁶ 10 ¹⁷	10 ¹⁸ 10 ¹⁹	10 ²⁰ 10 ²¹
radiowaves	microway	ves ter	ahertz infra	ared ult	raviolet	X-rays	gamma
t	ransparency				spectroscopy	transpare	ency
(100 L					spectroscopy		

http://www.physik.uni-kl.de/en/beigang/forschungsprojekte/

Az ESR spektroszkópia története

- 1896: Pieter Zeeman vizsgálta, hogy az atomokat erős mágneses térbe helyezve azok optikai emissziós spektruma felhasad – ezt az elektronok pályimpulzus momentuma és a mágneses tér kölcsönhatásával értelmezték (1902-ben Nobel-díjat kapott)
- 1921: Gerlach és Stern megfigyelte, hogy ezüst atomokból (Ag 4d¹⁰ 5s¹) álló sugárnyaláb mágneses téren áthaladva 2 vonalat ad – mivel itt s pályán lévő elektronok vannak, a jelenséget nem tudták értelmezni

 1924: a jelenséget Uhlenbeck és Goudsmit értelmezte, bevezetve a ,spin' fogalmát, amely az elektron saját impulzusmomentuma

- 1944: Zavoisky felvette az első ESR spektrumot a II. világháborúban kifejlesztett, és radarként használt, 9.8 GHz-et előállító mikrohullámú generátorral (egy évvel az első NMR spektrum detektálása előtt).
- 1965: a Fourier transform NMR (impulzus vagy FT-NMR) kifejlesztésével az NMR nagyon gyors ütemben fejlődött (a ms-os impulzusok előállíthatóak az akkori technikákkal)
- 1980: az elektronika olyan szintre fejlődött, hogy ns-os impulzusokat lehessen előállítani elérhető áron (habár az első impulzus ESR felvételről 1958-ban számolt be Blume)

Az első mért ESR spektrum CuCl₂.2H₂O mintára

 Napjaink: az ESR technika esetén is az egyre nagyobb frekvenciákon üzemelő berendezések valamint a különböző impulzus technikák jelentik a fejlesztés fő irányát, hasonlóan az NMR-hez

- Gyökök (•CH₃, •NH₂), S=1/2
- Gyök ionok (C₆H₆ •⁺, C₆₀ •⁻), S=1/2
- Vezetési elektronok fémekben, félvezetőkben, S=1/2
- Kristályhibák, S=1/2
- Triplett állapotú molekulák (O_2), S=1
- Átmenetifémek pl. Mn^{2+} : d⁵ S=5/2 Cu^{2+} : d⁹ S=1/2
- Ritkaföldfémek pl. Gd³⁺ : f⁷ S=7/2
- diamágneses anyagok: ionizáló vagy UV-sugárzással paramágnesessé tehetők

- spinjelzők beépítésével (pl. fehérje szerkezetvizsgálat)

• spincsapdák: egy reaktív, rövid élettartamú gyökkel reagálva hosszú élettartamú gyököt

hoznak létre

ESR-abszorpció (Elektron-Zeeman kölcsönhatás)

Méréstechnikai okokból a mágneses teret változtatjuk, a besugárzó frekvencia állandó értéken tartása mellett és így keressük meg a rezonanciát.

Különböző frekvencián működő ESR spektrométerek

ESR abszorpció molekulákra

$$hv = g_e \mu_B B_{loc} = g_e \mu_B (1 - \sigma) B$$
$$g = (1 - \sigma) g_e$$

 $hv = g\mu_B B$

A **g** arányossági tényező eltérése a szabad elektron **g**_e értékétől (2.0023) az anyagi minőségre jellemző, hasonlóan az NMR kémiai eltolódás paraméteréhez

Anyagi minőség	g-érték	paraméteréhez
Policiklusos szénhidrogén kationok, anionok	2.0024 - 2.0028	
Flavoszemikinonok	2.0030 - 2.0040	állandó
Benzoszemikinonok, fenoxi gyökök	2.0040 - 2.0050	λ (cm ⁻¹)
Nitroxidok	2.0050 - 2.0060	C 29
Peroxil gyökök	2.01 - 2.02	N 76
Kén-tartalmú gyökök	2.02 - 2.06	O 150
Cu ²⁺	2 18 - 2 09	Cu -830
V ⁴⁺	~1.9	V 250
		Ų

ESR abszorpció makroszkopikus mintán

Boltzmann statisztika:

$$f = \frac{N_{\beta}}{N_{\alpha}} = \exp(-\frac{\Delta E}{kT})$$

 $f = \exp(-\frac{g_e \mu_B B}{kT})$

Az ESR abszorpció arányos a két spinállapot betöltési számának hányadosával, amit pedig a Boltzmann statisztika alapján a két állapot energiakülönbsége és a hőmérséklet határoz meg.

 $f \approx 0.996$, ha B = 1T, T = 300K $f \approx 0.35$, ha B = 1T, T = 1K A mérési hőmérséklet csökkentésével növelhető az intenzitás Relaxáció típusai:

•Spin-rács relaxációs idő (T1): Az az idő, amely a termikus egyensúlyra jellemző populáció-arányok visszaállításához szükséges. Ennek hatására a mágnesezettség z irányú komponense visszaáll az egyensúlyi értékre, és a spinek által felvett többletenergia elvezetődik a rácsban.

•Spin-spin relaxációs idő (T2): Ahhoz szükséges idő, hogy a spinek véletlenszerűen helyezkedjenek el a z tengely körüli szög mentén (a kúp felületén). Ennek hatására az x és y irányú mágnesezettség csökken.

ESR spektrométer felépítése

A modulációs méréstechnika okozza az ESR vonalak derivált jelalakját

Mik a főbb jellemzői egy spektrumnak?

- 1. Pozíció
- 2. Intenzitás
- 3. Vonalszélesség
- 4. Finomszerkezet

1. Pozíció

A spektrum pozícióját nem a rezonancia térrel jellemezzük, mivel különböző frekvencián történhetnek mérések, így a különböző készülékekben felvett spektrumok nem lennének összahsonlíthatóak. Erre a g-értéket használjuk, amely független a készüléktől és csak az anyagi minőségre jellemző

2. Intenzitás

Az intenzitás (pontosabban a jel alatti terület) arányos a gyök, ill. a paramágneses anyag koncentrációjával. Mivel a mérés során derivált spektrumot kapunk, a kvantitatív elemzéshez azt kétszer kell integrálnunk! Az intenzitás hőmérsékletfüggése a Boltzmann-eloszlás alapján értelmezhető.

3. Vonalszélesség

• a gerjesztett állapot véges élettartama miatt a vonalszélesség nem lehet végtelenül keskeny:

$$\Delta v \Delta t \approx 1$$

• a mágneses tér inhomogenitása

$$h v = g_e \mu_B B$$
$$\Delta v \leftarrow \Delta B$$

• fel nem oldott csatolások

frekvencia

4. Finomszerkezet

4. Finomszerkezet

Az energiaszintek az ESR és NMR átmeneteket figyelembe véve:

$$E_{m_S m_I} = g\mu_B B_o m_S + g_n \mu_n B_o m_I + ham_S m_I$$

Hiperfinom kölcsönhatás közvetítésének mechanizmusai

A hiperfinom kölcsönhatás a párosítatlan elektron mágneses momentuma és a magok mágneses momentuma között lép fel és felfogható úgy mint a külső mágneses teret növelő, vagy árnyékoló hatás.

•Fermi-féle kontakt kölcsönhatás: s-karakterű pályán lévő elektronok esetén lép fel, irányfüggetlen

•Dipólus-dipólus kölcsönhatás: p,d,f pályán lévő elektronok és a mag mint pontszerű dipólusok között fellépő kölcsönhatás, irányfüggő

Spinpolarizáció

Hiperfinom kölcsönhatás közvetítésének mechanizmusai: Spinpolarizáció

párosítatlan C2p π -elektron $\langle \alpha \beta \rangle$ **•** H -> C $\langle \alpha \alpha \rangle$ С Η σ-kötés MW $\langle \beta \beta \rangle$ --> $\langle \beta \alpha \rangle$ **∮**H) С <**a** (G) Bo g_{o}

Néhány mágneses mag

Izotóp	Term. előford. %	Mágneses momentum magmagneton egységben	Magspin kvantumszám (I)
¹ H	99.9844	2.793	1/2
² H	0.0156	0.857	1
¹³ C	1.108	0.702	1/2
¹⁴ N	99.635	0.404	1
¹⁵ N	0.365	-0.283	1/2
¹⁹ F	100	2.627	1/2
²³ Na	100	2.216	3/2
²⁷ Al	100	3.639	5/2
³¹ P	100	1.131	1/2
³³ S	0.74	0.643	3/2
³⁵ Cl	75.4	0.821	3/2
³⁷ Cl	24.6	0.683	3/2
⁵⁵Mn	100	3.461	5/2
⁵⁷ Fe	2.245	0.09	1/2
⁵⁹ Co	100	4.639	7/2
⁶³ Cu	69.09	2.221	3/2
⁶⁵ Cu	30.91	2.379	3/2
⁷⁹ Br	50.57	2.099	3/2
⁸¹ Br	49.43	2.263	3/2

20

Hiperfinom szerkezet több ekvivalens mag jelenlétében

Az elektron spin kölcsönhatása "n" darab ekvivalens I spinű maggal 2nI+1 vonalat ad.

1

Hiperfinom szerkezet több ekvivalens mag jelenlétében

Az elektron spin kölcsönhatása "n" darab ekvivalens I spinű maggal 2nI+1 vonalat ad.

Hiperfinom szerkezet több ekvivalens mag jelenlétében

Az elektron spin kölcsönhatása "n" darab ekvivalens I spinű maggal 2nI+1 vonalat ad.

l=1	2		NE	EM	Pa	scal	-hár	oms	zöğ)!				
Nº mag (n)													۲ (№ vonal 2nl+1)
0							1							1
1						1	1	1						3
2					1	2	3	2	1	>				5
3				1	3	6	7	* 6	3	1				7
4			1	4	10	16	19	16	10	4	>1			9
5		1	5	15	30	45	51	45	↓ 30	15	5	1		11
6	1	6	21	50	90	126	141	126	90	50	21	6	1	13

Különböző intenzitásarányok azonos számú vonal esetén

Hiperfinom kölcsönhatás erőssége

Szerves gyökök ESR spektruma

Gyakorlati példa

Fenalén stabil gyök

	paramág	gneses		diamágnes	es
ŗ	oáratlan		S > 0	páros ↓	S = 0
V	O ²⁺ :d ¹		S = 1/2	V	
Cı	r ³⁺ :d ³		S = 3/2		
Fe	e ³⁺ :d ⁵		S = 5/2	Fe ²⁺ : d ⁶	
Μ	1n ²⁺ :d ⁵		S = 5/2		
Co	o ²⁺ :d ⁷		S = 3/2		
С	u ²⁺ :d ⁹		S = 1/2	Cu+: d ¹⁰	
Kivétel:					

Paramágneses fémkomplexek ESR spektruma

Paramágneses fémkomplexek ESR spektruma

Attila Jancsó, Katalin Selmeczi, Patrick Gizzi, Nóra V. Nagy, Tamás Gajda, Bernard Henry, Journal of Inorganic Biochemistry 105 (2011) 92–101 doi:10.1016/j.jinorgbio.2010.09.004

A g-érték irányfüggése

A korábbiakban mindíg feltételeztük, hogy a paramágneses molekula mágneses térrel való kölcsönhatása nem irányfüggő. Ekkor g értéke egy skaláris mennyiségnek tekinthető (izotróp modell). Ez a modell általában csak oldatokban alkalmazható, ahol a molekulák gyors forgásával a paraméterek irányfüggése kiátlagolódik.

Számos esetben pl. egykristályoknál, poroknál vagy lefagyasztott oldatoknál ez a kép nem alkalmazható, figyelembe kell venni a **g-tenzor** irányfüggését (anizotróp modell).

Spin-Hamilton operátor:

$$H_{SH} = \mu_B(\vec{B}\hat{g}\vec{S})$$

$$H = \mu_B \begin{bmatrix} B_x, B_y, B_z \end{bmatrix} \begin{pmatrix} g_{xx} & g_{xy} & g_{xz} \\ g_{yx} & g_{yy} & g_{yz} \\ g_{zx} & g_{zy} & g_{zz} \end{pmatrix} \begin{pmatrix} S_x \\ S_y \\ S_z \end{pmatrix}$$

Szimmetriák:

köbös:	$g_{xx} = g_{yy} = g_{zz}$
axiális:	$g_{xx} = g_{yy} \neq g_{zz}$
rombos:	$g_{xx} \neq g_{yy} \neq g_{zz}$

Axiális-szimmetriájú g-tenzor ($g_x = x_y < g_z$)

g-tenzor reprezentációja

B_o

Különböző szimmetriájú g-tenzor

Egy vanádium(IV) komplex ESR spektruma

Megfagyasztott oldat

Christian R. Kowol, Nóra V. Nagy, Tamás Jakusch, Alexander Roller, Petra Heffeter, Bernhard K. Keppler, Éva A. Enyedy Journal of Inorganic Biochemistry 152 (2015) 62–73 http://dx.doi.org/10.1016/j.jinorgbio.2015.08.023

g⊥

Az ESR spektrumok értékelése szimulációs programmal

Norbert Lihi, Gizella Csire, Bence Szakács, Nóra V. May, Katalin Várnagy, Imre Sóvágó, and István Fábián, Inorg. Chem. 2019, 58, 1414–1424, DOI: 10.1021/acs.inorgchem.8b02952

ESR és NMR technikák összehasonlítása						
	ESR	NMR				
Mérés alapja	elektronspin	magspin				
Energiaszintek távolsága	$\Delta E = g_e \mu_B B = (-e\hbar/2m_e)B$ μ_B : Bohr-magneton $m_e = 9,1094 \ 10^{-28} g$	DE = $g_n m_N B$ = (eħ/2m _p)B μ_N : nuclear magneton m_p = 1,6726 10 ⁻²⁴ g				
Mágneses tér	0.03 – 3 T a mérés során változtatjuk	2 – 14 T a mérés során állandó				
Besugárzó frekvencia	mikrohullám (1,2 – 100 GHz), állandó értéken tartva	rádiófrekvencia (90 – 800MHz), a mérés során változtatjuk				
Relaxációs idő	10 ⁻⁹ – 10 ⁻⁶ sec	10 ⁻³ – 10 sec				
Pulzus hossz (FT módban)	ns	ms				
Érzékenység	1nM	1mM				
Csatolási állandók	MHz	Hz 38				

Összefoglalás	
vizsgálható anyagok	 gyökök, gyök ionok triplett állapotú molekulák kristályhibák, ferromágneses anyagok, vezetők, félvezetők átmeneti- és ritkaföldfémek diamágneses anyagok spinjelölővel vizsgálhatók
szerkezeti információ	 csak a párosítatlan elektron környezete vizsgálható g érték -> anyagi minőségre jellemző (milyen centrumon van a gyök), hv = gμ_BB vonalak száma, intenzitása -> gyök elektronnal kölcsönható mágneses magok minősége és száma (n db I spinű ekvivalens mag esetén a vonalak száma: 2nl+1)
méréstechnika	 mágneses teret változtatjuk a besugárzó frekvencia állandó értéken tartása mellett spektrumok derivált alakját a modulációs technika eredményezi
vizsgálható fázisok	 oldat megfagyasztott oldat por egykristály (mágnesesen hígított)
g és A tenzoriális mennyiségek	 oldatban nem mérhető a tenzorok irányfüggése (g_o és A_o) megfagyasztott oldatban, porokban és egykristályokban (g_x, g_y, g_z és A_x, A_y és A_z mérhető)

P. W. Atkins Fizikai Kémia II.

Electron Paramagnetic Resonance Theory - Springer http://www.springer.com/cda/content/document/cda_downloaddocument/97836422513 44-c2.pdf?SGWID=0-0-45-1269314-p174261064

ChemWiki

http://chemwiki.ucdavis.edu/Core/Physical_Chemistry/Spectroscopy/Magnetic_Resonance e_Spectroscopies/Electron_Paramagnetic_Resonance/EPR%3A_Theory

Spin csapdázás:

http://www.vup.sk/en/download.php?start&language=en&bulID=1

Adja meg az alábbi spektrum g értékét, ha a mérési frekvencia v=9.875 GHz, h=6,626075x10⁻³⁴ Js, μ_B =9,2740154x10⁻²⁴J/T, 1T=10⁴G

Milyen térértékeknél kapunk rezonanciát egy v = 9.475 GHz frekvencián működő ESR spektrométeren, ha tudjuk, hogy a vizsgált gyök g értéke 2,0027 és egyetlen proton (I=1/2) okoz felhasadást, melynek csatolási állandója 10G.

Adja meg az ESR vonalak számát és intenzitás arányait, az aminil gyök esetén, amelyben $a_N=20$ G és $a_H=5$ G. A nitrogén magspinje $I_N=1$, a proton magspinje $I_H=1/2$ és a két proton csatolása ekvivalens.

Adja meg az ESR vonalak számát és intenzitás arányait a 3,6-ditercbutil-1,5dinitrobenzol gyök esetén, ahol a csatolások $a_N = 10$ G, $a_{H1} = 3$ G.

Adja meg az ESR vonalak számát és intenzitás arányait a 3-tercbutil-1,5dinitrobenzol gyök esetén, ahol a csatolások $a_N = 10$ G, $a_{H1} = 4$ G, $a_{H2} = 1$ G.

Adja meg a választott spektrumban felhasadást okozó magok minőségét és számát valamint csatolási állandójukat. Csak H (I=1/2) és N (I=1) magok lehetnek és max. 3 mag okoz felhasadást, a csatolási állandók 5-tel oszthatók.

Az (a) és (b) spektrumok közül melyik tartozik a para- és melyik az orto-

benzoszemikinon gyök anionhoz? (I_H=1/2)

para-benzoszemikinon gyök anion

