

Nagyteljesítményű elemanalitikai, ill. nyomelemanalitikai módszerek

1. Atomspektroszkópiai módszerek

1.1. Atomabszorpciós sp. módszerek, AAS

- 1.1.1. Láng-atomabszorpciós módszer, L-AAS
- 1.1.2. Grafitkemence atomabszorpciós módszer, GK-AAS

1.1.3. Higanygőz-, ill. illékonyhidrid-fejlesztéses atomabszorpciós módszer

1.2. Atomemissziós sp. módszerek

1.2.1. Induktív csatolású plazmaégős optikai emissziós sp. módszer, ICP-OES (szabad atomok + szabad ionok)

2. Tömegspektroszkópiás módszerek, MS

2.1. Induktív csatolású plazmaégős tömegspektrometriás módszer, ICP-MS (szabad ionok)

Analitikai jellemzők

(Elemanalízis/Atomspektroszkópia, Dr.Bezur László BME ÁAKT)

- Azonosság, Szelektivitás, Megkülönböztetés
- Kimutatási (alsó)határkoncentráció
- Meghatározási (alsó)határkoncentráció
- Mérési koncentrációtartomány (dinamikus konc. tart.)
- Kalibrációs függvény (linearitás, kalibrációs függvény illeszkedés)
- Pontosság (visszanyerés)
- Precizitás (ismétlőképesség, reprodukálhatóság)
- Robosztusság

Kimutatási (detektálási) és meghatározási (mérési) alsóhatárok definiciója és kapcsolata

A kimutatási/detektálási határkoncentráció statisztikai definíciója:

$$c_L = c_D = \frac{3\sigma}{S}$$

ahol

- c_L , c_D , a kimutatási határ (LD, LoD),
- σ, a vakérték(zaj) jelének szórása (korrigált tapasztalati szórása, pl. 10x mérve)
- *S*, a kalibrációs függvény kezdeti meredeksége (induló érzékenysége). Értelmezés és alkalmazás:
 - A kimutatási határkoncentrációnál (c_L) végezve méréseket a készülékkel 33% relatív szórást (*RSD*, *relative standard deviation*) várhatunk.

Meghatározási /mennyiségi mérési határkoncentráció: $c_Q=10\sigma/S~(=3,333c_L),~10\%~RSD$

A különböző elemanalitikai módszerek jellemző (c_L) kimutatási határai (I)

DL1

Elem	Láng-AAS (FAAS)	<mark>GK-AAS</mark> (GFAAS)	<mark>ICP-OES</mark> radiális	<mark>ICP-OES</mark> axiális	ICP-MS	
	µg/l (ppb)	<mark>µg/l (ppb)</mark>	<mark>μg/l (ppb)</mark>	<mark>μg/l (ppb)</mark>	<mark>ng/l (ppt)</mark>	
Ag	2	0,05	2	0,5	0,01-01	
Al	30	0,25	6	1,5	0,1-10	
As	300	0,33	12	2	1-10	
Au	8	0,15	6	0,6	0,01-0,1	
В	500	43	0,5	0,2	10-100	
Ba	20	0,4	0,2	0,04	0,01-0,1	
Be	1	0,025	0,2	0,06	0,1-1	
Bi	50	0,3	18	2	0,01-0,1	
С			50			
Ca	1	0,04	0,03	0,03	1-100	
Cd	<mark>1,5</mark>	<mark>0,02</mark>	<mark>1</mark>	<mark>0,1</mark>	<mark>0,01-0,1</mark>	
Ce	100000		8		0,01-0,1	
Co	5	0,5	2	0,5	0,1-1	
Cr	6	0,025	2	0,4	0,1-1	
Cs	4	0,3	3200		0,01-0,1	
Cu	3	0,07	2	0,3	0,1-1	
Dy	40	1,8	0,3		0,01-0,1	
Er	35	3,8	0,7		0,01-0,1	
Eu	1,5	0,8	0,3		0,01-0,1	
Fe	6	0,06	1	0,3	0,1-100	
Ga	65	23	7		0,1-10	
Gd	2000		3		0,01-0,1	
Ge	100	0,5	10		1-10	
Hf	2000		4		0,01-0,1	
Hg	<mark>145</mark>	<mark>18</mark>	<mark>9</mark>	<mark>1,2</mark>	<mark>1-10</mark>	
Но	60		0,5		0,01-0,1	
In	40	0,3	18		0,01-0,1	
Ir	500	4	4		0,01-0,1	
K	2	0,02	6,5	0,5	0,1-100	
La	2000		0,02		0,01-0,1	
Li	2	0,1	1		0,01-1	
Lu	300		0,05		0,01-0,1	
Mg	0,3	0,01	0,1	0,03	0,1-1	
Mn	2	0,03	0,3	0,05	0,1-1	
Mo	20	0,14	4	0,5	0,01-0,1	

A különböző elemanalitikai módszerek jellemző (c_L, 3 σ) kimutatási határai (II)

DL 2

Elem	Láng-AAS	GK-AAS	ICP-OES	ICP-OES	ICP-MS
	(FAAS)	(GFAAS)	radiális	axiális	
	µg/l (ppb)	µg/l (ppb)	μg/l (ppb)	μg/l (ppb)	ng/l (ppt)
Na	0,3	0,05	1	0,2	0,1-100
Nb	2000		4		0,01-0,1
Nd	850		2		0,01-0,1
Ni	10	0,24	6	0,4	0,1-10
Os	100		5		0,01-0,1
Р	4000	100	18	13	>1,000
Pb	<mark>10</mark>	<mark>0,04</mark>	<mark>14</mark>	<mark>1</mark>	<mark>0,01-0,1</mark>
Pd	10	0,5	2		0,01-0,1
Pr	5000		0,8		0,01-0,1
Pt	75	4,5	20		0,01-0,1
Rb	5	0,06	35		0,01-0,1
Re	800		11		0,01-0,1
Rh	3	0,4	5		0,01-0,1
Ru	100	0,75	4		0,01-0,1
S			20	28	>1,000
Sb	40	0,35	18	2	0,01-0,1
Sc	30		0,2	0,05	1-10
Se	500	0,65	20	5	1-100
Si	200	0,8	5	2	>1,000
Sm	750		7		0,01-0,1
Sn	95	0,6	0,1	0,01	0,01-0,1
Sr	2	0,1	0,1	0,01	0,01-0,1
Та	1500		9		0,01-0,1
Tb	700	0,2	5		0,01-0,1
Te	30	0,5	27		1-10
Th			17		0,01-0,1
Ti	70	1,6	0,6	0,09	0,1-1
Tl	20	0,75	16	3	0,01-0,1
Tm	20		1,5		0,01-0,1
U	40000		3,5	0,4	0,01-0,1
V	50	0,7	2	0,5	0,01-10
W	750		17		0,01-0,1
Y	350		0,2		0,01-0,1
Yb	4	0,15	0,3		0,01-0,1
Zn	1,0	0,0075	1	0,06	0,1-10
Zr	1500		0,8		0,01-0,1

Atomspektroszkópiai módszerek alapjai (abszorpció, emisszió, fluoreszcencia)

- A mintában található elemeket atomizáljuk, azaz speciális körülmények között, szabad atomos gőzállapotba visszük.
- A szabad atomos állapotú elemek meghatározása a külső-/vegyértékelektron-gerjesztés felhasználásával történik.
- Az atom külső elektronját <u>termikusan</u> (atomizálással együtt) vagy külön elektromágneses sugárzással (fénnyel, fotonokkal) gerjesztjük,
- Az elektrongerjesztés 5-20 pm (pikométer= 10⁻¹²m) szélességű vonalakat tartalmazó, vonalas atomspektrumokat eredményez,
- A spektrumvonalak hullámhossza az adott elem elektronszerkezetére visszavezethetően kvantált és jellemzően éles energiaszintkülönbségekből, azaz gerjesztési energiákból adódik, ezért nagyon pontosan azonos (6-7 digitre).

Oldatos mintabeviteli eszközök Atomizáló és (egyben gerjesztő) sugárforrás

Polikromátor (λ-szerint végzi a fény felbontását) Detektor, λszerint méri a fényintenzitást

Spektrográffal fotolemezre felvett emissziós spektrum

Elemanalízis/Atomspektroszkópia (Dr. Bezur László)

hullámhossz: 300 nm – 268 nm

Sokelem, kis koncentrációban, fényképezőlemez helyett ma már CCD-matrix

Az atomemissziós elv alkalmazásának előnyei és hátrányai (pl. ICP-OES-nél is)

Előnyök

- Az atomemissziós elv alkalmazásával elvileg az összes elem vizsgálható, vonalas jellegű spektrum, 5-20 pm szélességű spektrum vonalak felhasználásával.
- A spektrumok az atom elektronszerkezetének "leképezései" ezért egy adott elemre mindig azonos. A spektrum vonalak hullámhosszai nagyon pontosan állandóak.
- A mintában lévő elemek vonalas spektrumai egymásra szuperponálódnak, de megkülönböztethetők maradnak és így az elemek egyidejűleg mérhetők => szimultán multielemes módszer.
- Az 60-70 elem egyidejű, szimultán meghatározására képes.
- Az elemek kimutatási határai kedvezőek => nyomelemzésre is alkalmas módszer.
- Széles koncentráció átfogás, 5-6 nagyságrendű dinamikus tartomány => nyomelem és főalkotó egyszerre elemezhető.
- Egy-egy minta elemzése 1-2 perc => nagy mintaszám, elemszám

Hátrányok

- Háttérkorrekció szükséges => a módszerkidolgozás összetettebb.
- Előfordulhat spektrumvonalak átlapolása (nagy koncentrációknál, vonaldús mátrix esetén különösen) => spektrális zavarások => módszer kidolgozás
- ICP-A készülékek ára kb. 25-30 MFt, üzemeltetése viszonylag költséges a nagytérfogatsebességű argonfogyasztás miatt.

ICP SUGÁRFORRÁS

Elemanalízis/Atomspektroszkópia (Dr. Bezur László)

Az innen érkező fényt analizáljuk

ICP-OES módszerrel mérhető elemek

Élelmiszerek makro és mikro elemeinek meghatározása AAS, ICP-OES és ICP-MS módszerekkel (Dr. Bezur László)

1a	2a	3b	4b	5b	6b	7b	8	8	8	1b	2b	3a	4a	5a	ба	7a	0
Η																	He
Li	Be											B	С	N	0	F	Ne
Na	Mg											Al	Si	Р	S	Cl	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
Fr	Ra	Ac															
Lan	itan.	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu		
Akt	inid	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lw		

Korszerű ICP-OES készülék Elemanalízis/Atomspektroszkópia (Dr. Bezur László)

ICP-Plazmasugárforrás

Az ICP-OES készülékek fő egységei és azok kapcsolata

- (i) Plazma sugárforrás, ami szabad atomos, szabad ionos állapotba viszi és gerjeszti a mintát alkotó elemeket és előállítja a minta elemeit jellemző optikai sugárzást.
- (ii) **Rádiófrekvenciás generátor és illesztő egység**, ami előállítja és szabályozza a plazma működtetéséhez szükséges rádiófrekvenciás energiát.
- (iii) Gázadagoló egység: biztosítja a plazma és mintabevitel argon áramait.
- (iv) Mintabeviteli egység (porlasztó, porlasztókamra és perisztaltikus pumpa), ami a mintaoldatot aeroszollá alakítja a és a kis cseppméretű frakciót bejuttatja a plazmába.
- (v) **Leképező egység** a plazmából jövő optikai sugárzást bejuttatja a fényfelbontó egységbe.
- (vi) **Fényfelbontó egység**, spektrométer, **polikromátor vagy monokromátor**, ami spektrálisan felbontja a plazma optikai sugárzását, elkülöníti az egyes elemek spektrumvonalait, megjeleníti a spektrumot.
- (vii) Optikai detektor, a detektor(ok) az adott hullámhosszon jelentkező fényintenzitással arányos elektromos jelet állít elő (CCD-xy, CID-xy, CCD-sor, fotoelektron-sokszorozó (PM) használatos).
- (viii) **Számítógépes adatgyűjtő és vezérlő egység:** felhasználói programon keresztül működteti a készüléket, méri és feldolgozza az adatokat.

ICP sugárforrás jellemzői

Plazmaégők alaptípusai Elemanalízis/Atomspektroszkópia (Dr. Bezur László)

Nem bontható plazmaégő

Részlegesen bontható plazmaégő

Bontható plazmaégő

ICP-sugárforrás leképezése

ICP-OES készülék: optikai csatoló egység Axiális csatolás Elemanalízis/Atomspektroszkópia (Dr. Bezur László)

A plazmába merülő, hűtött fém kúp nyílásán jut be a fény az optikai rendszerbe. A forró, korrozív plazma gázok bejutását argon gázsugárral zárjuk ki.

Echelle polikromátoros ICP-OES készülék optikai vázlata

Echelle polikromátoros ICP-OES készülék optikai vázlata Elemanalízis/Atomspektroszkópia (Dr. Bezur László)

- A plazmasugárforrás analitikai zónájából kilépő sugárzást leképező lencse (vagy tükör) segítségével a polikromátor 53x53 µm-es belépő aperturáján keresztül a belépő apertúrától fókusz távolságnyira elhelyezett a kollimátor gömbtükörre vetítjük.
- A kollimátortükör a sugárzást párhuzamos nyalábbá formálja át.
- Ez a párhuzamos sugárnyaláb áthalad egy 17,5 fokos kvarcprizmán, ami hullámhossz szerint a vízszintes síkban (x) bontja fel a fényt.
- A fénysugár ezt követően az Echelle-optikai rácsra kerül. Az Echelle rács hullámhossz szerint a függőleges síkban (y) bontja fel a fényt.
- A prizma és az optikai rács által x és y síkban is felbontott fénynyalábot a toroid kamera tükör fókuszálja és képet alkot és a detektor síkjában.
- Ez a "kép" az u.n. echellogram, amiben a teljes spektrum sok kis, egymás alá rendezett spektrumszegmensre bontva jelenik meg.
- Az egyes szegmensek különböző spektrumrendekhez tartoznak (30.–120. spektrum rend).

Echelle polikromátoros ICP-OES készülék polikromátorának fényképe a fényút rajzos megjelenítésével

Elemanalízis/Atomspektroszkópia (Dr. Bezur László)

detektor, 15^x15 mm

CCD v. CID mátrixdetektor struktúra (x-y) Elemanalízis/Atomspektroszkópia (Dr. Bezur László)

CCD-mátrix-detektorstruktúra (pl.1024^x1024 pixel, 14^x14 μ m), 1,048 Mp (Charge Coupled Device)

Minden pixel egy önálló optikai detektor, ami a spektrum egy pontját (kb. 5 pm) jeleníti meg, s az így adott hullámhosszon méri a fényintenzitást

A Pashen-Runge polikromátor és Echelle polikromátor spektrum szerkezetének összevetése Elemanalízis/Atomspektroszkópia (Dr. Bezur László)

A spektrum felépítése Pashen-Runge polikromátorban

Az echellogram tömörebb formában jeleníti meg a spektrumot => kisebb készülék

Echellogram felépítése és megjelenése a készülék képernyőjén teljes pixelképként és kinagyított részleten

A pixelkép szoftveres konverziója spektrummá. A tallium dublett felbontásának bemutatása: 190.864 nm és 190.878 nm, egy pixel= 0,0035 nm Elemanalízis/Atomspektroszkópia (Dr. Bezur László)

A képernyőn megjelenített spektrumban kijelöljük az adott elem mérésére kiválasztott spektrumvonalat (hullámhossz), illetve a háttér mérés helyét (hullámhussz). **Piros zónák!**

Oldatporlasztásos mintabevitel induktívcsatolású plazmába

- A mintaoldatot perisztaltikus pumpával, egyenletes sebességgel (1-2 ml/min) adagoljuk a porlasztóba
- Az oldatmintákat pneumatikus porlasztással aeroszollá alakítva juttatjuk a plazmába. Aeroszol formában az "oldatgázzal" szállítható a plazmába.
- A pneumatikus porlasztót kb. 1 l/min argon árammal működtetjük
- A gázkapilláris kapillárisából kilépő, nagy sebességű argongázsugár bontja cseppekre a folyadék sugarat
- A porlasztó által előállított aeroszolból a finom cseppfrakciót (< 10 μm, 1-2 %) porlasztó kamrában választjuk el és vezetjük a plazmába

Oldatporlasztásos mintabevitel induktívcsatolású plazmába

Az ICP készülékekben a különböző feladatokhoz eltérő porlasztó konstrukciókat használunk

- Koncentrikus porlasztó
 - jó hatásfok
 - könnyen eltömődik
 - csak kis oldott anyag koncentrációnál használható (< 0,5 %)

Szög porlasztó

- közepes hatásfok,
- nem tömődik el könnyen,
- közepes oldott anyag koncentrációknál használható (<1-2%)

V-porlasztó

- kisebb hatásfok,
- nem tömődik el,
- nagy oldott anyag tartalmakkal is használható

Oldatos mintabevitel pneumatikus porlasztással induktívcsatolású plazmába

ICP-OES készülék: porlasztók alaptípusai: Koncentrikus porlasztó (Meinhard porlasztó) Elemanalízis/Atomspektroszkópia (Dr. Bezur László)

Jellemzés: jó hatásfok, nagy stabilitás, könnyen eltömődik Használat: tiszta, részecske mentes, kis oldott anyag tartalom (< 0,5%)

ICP-OES készülék: porlasztók alaptípusai: Szögporlasztó porlasztó Elemanalízis/Atomspektroszkópia (Dr. Bezur László)

Jellemzés: közepes hatásfok, megbízható működés, közepes stabilitás Használat: általánosan alkalmazható, közepes oldott anyag tartalom (1 %)

ICP-OES készülék: porlasztók alaptípusai: V-porlasztó Elemanalízis/Atomspektroszkópia (Dr. Bezur László)

Jellemzés: gyengébb hatásfok hatásfok, közepes stabilitás, nem tömődik el Használat: általánosan alkalmazható, nagyobb oldott anyag tartalom (1-3%) **ICP-OES spektrumrészlet, Alumínium** Elemanalízis/Atomspektroszkópia (Dr. Bezur László)

ICP-OES spektrumrészlet, Vas Elemanalízis/Atomspektroszkópia (Dr. Bezur László)

ICP-OES spektrumrészlet, volfrám (W)

ICP-OES: háttérkorrekció vízszintes háttér esetén

ICP-OES: háttérkorrekció egyenes háttér esetén Elemanalízis/Atomspektroszkópia (Dr. Bezur László)

ICP-OES: háttérkorrekció görbe háttér esetén

Ezüst ICP-OES módszerrel kapott kalibrációs függvényei a 0–100 mg/l és a 0–1000mg/l tartományban

ICP-MS módszer elve

- Az ICP-plazmában (7000-8000K, Ar, Ar⁺) az elemek jelentős mértékben (> 70-90%) ionizáltak A↔A⁺ + e⁻
- Az elemek egy része, As 52%, Se 33%, S 14%, F 0,9% stb. csak kisebb mértékben ionizálódik
- A plazmában a mintából keletkező atom ionokat tartalmazó plazmagázt vákuummal "beszippantva" a tömegspektrométerbe az ionok tömeg/töltés arány szerint szeparálhatók és meghatározhatók
- A plazmában keletkező ionok energiája 2-10 eV, ami kedvező a tömegspektrometriás detektálás szempontjából.

ICP-MS módszer elve

- Mi van a plazmában ? Mi keletkezik a plazma után az MS-ben?
 (i) a Ar-Ar plazma komponensei: Ar, Ar⁺, Ar⁺⁺, e⁻
 (ii) a mintából H₂O-ból → H, O
 (iii) a mintából, savakból: Cl, N, O, S,
 (iii) a levegőből N₂ → N
 (iv) a mintában lévő elemekből A → A⁺, A⁺⁺
 (v) reakciók a plazmában → poliatomos ionok: ArCl⁺, ArO⁺, stb.
- A mérés szempontjából hasznosak:

az elemek egyszeres pozitív töltésű ionjai \rightarrow A⁺

• Kimutatási határok a ppt (pg/ml) tartományban

A detektor az egy ion-elektron-sokszorozó (IonMultiplyer, IM), a nagyobb megszólalási energiája miatt a zaj (termikus sötétáram) nagyon kicsi, szemben a foto(n)-elektronsokszorozóval (PhotoMultiplyerrel, PM) szemben! Azaz a J/Z –viszony igen kedvező ! Atomspektroszkópiai módszerek alapjai Elemanalízis/Atomspektroszkópia (Dr. Bezur László)

Elemek tömegspektruma és ICP-MS kimutatási határai

- izobárok (több ioncsúcs adott m/z értéknél)
- poliatomos ion- vagy molekulaion-csúcsok

Kisfelbontású ICP-MS spektrum Így látjuk a készüléken

ICP-MS-spektrumrészlet kis és nagy felbontással Molekulaion-zavarás

A 56 Fe⁺ és az m/z=56 (ArO)⁺-ionok ICP-MS spektruma kis (R=150, felül) és nagy felbontással (R=10000, alul)

Elemizotópok atomtömege és természetes izotóp arányai

Elem	Izotóp	Atomtömeg	Izotóparány	Elem	Izotóp	Atomtömeg	Izotóparány
			%			-	%
Н	1	1.007825037	99.985	S	34	33.967867740	4.215
Н	2	2.014101787	0.015	S	36	35.967079000	0.107
He	3	3.016029297	0.00013	Cl	35	34.968852729	75.4
He	4	4.002603250	100	Cl	37	36.965902624	24.6
Li	6	6.015123200	7.52	Ar	36	35.967545605	0.337
Li	7	7.016004500	92.48	Ar	38	37.962732200	0.063
Be	9	9.012182500	100	Ar	40	39.962383100	99.6
В	10	10.012938000	18.98	K	39	38.963707900	93.08
В	11	11.009305300	81.02	K	40	39.963998800	0.012
С	12	12.00000000	98.892	K	41	40.961825400	6.91
С	13	13.003354839	1.108	Ca	40	39.962590700	96.92
Ν	14	14.003074008	99.635	Са	42	41.958621800	0.64
Ν	15	15.000108978	0.365	Са	43	42.958770400	0.13
0	16	15.994914640	99.759	Са	44	43.955484800	2.13
0	17	16.999130600	0.037	Са	46	45.953689000	0.0032
0	18	17.999159390	0.204	Ca	48	47.952532000	0.179
F	19	18.998403250	100	Sc	45	44.955913600	100
Ne	20	19.992439100	90.92	Ti	46	45.952632700	7.95
Ne	21	20.993845300	0.257	Ti	47	46.951764900	7.75
Ne	22	21.991383700	8.82	Ti	48	47.947946700	73.45
Na	23	22.989769700	100	Ti	49	48.947870500	5.51
Mg	24	23.985045000	78.6	Ti	50	49.944785800	5.34
Mg	25	24.985839200	10.11	V	50	49.947161300	0.24
Mg	26	25.982595400	11.29	V	51	50.943962500	99.76
Al	27	26.981541300	100	Cr	50	49.946046300	4.31
Si	28	27.976928400	92.18	Cr	52	51.940509700	83.76
Si	29	28.976496400	4.71	Cr	53	52.940651000	9.55
Si	30	29.973771700	3.12	Cr	54	53.938882200	2.38
Р	31	30.973763400	100	Mn	55	54.938046300	100
S	32	31.972071800	95.018	Fe	54	53.939612100	5.9
S	33	32.971459100	0.75	Fe	56	55.934939300	91.52

Elemizotópok atomtömege és természetes izotóp arányai

Elem	Izotóp	Atomtömeg	Izotóparány	Elem	Izotóp	Atomtömeg	Izotóparány
			%				%
Fe	57	56.935395700	2.25	Br	81	80.916290000	49.43
Fe	58	57.933277800	0.33	Kr	78	77.920397000	0.354
Со	59	58.933197800	100	Kr	80	79.916375000	2.27
Ni	58	57.935347100	67.76	Kr	82	81.913483000	11.56
Ni	60	59.930789000	26.16	Kr	83	82.914134000	11.55
Ni	61	60.931058600	1.25	Kr	84	83.911506400	56.9
Ni	62	61.928346400	3.66	Kr	86	85.910614000	17.37
Ni	64	63.927968000	1.16	Rb	85	84.911799600	72.15
Cu	63	62.929599200	69.09	Rb	87	86.909183600	27.85
Cu	65	64.927792400	30.91	Sr	84	83.913428000	0.56
Zn	64	63.929145400	48.89	Sr	86	85.909273200	9.86
Zn	66	65.926035200	27.81	Sr	87	86.908890200	7.02
Zn	67	66.927128900	4.11	Sr	88	87.905624900	82.56
Zn	68	67.924845800	18.56	Y	89	88.905856000	100
Zn	70	69.925324900	0.62	Zr	90	89.904708000	51.46
Ga	69	68.925580900	60.2	Zr	91	90.905644200	11.23
Ga	71	70.924700600	39.8	Zr	92	91.905039200	17.11
Ge	70	69.924249800	20.52	Zr	94	93.906319100	17.4
Ge	72	71.922080000	27.43	Zr	96	95.908272000	2.8
Ge	73	72.923463900	7.76	Nb	93	92.906378000	100
Ge	74	73.921178800	36.54	Мо	92	91.906809000	15.05
Ge	76	75.921402700	7.76	Mo	94	93.905086200	9.35
As	75	74.921595500	100	Mo	95	94.905837900	14.78
Se	74	73.922477100	0.96	Mo	96	95.904675500	16.56
Se	76	75.919206600	9.12	Мо	97	96.906017900	9.6
Se	77	76.919907700	7.5	Мо	98	97.905405000	24
Se	78	77.917304000	23.61	Mo	100	99.907473000	9.68
Se	80	79.916520500	49.96	Ru	96	95.907596000	5.68
Se	82	81.916709000	8.84	Ru	98	97.905287000	2.22
Br	79	78.918336100	50.57	Ru	99	98.905937100	12.81

A kisfelbontású ICP-MS mérésnél jelentkező vonalátlapolások és az izotóparányok

										Izotóp/i	zotópará	iny					-				
	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	
(K)	6.7																				K
Ca		0.7	0.1	2.1		0.0		0.2													Ca
Sc					100.0																Sc
Ti						8.0	7.5	73.7	5.5	5.3											Ti
v										0.3	99.7										v
Cr										4.4		83.8	9.5	2.4							Cr
Mn															100.0						Mn
Fe														5.8		91.7	2.1	0.3			Fe
Co																			100.0		Co
Ni																		67.8		26.4	Ni

A kisfelbontású ICP-MS mérésnél jelentkező vonalátlapolások és az izotóparányok

										Izotóp/i	zotópará	íny									
	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	
(Ni)	1.2	3.7		1.0																	Ni
Cu			69.1		30.9																Cu
Zn				48.9		27.8	4.1	18.6		0.6											Zn
Ga									60.0		40.0										Ga
Ge										20.7		27.5	7.7	36.4		7.7					Ge
As															100.0						As
Se														0.9		9.0	7.5	23.5		50.0	Se
Br																			50.7		Br
Kr																		0.4		2.3	Kr

Thermo Quadrupol ICP-MS interfész része (kinyitva) (Elemanalízis/Atomspektroszkópia, Dr.Bezur László BME ÁAKT)

Porlasztó + plazmaégő

(Elemanalízis/Atomspektroszkópia, Dr.Bezur László BME ÁAKT)

Kvadrupol ICP-MS készülék jellemzése (kisfelbontású)

Elemanalízis/Atomspektroszkópia (Dr. Bezur László)

Kvadrupol ICP-MS (kisfelbontású) készülék jellemzése

Tömegtartomány	1-300 amu
Pásztázási sebesség (elvi)	3000 amu/s (0-300 amu 0,1s)
Felbontóképesség, R=m/∆m	300
Felbontás ($\Delta m I=10\%$ -nál)	A felbontás javításával jelentősen csökken az intenzitás
kis felbontás= 3,0 amu	
normál felbontás=1,0 amu	
nagy felbontás=0,3 amu	
Molekulaion-zavarás	jelentős, kezelésére nem elegendő a felbontás
Módszerek molekulaion-	(i) hidegplazma-módszer
zavarás kiküszöbölésére	(ii) ütköző cella-, v. reakciócella-módszer
Beruházási költség	kb. 40MFt-60MFt (2008)

Molekulaion zavarások (I)

Elemanalízis/Atomspektroszkópia (Dr. Bezur László)

Az argon plazmában a porlasztott víz és a vízben oldott levegő jelenlétében keletkező molekulaionok

Az argon plazmában a porlasztott víz és a vízben oldott levegő jelenlétében keletkező molekulaionok (tömeg, molekulaion, zavart elem).

Tömeg	Molekulaion	Zavart elemek
28	N_2^+	Si
29	N_2H^+	Si
30	NO ⁺	Si
31	NOH ⁺	Р
32	O_2^+	S
33	O_2H^+	S
39	$^{38}ArH^+$	К
40	$^{40}{ m Ar^{+}}$	Ca
41	$^{40}\text{ArH}^+$	Ca
44	CO ₂ ⁺	Ca
54	40 ArN ⁺	Fe, Cr
55	⁴⁰ ArNH ⁺	Mn
56	⁴⁰ Ar ¹⁶ O ⁺	Fe
76	$^{40}{\rm Ar}^{36}{\rm Ar}^{+}$	Se
78	$^{40}{\rm Ar}^{38}{\rm Ar}^{+}$	Se
80	${}^{40}\mathrm{Ar_{2}^{+}}$	Se

Molekulaion zavarások (II)

A mátrixkomponensekből keletkező molekulaionok

Mátrix komponens	Tömeg	Molekulaion	Zavart elem
Klór (Cl)	51	³⁵ ClO ⁺	V
pl. HCl, HClO ₄ ,	52	³⁵ ClOH ⁺	Cr
Cl^{-}, ClO_4^{-}	53	³⁷ ClO ⁺	Cr
	54	³⁷ ClOH ⁺	Cr, Fe
	75	$^{40}\text{Ar}^{35}\text{Cl}^{+}$	As
Foszfor (P)	47	PO^+	Ti
pl. H ₃ PO ₄ , PO ₄ ³⁻	48	POH^+	Ti
	63	PO_2^+	Cu
	71	$^{40}\mathrm{ArP}^{+}$	Ge
Kén (S)	48	$^{32}\mathrm{SO}^+$	Ti
pl. H_2SO_4 , SO_4^{2-}	49	³² SOH ⁺	Ti
	50	$^{34}\mathrm{SO}^+$	Ti, V
	51	³⁴ SOH ⁺	V
	64	${}^{32}S_2^+, {}^{32}SO_2^+$	Zn
	70	$^{38}\mathrm{Ar}^{32}\mathrm{S}^{+}$	Ge
	72	$^{40}\text{Ar}^{32}\text{S}^{+}$, $^{38}\text{Ar}^{32}\text{S}^{+}$	Ge
	74	$^{40}{\rm Ar}^{34}{\rm S}^+$	Ge
Szén (C)	24	C_{2}^{+}	Mg
pl. szerves anyagok,	25	$C_2H^+, {}^{12}C^{13}C^+$	Mg
CO_2, CO_3^{2-}	26	CN^+	Mg
	28	$\rm CO^+$	Si
	44	CO_2^+	Ca
	45	$\rm CO_2 H^+$	Sc
	52	$^{40}\mathrm{ArC}^{+}$	Cr
Nitrogén (N)	28	N_2^+	Si
pl. HNO ₃ , NO ₃ ,	29	N_2H^+	Si
NH_4^+, N_2	30	NO^+	Si
	31	NOH^+	Р
	54	40 ArN ⁺	Fe, Cr
	55	$^{40}\text{ArNH}^{+}$	Mn
	52	$^{38}\text{ArN}^+$	Cr
	53	³⁸ ArNH ⁺	Cr

A mátrixkomponensekből keletkező molekulaionok

Molekulaion zavarások

Molekulaion zavarások kiküszöbölése

- (i) Hidegplazma-módszer
- (ii) Ütközőcella-módszer, szétbombázni az ArX⁺ molekulaionokat

(alkalmazott gázok: He, H₂, NH₃, CH₄)

(iii) Nagyfelbontású MS alkalmazása (HR-MS)

Hidegplazma módszer

- •A plazmaégőre helyezett fémgyűrű kikapcsolja a kapacitív csatolást.
- •Megváltozik a plazma hőmérséklet- eloszlása
- •Kevesebb molekulaion keletkezik
- Romlik a kimutatási határ a nehezebb elemekre

Hidegplazma módszer

A plazmaegore helyezett földelt fem gyuru megváltoztatja a plazma hőmérséklet eloszlását.

Kevesebb ArO^{+,} Ar₂⁺, ArCl⁺ ion, stb. keletkezik.

Ütközőcella módszer

Az ütköztető cella felépítése és működése

Fókuszáló és ütköző cella-egység képe	He-gáz szerepének szemléltetése ütköző
	cellában:
	$({}^{59}C_{9} + {}^{40}A_{7})^{16}O^{+}(56)$ represent ion ${}^{56}E_{9}^{+}$
	(CO, Ar O (SO) zavart ion Fe)
	\circ a ³³ Co ⁺ -ion kissé eltérül
	\circ az ArO ⁺ -ion Ar + O ⁺ ra bomlik és nem
	zavarja tovább a ⁵⁶ Fe ⁺ -ion mérését

Ütköztető cella hatása

Ütköztető cella hatása

Ütköztető cella optimálása

Példa ütköző cella működés optimálására 10 ppb ⁵¹V⁺ (³⁵ClO⁺ zavar) mérésekor, 0 ppmCl⁻, 500 ppm Cl⁻, 1000 ppm Cl⁻, 2000 ppm Cl⁻ mátrix jelenlétében a He+NH₃ gázelegy áramlási sebességének függvényében

Nagyfelbontású HR-ICP-MS módszer jellemzése

Elemanalízis/Atomspektroszkópia (Dr. Bezur László)

A kettős fókuszálású HR-ICP-MS készülék jellemzése

Tömegtartomány	1-300 amu
Pásztázási sebesség (elvi)	3000 amu/s (0-300 amu 0,15-0,2s)
Felbontóképesség, R=m/\Dm	max. 10000, állítható:
	kis felbontás: 300-400
	közepes felbontás: 3000-4000 és
	nagy felbontás: 8000-10000
Felbontás ($\Delta m I=10\%$ -nál)	a felbontás növelésével jelentősen csökken az intenzitás
nagy felbontás=0,001 amu	(100%-ról akár 2%-ra is!)
Elem izotópok átlapolása	nagyfelbontású üzemben megszűnik
Molekulaion-zavarás	nagyfelbontású üzemben megszűnik
Beruházási költség	kb.100MFt-120MFt (2008)

Kettős fókuszálású ICP-HR-MS készülék felépítése

Elemanalízis/Atomspektroszkópia (Dr. Bezur László)

Kettős fókuszálású ICP-MS készülék felépítése: (1) plazma-ionforrás, (2) csatoló egység, (3,4) ionfókuszáló egység, (59 belépő rés, (6) mágneses analizátoregység, (7) elektrosztatikus analizátoregység, (8) kilépőrés, (9) ion-elektron konverter, (10) elektron-multiplier (detektor).