Előzmények

- ELTE TTK, Gödi Biológiai Állomás, Embriológiai Laboratórium (1984-1995)
 - Egér ESC létrehozás módszerének kidolgozása
 - Tetraploid aggregációs kiméra technika kidolgozása
 - Egér embrionális őssejt eredetű utódok létrehozása
- NAIK, MBK, ÁBSZ, AES (1996-)
 - Transzgénikus egér és nyúl ESC vonalak létrehozása

kiméra egerek, ELTE, Göd, 1989

NAIK MBK ÁB

* Nyúl mint modellállat

Korai embrionális fejlődés vizsgálata

- Betegség modell cukorbetegség, szív rendellenesség, érelmeszedés
- Bioreaktor tejbe kiválasztható biológiailag aktív fehérjék
- Transzgenezis ES sejteket felhasználva
 - Célzott genetikai módosítások létrehozása lehetséges
 - Szövetspecifikus, időben szabályozható módosítások
- * Madár ősivarsejtek tenyésztése, kimérák létrehozása

Transzgénikus állatok előállítási lehetőségei **DNS mikroinjektálás**

Spermium közvetített génbevitel

9

9

00

- Retrovírus közvetített génbevitel
- Lentivírus közvetített génbevitel

- Transzpozon-transzpozász rendszer felhasználásával
- Minikromoszómák felhasználásával
- DNS injektálás spermatogóniumba
 - Transzgénikus SC és ES sejtekből magátültetéses klónozással
- Célzott génbevitel transzgénikus ES sejtvonalak felhasználásával
 - Transzgénikus spermatogóniális őssejtek beültetésével
 - Genom szerkesztés ZFN, TALEN, CRISPR/CAS9

Transzgénikus egerek előállítása mikro-injektálással

Transzgénikus egerek előállítása lenti vírus vektor (LV) transzdukcióval

Transzpozon közvetített génbevitel

Transzgénikus egerek előállítása

Nyúl embriók fejlődése

Kimérák a tudományban

XX-XY, XY-XX, XX-XX, XY-XY → 75% hím utód

szexdetermináció vizsgálata

Tarkowski AK.: Germ cells in XX in equilibrium XY mouse chimeras. Basic Life Sci. 1978

Pluripotens embrionális eredetű egér őssejtvonal (mESC)

DNS elektroporálás ES sejtekbe

DNS elektroporálás ES sejtekbe

Transzgénikus ES sejtvonalak alkalmazása

HOMOLÓG REKOMBINÁCIÓ - CÉLZOTT GÉNKIÜTÉS

HOMOLÓG REKOMBINÁCIÓ - CÉLZOTT GÉNMÓDOSÍTÁS

HOMOLÓG REKOMBINÁCIÓ - KONDICIONÁLIS GÉNKIÜTÉS

TRANSZGÉNIKUS KIMÉRA EGEREK LÉTREHOZÁSA

TRANSZGÉNIKUS ES SEJTEK AGGREGÁLTATÁSA GAZDA EMBRIÓVAL

AGGREGÁCIÓS KIMÉRÁK

transzgénikus embrionális őssejt kolónia

GFP visualisation: BLS-Ltd

HOMOZIGÓTA TRANSZGÉNIKUS EGEREK LÉTREHOZÁSA

HOMOLÓG REKOMBINÁCIÓ - KONDICIONÁLIS GÉNKIÜTÉS

HOMOLÓG REKOMBINÁCIÓ - SZÖVETSPECIFIKUS RIPORTER GÉN EXPRESSZIÓ - KONDICIONÁLIS GÉNKIÜTÉS

HOMOLÓG REKOMBINÁCIÓ - KONDICIONÁLIS GÉNKIÜTÉS

link fehérje expresszió követése transzgénikus egerek porcszövetében

Brainbow mouse

Building Brainbow

Three copies of the genetic construct allow for the expression of multiple fluorophore color combinations.

Figure 1. A Mouse for Rainbow Lineage Tracing(A) The *Rainbow* construct is shown.(B) *Rainbow* recombination after cotransfection with Cre into HEK cells is shown.(C) dTomato expression at E6.5, E9.5, and in P1 Rainbow2 pups is shown. See also Figure S1.

Brainbow mouse

Evans, Capecchi, Smitish - 2007 Nobel díj!

The Nobel Prize in Physiology or Medicine 2007

"for their discoveries of principles for introducing specific gene modifications in mice by the use of embryonic stem cells"

Photo: Scanpix/Dan Sears

io R. Capecchi	Sir Martin J. Evans	Oliver Smithies	
3 of the prize	🔇 1/3 of the prize	() 1/3 of the prize	
	United Kingdom	USA	
ersity of Utah; ard Hughes Medical tute Lake City, UT, USA	Cardiff University Cardiff, United Kingdom	University of North Carolina at Chapel Hill Chapel Hill, NC, USA	
)37 talv)	b. 1941	b. 1925 (in United Kingdom)	

- Martin J. Evans (első ES, EC sejtek)
- Mario R. Capecchi (homológ rekombináció, neo, HSV-tk, hprt gén bejuttatás) •
- Oliver Smithies (homológ rekombináció humán sejtekben, mutáns hprt gén javítás) •

Evans, Capecchi, Smitiesh - 2007 Nobel díj - történeti áttekintés

EC sejtek (Evans M.J.; Martin G.R. 1972, 1974, 1975)

9

00

9

9

00.

9

9

00

- EC sejtek microinjáktálása egér blasztocisztába (Papaioannou V.E., McBurney M., Gardner R.L., Evans M.J. 1975)
- DNA microinjektálás sejttenyészeti sejtekbe (Capecchi MR, 1980)
- Egér embrió transzformálása mikroinjektálással (Gordon J.W. 1980)
- ES sejtvonalak léterhozása (Evans, M.J., Kaufman, M.H.; Martin G.R. 1981)
- A humán beta-globin lokuszba DNS szekvencia bejuttása homológ rekombinációval (Smithies, O. 1985)
- Csíravonal kimérák előállítása retrovirus transzformált ES sejteket felhasználva (Robertson E, Bradley, A., Kuehn, M., Evans, M.; Gossler A, Doetschman, T. 1986)
- Mutáns Hprt gén kijavítása egérben homológ rekombinációval (Doetschman T., Thompson S., Smithies O. Nature.1987)
- Mutagenezis célzott génmódosítással egér ES sejtekben (Thomas KR, Capecchi, M.R. 1987)
 - Szövet- és helyspecifikus DNS rekombináció transzgénikus egerekben (Orban P.C., 1992)
 - Indukálható génmódosítás egérben, Cre rekombináz alkalmazásával (Kuhn R., Schwenk F., Aguet M., Rajewsky K. 1995)

Pluripotens embrionális eredetű nyúl őssejtvonal (rabESC)

ES sejtek pluripotenciáját befolyásoló faktorok

Dr. Pribenszky Csaba, Time Lapse Video System, http://cryo-innovation.com, 2011

GERINCES EMBRIÓKBÓL SZÁRMAZÓ ES, EG SEJTVONALAK

Zebra danio ES

Por Sertés NT/ES/EG des

G

GE

HUMÁN EMBRIONÁLIS ŐSSEJT-VONALAK LÉTREHOZÁSA

ES sejt kolónia

embrió bank

92 eddig publikált hESC sejtvonal (2005 nyara)

Martin F. Pera, előadásából

IVF

HUMÁN EMBRIONÁLIS ŐSSEJT-VONALAK LÉTREHOZÁSA

- SSEA-1 negatív, SSEA-3, SSEA-4 pozitív, AP pozitív, Oct4 pozitív, telomeráz pozitív
- bFGF, egér tápláló sejtréteg, aktivin
- nem tripszines passzálás (kis agregátumokban)
- EB, teratokarcinoma formálás
- Homolog rekombináció, GFP transzgénikus hESC

Humán embrionál

stemcells.nih.gov

U.S. Department of Health & Human Services

General Information

National Institutes of Health

NIH Human Embryonic Stem Cell Registry Research Using These Lines is Eligible for NIH Funding

The lines listed below are eligible for use in NIH funded research. Those lines that carry disease-specific mutations are noted as such under the line name.

For guidance regarding applications proposing to use hESC see: NIH Guide Notices NOT-OD-10-020 and NOT-OD-10-029.

Eligible Lines:351 (in 141 Submissions)Sorted by:NIH Registration NumberDate/Time:11/16/2015 at 11:50 PM

Home Current Research Stem Cell Research at NIH Stem Cell Unit NIH Stem Cell Unit

STEM CELL INFORMATION

őssejt vonalak	EB	Teratoma	kiméra	csíravonalba bejutás
Egér EC sejtek	+	+		
Humán EC	+	+	+	
Egér ES sejtek	+	+	+	+
Patkány ES sejtek	+	+	+	+
Madár ES sejtek	+	+	+	+
Kutya ES sejtek	+	+		
Majom ES sejtek	+	+	+	
Humán ES sejtek	+	+		
Nyúl ES, iPS sejtek	+	+	+	
Egér EG sejtek	+	+	+	+
Humán EG sejtek	+	+		
csirke EG sejtek	+	+	+	+
sertés EG sejtek	+	+	+	+
Egér EpiS sejtek	+	+		-
Patkány EpiS sejtek	+	+	-	-
Egér iPS sejtek	+	+	+	+
Humán iPS sejtek	+	+		
Patkány iPS sejtek	+	+	+	+

őssejt vonalak	AP	SSEA-1	SSEA-3	SSEA-4	LIF kiegészí- tés	bFGF (FGF2) kiegészítés	egyéb kiegészítések
Egér EC sejtek	+	+	-	-			
Humán EC	+		+	+			
Egér ES sejtek	+	+	-	-	+	-	
Patkány ES	+	+	-	-	+	-	
Madár ES sejtek	+	+			+	+	SCF
Kutya ES sejtek	+	alacsony	+	+			
Majom ES sejtek	+	-	+	+	-	+	activin
Humán ES	+	-	+	+	-	+	IGF2, activin
Nyúl ES, iPS	+	+/-	+/-	+	+/-	+/-	4i, activin
Egér EG sejtek	+	+			+	+	SCF
Humán EG	+	-	+	+	+	+	SCF, forskolin
Csirke EG sejtek	+	+			+	+	SCF, IL-11, IGF-1
Sertés EG sejtek	+				+	+	SCF
Egér EpiS sejtek	+	+			-	+	activin
Patkány EpiS	+	+			-	+	activin
Egér iPS sejtek	+	+	-	-	+	-	
Humán iPS	+	-	+	+	-	+	activin
Patkány iPS	+	+	-	-	+	-	

Sejtmag-átültetéses klónozás (NT)

GE

Transzgénikus ES és SC sejtekből sejtmagátültetéses klónozással (NT)

emlő mirigy sejtvonal sejt- Dolly

Morgan - ES sejt NT

Annie - első masztitisz rezisztens transzgénikus szarvasmarha (fibroblaszt) (*lysostaphin*)

GE

Genom editálási technológiák

http://www.molecularsystemsbiology.com/

miosztatin mutáció / CRISPR

The work was presented on 5 October at a meeting of the US National Academy of Sciences (NAS) in Washington DC on human gene editing. Geneticist George Church of Harvard Medical School in Boston, Massachusetts, announced that he and colleagues had used the CRISPR/Cas9 gene-editing technology to inactivate 62 porcine endogenous retroviruses (PERVs) in pig embryos. These viruses are embedded in all pigs' genomes and cannot be treated or neutralized. It is feared that they could cause disease in human transplant recipients.

Church's group also modified more than 20 genes in a separate set of pig embryos, including genes that encode proteins that sit on the surface of pig cells and are known to trigger a human immune response or cause blood clotting. Church declined to reveal the exact genes, however, because the work is as yet unpublished. Eventually, pigs intended for organ transplants would need both these modifications and the PERV deletions.

"This is something I've been wanting to do for almost a decade," Church says. A biotech company

that he co-founded to produce pigs for organ transplantation, eGenesis in Boston, is now trying to make the process as cheap as possible.

ableimages / Alamy Stock Photo

The gene-edited pigs will be raised in isolation from pathogens.

Transzgénikus állatok előállítási lehetőségei

technika	vektor	célzott sejt	vektor hossza	CÉLZOTT módosítás	hatás fok	technikai nehézség
Mikro- injektálás	DNS	zigóta sejtmagja	50-1000 kb	nem lehet	++	+++
	Vírus	zigóta perivitellináris	5-10 kb	nem lehet	+++	++
	Transzpozon (SB, PB)	zigóta citoplazmája	50-100 kb	nem lehet	+++	++
	ZFN, TALEN, CRISPR/CAS9	zigóta sejtmagja	18 bp célszekvencia	lehetséges	+ +	+++
	Mesterséges kromoszóma	zigóta sejtmagja	100-2000 kb	nem lehet	+	++++
Elektro- porálás, liposzóma	DNS		100-2000 kb	lehetséges	+++	
	Vírus	őssejt, testi sejt	5-10 kb		+++	
	Transzpozon		50-1000 kb		+++	
	Dupla szálú RNS		19-23 bp		++	

Genom módosítási technológiák

Alternatív lehetőségek embrionális őssejtek létrehozására

GE

The Nobel Prize in Physiology or Medicine 2012

John B. Gurdon

3

4

John B. Gurdon eliminated the nucleus of a frog egg cell (1) and replaced it with the nucleus from a specialised cell taken from a tadpole (2). The modified egg developed into a normal tadpole (3). Subsequent nuclear transfer experiments have generated cloned mammals (4).

Shinya Yamanaka studied genes that are important for stem cell function. When he transferred four such genes (1) into cells taken from the skin (2), they were reprogrammed into pluripotent stem cells (3) that could develop into all cell types of an adult mouse. He named these cells induced pluripotent stem (iPS) cells.

© 2012 The Nobel Committee for Physiology or Medicine The Nobel Prize® and the Nobel Prize® medal design mark are registered trademarks of the Nobel Foundation Illustration and layout: Mattias Karlén

Gurdon, Yamanak - 2012 Nobel díj!

The Nobel Prize in Physiology or Medicine 2012 Sir John B. Gurdon, Shinya Yamanaka

The Nobel Prize in Physiology or Medicine 2012

Sir John B. Gurdon

Shinya Yamanaka

hoto: Creative Commons Attr. 2.0

Generic license Sir John B. Gurdon

Generic license Shinya Yamanaka

The Nobel Prize in Physiology or Medicine 2012 was awarded jointly to Sir John B. Gurdon and Shinya Yamanaka "for the discovery that mature cells can be reprogrammed to become pluripotent"

