NMR szilárd fázisban

Igen széles jelek, mert a meghatározó kölcsönhatások a "solid state" NMR spektrumokban:

•dipole-dipole (homo-, heteronukleáris) csatolódás (direct, through space)

kémiai eltolódás anizotrópiája

•quadrupolar kölcsönhatások

(csak quadrupolar magoknál)

A kémiai eltolódások irányfüggésének (∆o anizotrópia) valamint a téren keresztüli homo- és heteronukleáris dipoláris csatolások jelkiszélesítő hatásának elnyomása

McConnell egyenlet: $\Delta \sigma \propto (\chi_{II} - \chi_{\perp}) (1 - 3\cos^2 \Theta)/R^3$; χ : mágneses szuszceptibilitás

A cirkónia mintatartó (rotor) elhelyezkedése a szilárdfázisú mérőfejben

Mintatartó (rotor) Atmérő max. forgási sebesség 1.3 mm: 67 kHz 2.5 mm: 35 kHz 3.2 mm: 24 kHz 4.0 mm: 15 kHz 7.0 mm: 7 kHz Mintatartó (rotor) Mintatartó (rotor) Att S probes with sample insert/eject capability United Statistics Difference Sta

MAS stator in magic angle position

MAS stator in vertical position

HR-MAS-NMR Spektroszkópia

(High-Resolution-Magic-Angle-Spinning)

Chemical Shift Anisotropy

Nagy kémiai eltolódás tartományú magok, spin 1/2

A MAS forgatás hatása a glicin (H₂N-CH₂-COOH) keresztpolarizációval (CP) és protonlecsatolással felvett szilárdfázisú ¹³C

A forgatási sebesség nagyobb legyen mint az átlagolni kívánt kölcsönhatás.

$^1\text{H} \to ^{13}\text{C}$ mágnesezettség átvitel keresztpolarizációval (Cross Polarisation) (Boltzmann)

 $\frac{N(felső)}{N(alsó)} = e^{\frac{-\Delta E}{kT}} \approx 1 - \Delta E / kT = 1 - \frac{h}{2\pi} \cdot \frac{\gamma B}{kT}$

Azonos ¹H és ¹³C betöltöttséghez eltérő (spin)-hőmérséklet tartozik: pl.:

$$e^{\frac{\gamma_{H}B_{0}}{kT_{H}}} = \frac{p_{2}}{p_{1}} = e^{\frac{\gamma_{C}B_{0}}{kT_{C}}}$$

Meleg tartály → hideg tartály

 $T_{c} = \frac{\gamma_{c}}{\gamma_{H}} T_{H} \qquad T_{c} = \frac{1}{4} 300K = 75K$

Hartmann-Hahn rezonancia feltétel:

Hartmann-Hahn Spinlock-Experiments

Szilárdfázisú ¹³C mérés CPMAS technikával

Glycin polimorfok ¹³C CP/MAS spektruma

High Resolution NMR in the Solid State

Cortisone Acetate: Discrimination of Polymorphs

Cortisone Acetate: Discrimination of Polymorphs

¹³C CP/MAS spectra, expanded view on 75 - 10 ppm region

Cortisone Acetate: Identification of Polymorphs

Cortisone Acetate: Identification of Polymorphs

Cortisone Acetate: Characterisation of Polymorphs

400 MHz spectrometer, spinning speed 13.717 kHz, contact time 400 μs

Cortisone Acetate: Characterisation of Polymorphs

expanded view of ¹³C 27 ppm - 12 ppm region

Cortisone Acetate: Characterisation of Polymorphs

Iminodiacetamid Ph-N[CH₂CON(C₆H₁₁)₂]₂ ionofór cink komplexe

CP-MAS NMR Spektroszkópia (Cross-Polarisation-Magic-Angle-Spinning)

Határozza meg a CH_3O csoport helyét a 3.64 ppm-nél besugárzott NOE differencia spektrum (c) alapján!

Végezze el a ¹³C jelhozzárendelést a C,H-COSY spektrum alapján!

Presentation of NMR Data (500 resp. 125 MHz, CDCl₃, δ)

Assignment	¹ H (J)	¹³ C	HMBC responses (¹³ C partners)	NOE respon- ses (¹ H)
1	-	187.7	-	-
2	-	133.4	_	_
3	3.14, m	27.1	C-1, C-2, C-4, C-4a, C-9	4, 2'/6'
4	2.94, m	28.7	C-3, C-4a, C-5, C-8a	3, 5
4a	-	143.0	-	-
5	7.24, d (8.5 Hz)	128.0	C-4, C-7, C-8a	4, 6
6	7.48, t (8.5Hz)	133.0	C-4a, C-8	5,7
7	7.36, t (8.5 Hz)	126.8	C-5, C-8a	6, 8
8	8.13, d (8.5 Hz)	128.0	C-1, C-4a, C-6	7
8a	-	133.5	_	_
9	7.86, s	136.5	C-1, C-3, C-2'/6'	2'/6'
1'	-	128.3	_	-
2', 6'	7.43, m	131.6	C-9, C-2'/6'	3, 9, 3'/5'
3', 5'	6.96, m	113.9	C-1', C-3', C-4', C-5'	2'/6', CH3O
4'	-	159.9	-	-
CH ₃ O	3.85, s	55.2	C-4'	3'/5'

Compound **34** has been isolated from the phenolic fraction of the plant *Polygala arvensis*. Its molecular formula – determined by high-resolution mass spectrometry – is $C_{21}H_{20}O_5$. What is its structure?

Fig. 4.25.1. 500 MHz ¹H NMR spectrum of **34**, in CDCl₃; impurity signals are marked by "x"; S: solvent. The following signal splittings (doublets) have been determined: $\delta = 7.82$, 15.3 Hz; $\delta = 7.72$, 8.8 Hz; $\delta = 7.40$, 15.3 Hz; $\delta = 7.23$, 8.2 Hz; $\delta = 6.96$, 8.2 Hz; $\delta = 6.76$, 10.0 Hz; $\delta = 6.38$, 8.8 Hz; $\delta = 5.59$, 10.0 Hz. For an expansion see 1D spectra in Fig. 4.25.3.

Fig. 4.25.2.a 125.7 MHz ¹³C NMR spectrum of **34**, in CDCl₃; **b** DEPT135 spectrum; **c** selective INEPT spectrum, irradiation at the signal at $\delta = 13.79$. The exact values of the ¹³C chemical shifts are: $\delta = 191.9$, 160.9, 159.7, 148.4, 146.8, 144.6, 130.5, 128.1, 127.4, 123.5, 117.7, 115.9, 114.9, 114.1, 110.1, 109.4, 108.2, 77.8, 56.0, and 28.4.

Fig. 4.25.6 HMBC széthúzás

¹ H signals at δ =	^{13}C signals at $\delta =$ (HMQC)	Long-range correlations at δ = (HMBC)
1.47		28.4
3.97		
5.59		
6.38		
6.76		
6.96		
7.12		
7.23		
7.40		
7.72		
7.82		
13.78	1D INAPT	109.4; 114.1; 160.9

Table 6.25.1. Listing of ¹H correlations in the HMQC and HMBC spectra of 34. C₂₁H₂₀O₅ DBE=12

M. S. Rao, P. S. Rao, <u>G. Tóth*</u>, B. Balázs, H. Duddeck: Isolation of Polyarvin, a Chalcone from *Polygala arvensis*. Nat. Prod. Letters 12, 277–280 (1998)

3rd order low-pass *J* filter for correlating ¹H and ¹³C nuclei via ${}^{1}J_{CH}$ and ${}^{1}H^{-1}H$ couplings. No ${}^{2}J_{CH}$ involved!

Nils T. Nyberg, Jens Ø. Duus, Ole W. Sorensen J. Am. Chem. Soc. 127 6154-6155 (2005)

Nils T. Nyberg, Jens Ø. Duus, Ole W. Sorensen J. Am. Chem. Soc. 127 6154-6155 (2005)

Nils T. Nyberg, Jens Ø. Duus, Ole W. Sorensen J. Am. Chem. Soc. 127 6154-6155 (2005)

20-Hidroxiekdizon dioxolánok NMR vizsgálata

20-Hidroxiekdizon (δ^{1} H, δ^{13} C)

26

Bruker Avance 500 (2002); 5mm BBO (direkt) mérőfej; S/N : ¹H = 350, ¹³C = 230

MATCH tubes (mérőcsővek)				
Átmérő: 1, 1.7, 2.0, 2.5 , 3.0, 4.25	and 5mm			
térfogat →→ >0.1 ml	0.6 ml			

edHSQC, HMBC mérésidő: 6 perc, selROE ns=32 >3 perc

