A röntgensugárzás, mint analitikai reagens

- Felfedezése (1895, W. C. Röntgen, katódsugárcső, ZnS-os ernyő, X-[ismeretlen]-sugárzás, <u>X-ray</u>, Röntgen-Strahlung)
- <u>Elektromágneses</u>, nagy energiájú és nagy áthatoló képességű sugárzás
- Energiája: E=hv=hc/λ
 <u>ekvivalens elektronenergia</u>: E=e⁻U_{gy} (<u>keV</u>)
 (0,1 1000 keV)
- <u>Hullámhossza</u> és mértékegysége: 0,01-100 Å; 1 Å = 0,1 nm $\lambda(Angström) = \frac{hc}{E} = \frac{hc}{e^{-}U_{gy}} = \frac{hc}{e^{-}}\frac{1}{U_{gy}} = 12,393\frac{1}{U_{gy}(kV)}$
- Csoportosítása: folytonos, vonalas, ezek összeadódása, monokromatikus sugárzás

Röntgensugárzás keltése, ill. keletkezése

• <u>Alapelvei:</u>

- 1.) igen nagy sebességre gyorsított töltött részecskék (pl. elektronok) mozgásállapotának megváltoztatásával (<u>lassításával, körpályára kényszerítésével</u>). A klasszikus fizika (Maxwell) szerint EMH-t sugároz.
- 2.) ugyancsak igen nagy sebességre gyorsított bombázó részecskékkel előidézett belső ionizációt követő stabilizálódás során előálló karakterisztikus sugárzásként.

Megvalósításai:

- 1a) <u>Szinkrotronban</u> körpályán tartva (<u>Syncrotron Radiation</u>) :
 - Koharens, diszkrét monokromatikus sugárzás vagy
 - Folytonos, ill. különböző tartományokban generálható
 - Nagy és változtatható intenzitású sugárzás
- 1b) <u>Röntgencsőben</u> (hagyományos katódsugárcsőben) – <u>Folytonos fékezési sugárzás</u> (Bremsstrahlung)
- 2) Hagyományosan <u>röntgencsőben</u> (katódsugárcsőben)

A röntgencső felépítése

Anód (tiszta fém) szerint; U_{gy} = 5-100 kV

A röntgencsövek spektruma

- Mo-anódú cső; $U_{gy} = 5-25$, 35 kV
- λ_{min}(Å)=12,393/U_{gy}(kV)
- $Int_{folyt,max} \sim U_{gy}^{2} I_{cső} Z_{anód}$

<u>Kβ-szűrők:</u> monokromatikus Kα előállítására

 Olyan szűrő elemmel, mely abszorpciós éle a kiszűrendő Kβ és a megtartandó $K\alpha$ közé esik.

Kristály-, kristályos, kristályrács(os) szerkezettel bíró :

Periodikusan ismétlődő térrácsos szerkezetbe rendeződött részecskék (atomok, ionok, molekulák) alkotta szilárd anyag ("periodikus anizotróp homogén diszkontinuum")

Kristálytani elemi cella (konvencionális cella):

A kristályrács olyan <u>legkisebb</u> építőeleme (téglája, paralellepipedonja), - amelyet a tér megfelelő (három nem egysíkba eső eltolásvektor alkotta bázis által kijelölhető) irányaiba <u>eltolva, hézag,</u> ill. <u>átfedés nélkül</u> megkaphatjuk/kirakhatjuk képzeletben a <u>teljes</u> térbeli kristályt, ill. végtelen kristályrácsot, - és amely még tartalmazza/mutatja az adott kristályrács <u>összes jellemző külső</u>

(mikroszkóppal észlelhető, középpontos, tükör-, több fogású forgástengely-, inverziós tengely-) <u>és belső (</u>szisztematikus kioltást okozó, szubmikroszkópikus csúszósík-, csavartengely-) szimmetriáját, (azaz aktuális típusának/tércsoportjának minden szimmetriaelemét, azaz azonosan elhelyezkedő szimmetriakészletét).

- Csoportosításuk: 7 kristályrendszerbe, 32 szimmetriaosztályba, 230 tércsoportba)

A kristálytani elemi cella 6 paramétere:

• élhosszai **a**, **b** és c, valamint szögei: α , β és γ az ún. rácsparaméterek.

A kristályszerkezetet, az elemi cellák paramétereit, benne a részecskék elhelyezkedését és szimmetriáját a részecskék térkitöltése, polarizálhatósága, töltései és a fellépő első és másodrendű kötőerők természete, nagysága és azok egyensúlya határozza meg.

Szimmetriaelemek	Térbeli geometriai transzformáció	Szimmetria- elem jele	Rajz- jele	Egyéb tudnivalók
Szimmetria-középpont, szimmetriacentrum, inverziós középpont	Középpontra való tükrözés	i, -1	•	
Tükörsík, szimmetriasík	Síkra való tükrözés	m		<i>m</i> ≡ -2
<i>n</i> -fogású forgástengely, sz.tengely, gír	Forgatás tengely körül 360/n = 180, 120, 90, ill. 60° fokkal	2, 3, 4, 6		
<i>n</i> -fogású inverziós tengely/ <i>n</i> -fogású inverziós giroidok	Tengely körüli forgatás és (egy a tengelyre eső középpontra, avagy egy rámerőleges síkra való) tükrözés műveleti eredője	-3≡S ₆ , -4≡S ₄ ,	•	$-6\equiv S_3=$ =3+m=3/m
Csúszósíkok	Síkra való tükrözés és félegységnyi , síkkal párhuzamos eltolás műveleti eredője	a,b,c, n, d,		
Csavartengelyek	Forgatás tengely körül és párhuzamos eltolás műveleti eredője	$\begin{array}{c} 2_{1}, \ 3_{1}, 3_{2}, \\ 4_{1}, 4_{2}, 4_{3}, \\ 6_{1}, 6_{2}, 6_{3}, \ 6_{4}, 6_{5} \end{array}$		n _z :eltolás <i>z/n-</i> egységgel

<u>A röntgensugárzás egyik fajta kölcsönhatása az anyaggal:</u> Röntgensugarak diffrakciója kristályrácssíkokon

• Diffrakció (hullámok elhajlása és interferenciája) alapfeltételei: $\lambda_{rtg} \approx d_{rács}$

Bragg-egyenlet: (Braggs' equation)

$$\Delta s = (n)\lambda = 2d\,\sin\theta$$

$$d_i = \frac{(n)\lambda}{2\sin\theta_i}, ha \ \lambda = \acute{all}.$$

A periodikus, hosszútávú rendet mutató kristályrácson erősítés csak kitűntetett (ún. reflexiós) irányokban jelentkezik (elhajlás), egyéb más irányokban teljes kioltás tapasztalható (azaz nincs elhajlás). Az elhajlás/erősítés geometriai feltételét a Bragg-egyenlet adja meg: (az interferáló hullámok útkülönbsége egyezzen meg azok hullámhosszának egészszámú többszörösével)

<u>⊿s=(n) λ = 2 d sin *θ*</u>

- λ, a diffraktálódó röntgensugarak hullámhossza (Å),
- $-\mathbf{n} = 1, 2, 3, \dots$, kis egész szám (ált. n=1-nek tekintjük),
- d, az elhajlást okozó síksereg jellegzetes rácssíktávolsága (Å),
- $-\theta$, a diffraktáló sík és a röntgensugár szöge, a beesési szög pótszöge

Atomi hozzájárulások a diffraktált sugarak elhajló

- Azok az atomok, amelyek pontosan egy-egy adott rácssíkon fekszenek maximálisan hozzájárulnak a diffraktált sugárzás intenzitásához.
- Azok az atomok, amelyek pontosan félúton vannak a párhuzamos rácssíkok között maximális csökkentő hatást fejtenek ki az interferenciára,
- Azok pedig, amelyek valamely köztes pozícióban foglalnak helyett konstruktívan vagy destruktívan járulnak hozzá az interferenciához a pontos elhelyezkedésüktől függően, de mindenképpen kisebb mértékben, mint amekkora a maximális hatásuk.
- Továbbá, az egyes atomok röntgensugár-szóróképessége (elemi szórási tényezője) azzal arányos, hogy hány elektront tartalmaznak.

Röntgendiffrakció egykristályokon

- Egykristályokon, λ = állandó, ismert hullámhosszúságú monokromatikus sugárzással
 - Adott kristályra jellemző <u>szubmikroszkópikus rácssíktávolságok d</u> meghatározhatók az egyes \text{\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$1\$}}\$}}}},n} -k mérésén keresztül:

$$(n)\lambda = 2d_i \sin \theta_{i,n}$$

$$d_i = \frac{(n)\lambda}{2\sin\theta_{i,n}}$$

- Az összes lehetséges <u>eltérülési irányt</u>, ill. az abban az irányban mérhető <u>eltérülési intenzitást</u> kimérve, matematikai módszerekkel igen pontosan <u>visszakövetkeztethetünk</u> a kristály <u>kristálytani elemi cellájára</u>, ill. az abban jelenlévő atomok minőségére és geometriai elhelyezkedésére → rács-, ill. molekulaszerkezet (atomtávolságok, kötésszögek megadása) megoldása = <u>egykristálydiffrakciós szerkezetmeghatározás</u>
 - Az eltérülési irányok csak a kristálytani elemi cella méreteitől (a, b, c, α, β, γ) és a kristály külső és belső szimmetriáitól (tércsoportjától) függnek;
 - míg az adott eltérülési irányban észlelhető röntgensugár-intenzitás a jelenlevő atomok minőségétől (f_i ~ Z_e) és a rácssíkok közötti helyétől (cos ψ fg. szerint) függ;

Atomok röntgenfotonszórási tényezői: fz

- Röntgenfotonok szóródása az atomok elektronfelhőjén
 - az atomok elemi röntgenszórási tényezője fz
 - f_z ~ Z (pontosabban az aktuális elektronszámmal)

A kristályszerkezet leírása kristálytani koordinátarendszerben

A kristálytani elemi cella 6 paramétere: élhosszai **a**, **b** és c, valamint szögei: α , β és γ az ún. rácsparaméterek.

A kristálytani koordinátarendszer tengelyei párhuzamosak az elemi cella éleivel, a kristálytani koordinátatengelyek által bezárt szögek azonosak az elemi celláival, a koordinátatengelyek egységei éppen az elemi cella élhosszai. A tengelyek egymáshoz viszonyított szögei, élhosszai, minimális, ill. maximális szimmetriáik alapján 7 kristályrendszerbe sorolhatóak a kristályszerkezetek.

<u>Atom(mag)koordináták</u>: kristálytani pontkoordináták :P(x,y,z).

<u>Kristályrácssík-sereg</u>: önmagukkal párhuzamos, szomszédjaiktól azonos távolságra elhelyezkedő rácssíkok, amelyek mindegyikén azonos módon (sikonként 2D-rácsot alkotva) periodikus rendben helyezkednek el/ülnek részecskék.

<u>Rácssíkseregek térállásának</u> megkülönböztetésére/azonosítására a síkseregre merőleges (ún. normál v. síknormális) vektor szolgálhat: S (h k l) = $\underline{n}(h, k, l)$. Síksereg-azonosító indexhármas: <u>Miller-indexek vagy (hkl)-indexek (</u>melyek az origóhoz legközelebb eső, de azon át nem menő síkjuk tengelymetszeteiből is származtathatóak).

Röntgensugarak diffrakciója egykristályokon

Egykristályszerkezetmeghatározások

TiO₂ módosulatok

Rutil

Anatáz

Gyémánt és grafit

Egykristályszerkezet-meghatározások

pl. Dorothy Crowfoot Hodgkin, kémiai Nobel díjas 1964

Hexametiléntetramin (CH₂)₆N₄

Penicillin (K-sóként, 1946)

B₁₂-vitamin(1956), Inzulin (1969)

Koleszterin (jodid, 1937)

Röntgensugarak diffrakciója kristályporon

Első marsi pordiffraktogram (Curiosity-2012): (bazalt)por: földpát, piroxén, olivin kristályos ásványokkal + amorf (röntgenfluoreszcenciás szórt sugárzást is hozzámérve)

Röntgensugarak diffrakciója kristályporon

Röntgensugarak diffrakciója kristályporon

Por-röntgendiffrakció (XRD), diffrakciós kép

A diffraktált sugárak intenzitása (cps)

Röntgendiffrakció kristályok finom porán

- Diffrakció véletlenszerűen rendezetlen orientációban elhelyezkedő <u>kristályporon, ill., polikristályos</u> anyagokon adott (λ<u>= állandó, ismert</u>) hullámhosszúságú (monokromatikus) sugárnyalábbal:
 - A kristálytanilag azonos síkseregek reflexiói sugárkúpokba rendeződnek, amelyek félkúpszögei éppen 2*θ*_i nagyságúak lesznek, segítségükkel az egyes d_i jellemző rácstávolságok meghatározhatók az egyes 2*θ*_i-k mérésén keresztül (n=1, feltételezésével):

$$\Delta s = (n)\lambda = 2d_i \sin \theta_i$$

$$d_i = \frac{(n)\lambda}{2\sin\theta_i}$$

- Pordiffrakciós kép: d_i (20_i) I_{rel} (= 100 I_i/I_{100%}) adatpár-sorozat
 - A pordiffrakciós kép minden kristályos fázisra egyedileg jellemző (bár néha igenhasonló szerkezeteknél hasonlók lehetnek)
 - Az egyes kristályos anyagok (vegyületek, elemek) minőségük (kristályszerkezetük) szerint azonosíthatók (<u>kristályos fázisok</u>, pl. polimorf módosulatok, eltérő oxidációs fokú oxidok, eltérő savanyúságú sók, vesekő fajták azonosítása);
 - Még kristályaik keverékében megtartják is önálló diffrakciós képüket → <u>röntgendiffrakciós fázisanalízis (XRD)</u>, azonosítás szilárd keverékeikben;

Por-röntgendiffrakciós referenciakártya, -file,											
<u>pl. 00-005-628, NaCl, halit (kősó)</u>											
	d_{ik}	=	$\frac{(n)}{(n)}$	$)\lambda$	- (Å) —	L	$I_{rel}^{i,hk}$	l = 10	$100\frac{I_{i,h}}{I}$	ekl	(%)
5-06	28		$2\sin$	$\mathcal{Y}_{i,hkl}$						ax	
d	2.82	1.99	1.63	3.2 58	N₀Cl						*
I/I,	100	55	15	13	SODIUM CHLO	RIDE		HALITE			
Rad. Cu λ 1.5405 Filter Dia.			٨b	I/I ₁	hkl	٨b	I/I ₁	hkl			
Cut off 1/1 Ref. Swanson and Fuyat, NBS Circular 539, Vol. 11, 41 (1953)				3.258	13 100	111 200 220					
Sys.	Sys. Cubic S.G. $O_H^5 - Fm3m$				1.701	2 15	311 222				
	6402 β	°o ¢ ₀	Ŷ	Ž 4	Dx 2.164	1.410	6	400 331			
Ref.	ibid.					1.261	11 7	420 422			
€α 2∀	D	nωβ 1.5	i42 Εγ mp	Color	Sign	1.0855 0.9969	1 2	511 440			
Ref.	lbid.					.9533	1	531 600			
An ACS reagent grade sample recrystallized twice from hydrochloric acid. X-ray pattern at 26°C.			.8917 .8601 .8503 .8141	4 1 3 2	620 533 622 444						
Replaces 1-0993, 1-0994, 2-0818											

Nemzetközi por-röntgendiffrakciós referencia--adatbázis(ok): Powder Diffraction File (PDF)

- <u>A gondozó régi és új szervezet(ek) elnevezései</u>
 - ASTM (American Society for Testing and Materials),
 - JCPDS (Joint Commettee for Powder Diffraction Standards),
 - ICDD (00, International Centre for Diffraction Data, PDF-2, PDF-4+).
- Az adatkártyák minősítési jelei (PDF-2/PDF-4+)
 - * (S) kiválóan megbízható adatokat tartalmaz ,
 - i (I) Miller-(hkl)-indexeléssel ellátott adatsor,
 - (B) hkl-indexelés nélküli adatsor,
 - o (O) gyenge megbízhatóságú adatsor (pl. keverékből),
 - (D) időközben meghaladt, törlésre szánt adatsorok,
 - c (C) egykristályadatokból számított, ún. kalkulált porfelvétel,
 - (H) feltételezett, hipotetikus szerkezetre számított adatok.
- Egykristály diffrakciós adatbázisokból elérhető szimulált porfelvételek:
 - ICSD (01, Inorganic Crystal Structure Database, FIZ+NIST, PDF-2/4+)
 - CSD (02, Cambridge Structural Database, CCDC, szerves, fémorganikus, ill. koordinációs komplex vegyületek, PDF-4/Organics)
- Adatkártyák más adatgyűjtőktől
 - NIST (03, National Institute for Standards and Testing, PDF-2, PDF-4+)
 - LPF (04, MPDS, Linus Pauling File, PDF-4+)

<u>A nemzetközi pordiffrakciós adatbázis (PDF) diffrakciós referencia mintázatainak száma,</u> <u>forrásai és összeállításai szerint (2014.szept.)</u>

Eredeti adatforrás/ adatbázis	PDF-2 Release 2014	PDF-4+ 2014 WebPDF-4+ 2014	PDF-4/ Minerals 2014	PDF-4 /Organics 2015
00-ICDD	111.864	111.864	11.747	37.753
01-FIZ (ICSD)	152.103	61.376	10.929	10.991
02-CCDC (CSD)	0	0	0	431.359
03-NIST	10.067	3.018	207	281
04-MPDS (LPF)	0	177.597	18.518	0
05-ICDD Crystal Data	409	409	22	14.582
Összes mintázat	274.443	354.264	41.423	494.966
Éves bővülések	9.316	19.420	1.253	15.689
Adatok atomi koordinátákkal	0	239.568	29.456	59.746
RIR (Reference Intensity Ratio)	178.318	258.125	30.587	463.710
Kísérleti felvétel	0	9.029	106	4.869
Számított felvétel	0	354.264	29.456	494.966

Powder Diffraction File (PDF) adatbázis:

fázisazonosítások, fáziselemzések

- <u>Az adatbázis megjelenési formái (katalógus kártyák, könyvek, CD-ROM, relációs adatbázis PDF-2, PDF-4+, PDF-4/Minerals, PDF-4/Organics)</u>
 - ICDD (International Centre for Diffraction Data), kb. 6000 USD.
 - BME-OMIKK 1993-ig kartoték + könyvek; CD-n, DVD-n, USB-n az újabb beszerzésű diffraktométerekhez (PDF-2, PDF-4/Organics,2006-2016, Szervetlen és Analitikai Kémia Tanszéken)
 - Indexek (<u>Alphabetical Index, DDview-programok</u>), <u>Kereső könyvek</u> (<u>Hanawalt</u> <u>Search Index, Sleve-programok</u>)
 - Inorganic Phases
 - Organic and Metall-organic Phases
- <u>A kísérleti fázisok azonosítása (referencia mintázattal: adatbázis-forráskód, set-, és kártyaszám megadása)</u>
 - Előismeretek szükségesek a kiindulási anyagokról, a vegyületekben várhatóan előforduló elemekről,
 - A mért nagyintenzitású csúcsok, de lehetőleg a referencia kártyán szereplő összes jelentős intenzitással bíró rácstávolságok (Å) a mérési hibákon belül egyezést mutassanak a kísérleti értékekkel
 - Számítógépes kereső-összehasonlító (Search Match) algoritmusok segítségével generált valószínűségi lista kritikai értékelésével.
 - Pordiffrakciós referenciakártya hiányában az egykristály diffrakciós adatbázisokból elérhető szimulált porfelvételek segítségül hívásával.
 - Rietveld-analízis (szerkezet porfelvételből, fázisarányok illesztése az intenzitás arányokra), DA-SH-szerkezeti algoritmus

Az új diasztereomer sók, ill. ko-kristályok por-röntgendiffrakciós mintázatának indexelése, kristálytani tércsoportba sorolása, és az új rácsvegyület kristályszerkezeti elrendeződésének és molekulakonformációinak keresése

Egyéb, röntgendiffrakcióval nyerhető információk

- Amorf, rendezetlen, üveges anyagoknak nincs specifikus éles csúcsos diffrakciós képe. Pl. generikus gyógyszerek "amorf" módosulatai.
- Kiszélesedett csúcshalmok, pl. mikrokristályos anyagok (pl. cellulóz, keményítő), részlegesen (szemi)kristályos polimerek (pl. szindiotaktikus polipropilének) körében.
- A kristályosság (kristály/krisztallit méret) csökkenésével nő a diffrakciós csúcsok félértékszélessége, csökken a csúcsmagassága (Debye-Scherrer formula).
- Jellegzetes ismétlődő távolságok, ill. azok eloszlása, pl. rétegszilikátok és duzzadóképességük; nano-, ill. mezopórusos anyagok jellemző méretei kis szögű röntgenszórás alapján.
- Mennyiségi elemzések, általában 5% felett, kalibrációs mintasorazattal, RIR-értékek alapján (Reference Intensity Ratio, Al₂O₃-ra vonatkoztatva), Rietveld-féle teljes diffrakciós képanalízissel
- Módosulat(fázis)változások magashőmérsékleten, opközelében, kristályvízvesztés, ill. -újrafelvétel különböző páratartalmú terekben

Miniatűrizált, hordozható, kombinált XRD-XRF berendezés

Szilárd (por-) mintavétel a Marson

