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This paper explores the bioenergetics and potential co-evolution of denitrification and aerobic respiration.
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1. Introduction

After the evolution of oxygenic phototrophy, molecular oxygen
has become the major electron acceptor on Earth; it is responsible
for the oxidation of most of the organic matter originating from pri-
mary production. Bacteria are also able to use several other electron
acceptors for respiration. Among these electron acceptors, nitrate is
common in the environment and has an oxidative potential which
approximates that of oxygen. The most studied and evolutionary
most widespread form of nitrate respiration is known as denitrifica-
tion. In this process, nitrate is reduced stepwise to nitrite, nitric
oxide, nitrous oxide and finally nitrogen (N2).

In the past century, mankind has become dependent on the indus-
trial production and agricultural use of chemical fertilizers. This has
created an important new source of nitrate for the biosphere. Part of
the applied fertilizer is oxidized to nitrate by nitrifying bacteria, de-
taches from the negatively charged clay particles and is washed into
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the surfacewaters via rainwater or irrigation. On top of this, the burning
of fossil fuels also contributesfixed nitrogen in the formof ammonia de-
position. It is estimated that currently every one out of two nitrogen
atoms in the biosphere originates from fertilizers or fossil fuels [1].
This has increased the importance of denitrification relative to aerobic
respiration in aquatic habitats. Because denitrification leads to the emis-
sion of nitrous oxide (a potent greenhouse gas and ozone scavenger) to
the atmosphere, it is currently actively researched by environmental
scientists.

Denitrification and aerobic respiration depend on the same core re-
spiratory machinery. This machinery consists of the NADH dehydroge-
nase (complex I), the quinone pool, the bc1 complex (complex III) and
cytochrome c. Each of the two pathways adds its own specific modules
to this backbone. Aerobic oxidation requires a terminal oxidase (complex
IV) which accepts electrons either from cytochrome c or the quinone
pool. Denitrification consists of four modules: nitrate reductase, nitrite
reductase, nitric oxide reductase and nitrous oxide reductase. Organisms
that contain at least two or three of these enzymes and produce nitrous
oxide or dinitrogen gas will be referred to as “denitrifiers”.

As far as we know, all denitrifiers are also capable of aerobic respi-
ration, and the simultaneous “plugging in” of all modules into the
backbone would lead to a highly branched respiratory chain in
these organisms. Although the four steps of denitrification operate in se-
ries from the perspective of the electron acceptor (NO3

−→NO2
−→

NO→N2O→N2), they operate in parallel from the perspective of the re-
spiratory chain (all accept their electrons from cytochrome c or the
quinol pool) (see Figs. 1–3).

The discovery of “intra-aerobic” denitrification has complicated
matters even further. This process adds yet another module to the al-
ready rich inventory, namely the dismutation of nitric oxide into
bic respiration, hybrid electron transport chains and co-evolution,
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oxygen and nitrogen (N2) [2] (Fig. 4). The dismutation requires no
electrons but would in theory enable the operation of a hybrid deni-
trification/aerobic respiratory chain. Such as chain starts out with
the nitrate and nitrite reduction into nitric oxide. Subsequently, the
nitric oxide is dismutated into oxygen and the final part of the chain
proceeds aerobically via complex IV. Members of the heme-copper
oxidase superfamily or a divergent multicopper oxidase have been
implicated in the catalysis of the dismutation. It still needs to be in-
vestigated how widespread nitric oxide dismutation is and whether
the intracellularly produced oxygen is restricted to serve the oxida-
tion of recalcitrant electron donors such as methane. However, it
opens up interesting theoretical possibilities that will partly be ex-
plored in this paper.

In the following section the enzymology of the different respirato-
ry modules will be briefly summarized. For more detailed information
on individual enzymes, the reader is referred to excellent specialized
reviews previously published (see below). Next, the bioenergetics of
(combinations of) the different denitrifying and aerobic respiratory
chains are discussed in terms of their catabolic energy efficiency.
The paper continues with an overview of the current experimental
evidence that the two pathways may function simultaneously in
one complex respiratory network. Finally, a scenario is presented
for a possible shared evolutionary origin of aerobic respiration and
denitrification.
2. A brief summary of the enzymes, the modules of the
denitrifying/aerobic respiratory chain

What follows is a brief introduction of the respiratory backbone and
the different modules necessary for aerobic respiration and denitrifica-
tion. The canonical, best-studied forms of the enzyme complexes are
Fig. 1. The canonical respiratory chain of oxygen respiration. Electrons are transferred from N
Protons are pumped across the membrane by complex I, complex III (Q-cycle) and complex

Please cite this article as: J. Chen, M. Strous, Denitrification and aero
Biochim. Biophys. Acta (2012), http://dx.doi.org/10.1016/j.bbabio.2012.
presented (Fig. 2). Deviations are known (e.g. in mononderm bacteria
and archaea, both lacking a periplasm [3], Fig. 3) but have only been ex-
plored partially. It is likely that evenmore exceptionswill be discovered
in the future. To acknowledge the different types of quinols used by dif-
ferent organisms (menaquinol, ubiquinol, etc.), we refer to these mole-
cules as the “quinone/quinol pool.”

Both aerobic respiration and denitrification handle compounds
that easily give rise to reactive radicals. These can cause oxidative
damage to the cell [4]. Many of the enzymes involved also depend
on iron for catalysis or electron transfer and even more radicals are
formed in the presence of iron (due to the Fenton reaction [5]).
Therefore, apart from the core enzymes described here, more enzy-
matic machinery will be in place to quench the formation of radicals.
Because of the highly branched nature of the denitrifying respiratory
chain, imbalances in electron donor supply can potentially lead to
(temporal) incomplete denitrification and build up of nitrite or nitric
oxide. Binding of nitric oxide to specific carrier molecules (such as cy-
tochrome c′) and the use of sensors and regulators may help to pre-
vent this scenario [6]. These aspects are not addressed here and we
focus on the structural parts of the pathway.

Figs. 1–3 illustrate three examples of the integration of the differ-
ent modules into the backbone respiratory chain.
2.1. NADH dehydrogenase (complex I)

Together with the quinone pool, complex III and cytochrome c,
NADH dehydrogenase constitutes the backbone of the respiratory
chain (reverse electron transport is also possible, but is not discussed
further here). Bacterial complex I consists of up to 14 subunits
(550 kDa total), encoded by the genes NuoABCDEFGHIJKLMN [7,8]. The
electrons are transduced from NADH (−0.32 V) to Flavin-mono-
ADH to complex IV via complex I, ubiquinone/ubiquinol, complex III and cytochrome c.
IV. Overall, the contribution to the proton motive force is 10 protons per electron pair.
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Fig. 2. The canonical respiratory chain of denitrification. Electrons are transferred from NADH to NOx reductases (e.g. nitrate, nitrite, nitric oxide and nitrous oxide reductases)
via complex I, ubiquinone/ubiquinol, complex III and cytochrome c. Protons are removed from the cytoplasm by complex I, complex III (Q-cycle) and the cytoplasmic nitrate
reductase. Overall, the contribution to the proton motive force is 6 protons per electron pair.
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nucleotide (FMN), nine iron sulfur clusters and finally the quinone pool
(+0.113 V for ubiquinone) [9]. Conformational change during electron
transport leads to the translocation of four protons over the cell mem-
brane per electron pair and the reduction of the quinols leads to the re-
moval of two additional protons from the cytoplasm [10–13].
2.2. The bc1 complex (complex III)

The bc1 complex relays the electrons from the quinone pool inside
the membrane to cytochrome c (+0.23 V) in the periplasm [14]. Bac-
teria encode many varieties of this complex but it always consists of
an integral membrane protein with two or more heme b cofactors
and at least two periplasmic subunits: the Rieske iron sulfur protein
and cytochrome c [15–17]. The protons produced during the
Fig. 3. Alternative forms of denitrifying enzyme complexes: the periplasmic nitrate reductase
(qNor). Pseudoazurin (Paz) is an alternative to cytochrome c to transport electrons to NirK. Ov
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oxidation of the quinols are set free in the periplasm [18]. Complex
III can also run the “Q-cycle” leading to the translocation of an addi-
tional proton across the membrane. This is thermodynamically only
possible when the membrane potential is not too high (b~0.12 V
with ubiquinone). The Rieske iron sulfur protein needs to be
translocated to the periplasm in a folded state, requiring the action
of the twin arginine translocation (TAT) system [19].
2.3. Cytochrome c

In these generally small proteins (normally 10–20 kDa) the heme is
covalently bound to cysteine moieties of the protein via sulfur bridges.
The covalent bonds are forged in the periplasm and this requires the ac-
tion of a dedicated cytochrome c maturation system [20–25]. As an
(Nap), copper-type nitrite reductase (NirK) and quinol dependent nitric oxide reductase
erall, the contribution to the proton motive force is 5.6 protons per electron pair.
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Fig. 4. Hybrid respiratory chain combiningdenitrification via nitric oxide dismutation and oxygen reduction. Electrons are partly transferred fromNADH toNirS via complex I, ubiquinone/
ubiquinol, complex III and cytochrome c. The nitric oxide dismutase (Nod) converts nitric oxide to nitrogen gas and oxygenwithout receiving any electron. The produced oxygen is then
reduced by complex IV, generating proton gradient. Overall, the contribution to the proton motive force is 7.3 protons per electron pair.
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alternative to cytochrome c, copper based electron carriers such as plas-
tocyanin can be used [26]. Like cytochrome c, biosynthesis of these pro-
teins also requires a maturation system.

2.4. Terminal oxidase (complex IV)

This complex transduces the electrons from cytochrome c
(+0.23 V) or quinones (+0.113 V for ubiquinone) to oxygen (O2, +
0.8 V). Three non-homologues enzymes perform this step: (a) mem-
bers of the heme-copper oxidase superfamily, (b) the bd-type cyto-
chrome oxidases and (c) the alternative oxidase. The oxygen-reducing
terminal oxidases (complex IV) are integralmembrane proteins that re-
duce oxygen at a binuclear active center composed of a high spin heme
(a3, o3 or b3) and a copper ion (CuB). The four protons needed for the re-
duction of oxygen to water are extracted from the cytoplasm and con-
tribute to the proton motive force [27,28]. The bd-type oxidase
accepts electrons only from the quinol pool. It is an integral membrane
protein with two subunits, two heme b's and one heme c. Like the
heme-copper enzymes it extracts protons from the cytoplasm [29,30].
The alternative oxidase, finally, is not a membrane protein but reduces
oxygen in the cytoplasm. For this reason it contributes to the dissipation
of the proton motive force and no energy is conserved. Higher organ-
isms make use of this complex to generate heat. It accepts electrons
from the quinone pool and its active site consists of a di-iron center
[30]. The varieties of complex IV differ in their affinity for oxygen.
High affinity terminal oxidases (e.g. the bd-type and the cbb3 heme-
copper oxygen reductases) are used by microaerobic organisms.

2.5. Nitrate reductase

This enzyme complex catalyzes the first step of denitrification, the
two-electron reduction of nitrate to nitrite (+0.43 V). It is a member
of the large family of molybdopterin oxidoreductases. The enzyme
can either be located in the cytoplasm (NarGH) or in the periplasm
(NapAB) [31]. In the first case, more energy is conserved because of
the additional consumption of protons from the cytoplasm [32],
while in the latter case (NapAB), energy is only conserved by the ac-
tion of complex I [33,34]. The electrons from quinols are relayed to
the molybdopterin (Mo-bisMGD) active site by a series of iron–sulfur
clusters [35,36]. In some versions of the complex NarGH is located in
the periplasm, but is coupled to a complex III-like cytochrome b
Please cite this article as: J. Chen, M. Strous, Denitrification and aero
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subunit which may still enable the conservation of the energy [37].
The periplasmic form of the enzyme is widespread among bacteria
and can fulfill a role in either fermentation, denitrification [33,38] or
phototrophy (redox poising the cyclic electron transfer chain) [39].
NarG is much less widespread and used only by denitrifying bacteria
(which really depend on the conservation of energy). The transloca-
tion of the nitrate reductase to the periplasm requires the action of
the TAT system [19].
2.6. Nitrite reductase

Two non-homologous enzymes catalyze the one-electron reduc-
tion of nitrite into nitric oxide (+0.36 V): the cd1 nitrite reductase
encoded by NirS (120 kDa for the homodimer) and the copper-type
nitrite reductase encoded by NirK (108 kDa for the homotrimer).
Both enzymes are located in the periplasm and require the action of
specific periplasmic chaperones for maturation [40,41]. Cytochrome
c (+0.23 V) and/or small copper proteins (e.g. pseudoazurin, Paz)
can serve as the electron donor for both enzymes [40,42,43]. Because
of their periplasmic localization these enzymes do not contribute to
the proton motive force directly. It is unknown whether the two ap-
parently isofunctional enzymes confer specific advantages or disad-
vantages to their host, but they have so far not been found together
in the same organism. Cd1 nitrite reductase also reduces oxygen
[44,45].
2.7. Nitric oxide reductase

These enzymes (~75 kDa) are part of the superfamily of
heme-copper oxidase (see complex IV above) [46]. Instead of copper,
the active site of nitric oxide reductase contains non-heme iron (FeB)
[47]. Two molecules of nitric oxide are combined, and reduced
(+1.18 V) to nitrous oxide with the addition of two electrons. The
protons necessary originate from the periplasm so the energy is not
conserved [48,49]. Just like the oxygen reductases, different forms of
nitric oxide reductase exist: one (encoded by NorZ) accepts electrons
from quinols and the other (a heterodimer encoded by NorBC) from
cytochrome c [47,50]. All members of the heme-copper oxygen re-
ductases can reduce both nitric oxide and oxygen; only the affinity
for either of these substrates differs.
bic respiration, hybrid electron transport chains and co-evolution,
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2.8. Nitrous oxide reductase

The final step of denitrification, the reduction of nitrous oxide into
nitrogen (+1.36 V), is performed by nitrous oxide reductase, a
periplasmic homodimer of 130 kDa (total) encoded by NosZ [51]. It
accepts electrons from cytochrome c and does not conserve the ener-
gy. It contains two copper centers (CuA and CuZ) and the electrons are
relayed from the former to the latter, where the reduction of nitrous
oxide actually takes place. CuZ contains four copper atoms bridged
by two sulfur atoms and is inactivated by oxygen [52]. Specific chap-
erones (NosDFZL) are necessary for maturation in the periplasm
[53,54].

2.9. Nitric oxide dismutase

This enzyme has only recently been postulated to exist, based on
the observation that 18O-labeled O2 was produced from 18O-labeled
nitrite by the bacterium “Candidatus Methylomirabilis oxyfera.” It
was previously implied that members of the heme-copper oxidase
superfamily or a divergent multicopper oxidase might catalyze this
reaction [2].

3. The bioenergetics of denitrification compared to
aerobic respiration

Denitrification and aerobic respiration have only slightly different
overall redox potentials, so from a theoretical, thermodynamic per-
spective nitrate and oxygen are almost equally good electron accep-
tors. However, in reality oxygen is a much better electron acceptor
both for bioenergetic and kinetic reasons. From a bioenergetic per-
spective, much more energy is conserved during aerobic respiration.
Per electron pair transduced, four protons are translocated by com-
plex I, two protons are translocated during the reduction and
re-oxidation of the quinones (at complex III or IV) and four additional
protons are translocated by complex IV. In total, up to 10 protons are
translocated. At a membrane potential of 150 mV, approximately 50%
of the energy is conserved in the form of a proton motive force, and
can be used to generate ATP. In canonical denitrification, at most six
protons per pair of electrons are translocated if NAHD is used as elec-
tron donor. This difference is caused by the fact that none of the
denitrification modules translocates protons. Even the nitric oxide re-
ductase, which can be considered as a form of complex IV does not
contribute to the proton motive force. This is caused by the fact
that, in spite of the high potential of nitric oxide (1.18 V, higher
than that for oxygen reduction) the active site of nitric oxide reduc-
tase is a too weak base to “pull” the protons from the cytoplasm
[55]. Overall, only 30% of the energy is conserved in the form of a pro-
ton motive force (see Fig. 2). Most of the energy is lost in the final part
of the denitrification pathway, where the high potential electron ac-
ceptors nitric and nitrous oxides do not contribute to the proton mo-
tive force. From the perspective of the organism, it does not matter
whether it reduces nitrate to nitrite (+0.43 V) or nitrous oxide to
nitrogen (+1.36 V), the amount of energy conserved is equal (six
protons per electron pair).

When denitrifiers would be able to make use of nitric oxide
dismutation, the amount of energy conserved would improve. In
that case, 7.3 protons would be translocated per electron pair, leading
to 36.5% energy conservation, and from an evolutionary perspective a
significant fitness benefits.

Apart from this bioenergetic disadvantage, we would like to hy-
pothesize that denitrifiers also suffer from a kinetic disadvantage.
This can be understood as follows: (a) denitrifiers need more differ-
ent enzyme complexes (in addition to the core four modules) than
aerobic organisms (only one additional enzyme); (b) the amount of
space in both the membrane and the periplasm is limited. Thus, deni-
trifiers must have lower numbers of each of the individual complexes
Please cite this article as: J. Chen, M. Strous, Denitrification and aero
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per cell, leading to a lower maximum substrate conversion rate and a
larger average distance between the donors and the acceptors in each
of the different steps of the respiratory chain, which would further
decrease the respiration speed.

The number of different modules required for denitrification via
nitric oxide dismutation would also amount to four.

These are two important physicochemical constraints that limit
the fitness of denitrification compared to aerobic respiration. Since
as far as we know all denitrifiers are also capable of aerobic respira-
tion, it is clear that in the presence of oxygen, denitrification appears
to make no bioenergetic sense.

Inwell studied denitrifiers (e.g. Pseudomonas stutzeri and Paracoccus
denitrificans), several regulatory systems are known to shut down deni-
trification once oxygen is detected. Further, the final step of denitrifica-
tion, the reduction of nitrous oxide to nitrogen is inhibited by oxygen
because oxygen deactivates the responsible enzyme [52].

On the other hand, one may still conceive specific environmental
conditions where the co-expression of both pathways in one organ-
ism, and even the aerobic activity of denitrification, can be profitable.
For example, the oxygen concentration in many natural systems is
low, oxygen is not very soluble (b250 μM) and the oxygen consump-
tion rate can be high. This often gives rise to steep oxygen gradients
and the occurrence of oxygen limitation. When the production of
NADH is more rapid than the supply of oxygen, the co-respiration of
nitrate and oxygen would make sense. This was for example observed
for Paracoccus pantotrophus [56,57].

Steep gradients may also give rise to rapid oxygen dynamics be-
cause of slight imbalances in environmental electron donor supply.
Further, in many ecosystems the microbial growth rate is low, at
least compared to what we are used to in the laboratory. Bacterial
generation times may be in the order of days or even weeks. The
same would also be true for the lifetime of the enzymes. Under
these circumstances it may be simply impossible for denitrifying or-
ganisms to rebuild their respiratory chain each time when oxygen
comes or goes. And once the denitrification part of the network is in
place, it makes no sense not to make use of it, even in the presence
of oxygen. Of course, the electrons would still be preferentially
channeled to complex IV because of the extra protons translocated,
but if the electron flow would exceed the uptake capacity of complex
IV, it is likely that the different denitrification enzymes would take
care of the overflow.

In such a scenario, denitrification via nitric oxide dismutation
would confer an additional advantage, namely that it would require
one enzyme less: the combination of canonical denitrification with
aerobic respiration requires five different enzymes, whereas nitrite
dismutation requires only four. On the other hand, nitric oxide may
suffer the disadvantage that the nitric oxide concentration would
need to be tightly controled because the chemical reaction of nitric
oxide and oxygen has very high affinity.

Aerobic denitrification would be a very favorable process for waste-
water treatment, and therefore it has been actively investigated. In the
following section, we critically review the published evidence for aero-
bic denitrification.
4. Experimental evidence for aerobic denitrification

As outlined in Section 2, nitrous oxide reductase appears to be the
only part of denitrification that is chemically incompatible in the
presence of oxygen. The transport of nitrate into the cell was also
shown to be affected by oxygen in some cases [51,58], but because
many aerobic organisms are perfectly capable of aerobic nitrate im-
port, it is more likely that the observed sensitivity is a specific adapta-
tion for regulatory purposes.

In Section 3 we have argued that denitrification in the presence of
excess oxygen does not appear to make sense from a bioenergetic
bic respiration, hybrid electron transport chains and co-evolution,
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perspective but that under dynamic or oxygen limiting conditions
one may still expect aerobic denitrification.

Indeed, so far a number of studies have described the observation
of aerobic denitrification in the laboratory with pure or mixed cul-
tures (Table 1) (also aerobic nitrifiers have been shown to convert ni-
trite or hydroxylamine into nitrous oxide, both in the laboratory and
in the environment but that process is not addressed further here
[59–61]).
Table 1
Published evidence for aerobic denitrification.

Isolate O2 content
(% air saturation)

Lag
phase

Products Reduct
(M N/d

10 Strains belong to genera
Microvirgula, Paracoccus,
Thiobacillus, Enterobacter,
Comamonas and Sphingomonas

~105.4%d N.A. N2 (NO2
−) 0.0031

Paracoccus denitrificans NCIB 8944 100%h ~5 min NOx↑, N2↓ 0.045
Pseudomonas aeruginosa PA01 100%h ~5 min NOx↑, N2↑ 0.060
Pseudomonas aeruginosa PA0129 100%h N.A. NOx↑, N2↑ 0.073
Pseudomonas stutzeri ATCC 17591
84.60

100%h N.A. NOx↑, N2↓ 0.040

Propionibacterium thoenii
NCDO 568

100%h ~5 min NOx↑, N2↑ 0.065

Pseudomonas (wild A) 100%h N.A. NOx↑, N2↓ 0.0058
Pseudomonas (wild B) 100%h N.A. NOx↑, N2↓ 0.026
Pseudomonas (wild C) 100%h N.A. NOx↑, N2↓ 0.016
Ca. Microvirgula aerodenitrificans
SGLY2

~100%h No NOx↑, N2↑ ≤0.43

Paracoccus pantotrophus
LMD 92.63

≤95%d No N2O, N2↓ ~4.12×

Unknown Strain 70.5%–84.8%d No N2O 0.0047

Citrobacter diversus 12.1%–84.6%d 12 h NOx, N2 ~0.088
Paracoccus pantotrophus
LMD 37.26

>80%d No N2O, N2 0.072

Pseudomonas sp. LMD 84.60 >80%d No N.A. 0.022
A. faecalis LMD 84.59 >80%d No N.A. N.A.
Ps. Aureofaciens LMD 37.26 >80%d No N.A. N.A.
Aeromonas (5 isolates) ≤80%d N.A. NO2

− 0.0072
Arthrobacter S2.26 ≤80%d N.A. NO2

− 0.060
Moraxella S2.18 ≤80%d N.A. NO2

− 0.030
Pseudomonas (16 isolates) ≤80%d N.A. NO2

− 0.0072
8 Strains belong to genera
Pseudomonas, Delftia,
Herbaspirillum and Comamonas

28.8%–79.9%d No NOx ~0.017

Peseudomonas sp. yy7 ~78.6%d 4 h N2, N2O 0.0013
Pseudomonas putida AD-21 65.5%–78.6%d ~5 h N.A. 0.17±

and 0.5

Ca. Thauera mechernichensis TL1 30%–70%d N.A. N.A. 0.023–

Pseudomonas nautical 617 4.78%–33.5%d N.A. NOx 0.056–
Tidal sediments ≤25.7% ~1 h N2 ≤0.53

Pseudomonas aeruginosa
ATCC 9027

≤18.3%d N.A. N.A. ~0.027

Pseudomonas stutzeri TR2 ~16.3%d No N2, N2O (trace) 1.26×1
Pseudomonas sp. K50 ~15.9%d No N2, N2O (trace) 4.21×1
Agrobacterium sp. LAD9 N.A. N.A. N.A. 0.040
Achromobacter sp. GAD3 N.A. N.A. N.A. 0.033
Comamonas sp. GAD4 N.A. N.A. N.A. 0.046

c: continuous cultivation.
d: dissolved oxygen.
h: oxygen concentration in the headspace.
N.A.: not available.
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It should be noted that in some of the experiments listed in
Table 1, nitrogen was measured as the end product. This suggests
that different forms of nitrous oxide reductase may exist that are in-
sensitive to oxygen. On the other hand, actively respiring microbes
could effectively consume oxygen and keep the oxygen concentration
in their surroundings very low, even in the presence of relatively high
oxygen concentrations in the headspace or even bulk liquid of the
laboratory incubations, especially if the stirring is not sufficiently
ion rate
/g protein)

Growth rate (d−1) Annotate Reference

O2 NOx O2+NOx

–0.036 N.A. N.A. N.A. Bacteria were isolated from diverse
environment; suspended culture

[62]

N.A. N.A. N.A. Bottle incubation lasted for 5 h;
trace N2 produced; suspended
culture

[63]
N.A. N.A. N.A.
N.A. N.A. N.A.
N.A. N.A. N.A.

N.A. N.A. N.A.

N.A. N.A. N.A.
N.A. N.A. N.A.
N.A. N.A. N.A.
0.37 0.12 1.3 Both adapt and non-adapt

suspended culture were used for
comparison

[64–66]

10−3 N.A. N.A. N.A. 15N isotope track; chemostat
suspended culture

[67,68]

M N/d N.A. N.A. N.A. Bacteria were isolated from an
alternating activated sludge
system; suspended culture

[69]

N.A. N.A. N.A. Suspended culture [70]
6.7 6.0 8.2 Bacteria were isolated from an

sulphide oxidation - nitrate
reduction plant; suspended culture

[71–74]

2.4 3.6 9.8 Simultaneous nitrification and
denitrification were observed

[75]
4.1 1.7 6.0
4.6 1.7 5.0

–0.014 N.A. N.A. N.A. Bacteria were isolated from soil
and sediment samples; suspended
culture

[76]
N.A. N.A. N.A.
N.A. N.A. N.A.

–0.072 N.A. N.A. N.A.
M N/L/d N.A. N.A. N.A. Suspended culture [77]

M N/L/d N.A. N.A. 8.2 Suspended culture [78]
0.0095,
6c

N.A. N.A. ≤3.4 C/N ratio had a great influence on
growth rate, with optimal value of
8; suspended culture

[79]

0.033 N.A. N.A. N.A. TL1 showed similar trend to P.
denitrificans DSM 2944 under the
same condition; suspended culture

[80,81]

0.12 N.A. N.A. N.A. Kinetic study; suspended culture [82]
M N/m3/d N.A. N.A. N.A. 15 N isotope track; aerobic

denitrification took place at upper
6 cm in the sediments.

[83]

N.A. N.A. N.A. NAD(P)H contents in the presence
of O2 only, O2 and NOx, and NOx
only were lowest, intermediate
and highest respectively;
suspended culture

[84]

0−4 N.A. N.A. N.A. Suspended culture [85]
0−6 N.A. N.A. N.A.

N.A. N.A. 6.9 Simultaneous nitrification and
denitrification; suspended
culture; extracted enzyme
showed high Nap activity

[86]
N.A. N.A. 5.5
N.A. N.A. 10.4
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rigorous or if the microbes aggregate. For this reason, we closely
inspected all methods used in these studies to evaluate whether the
conclusion that the claims for the observation of aerobic denitrifica-
tion are really justified. Table 1 shows whether the reference studies
indicated oxygen concentrations, whether oxygen was measured in
the bulk or in the headspace and whether the potential presence of
anoxic microniches could be ruled out (e.g. by investigating whether
the cells were present as aggregates or as suspended cells).

It appears that in most cases, the evidence presented is not suffi-
cient to support the conclusion that denitrification really proceeded
in the presence of excess oxygen. It should be noted that the aerobic
denitrification rates were much lower than the anaerobic denitrifica-
tion rates measured for the same strain while aerobic respiration
rates remain high. This implies that the major electron flow in the re-
spiratory chain is towards complex IV rather than the NOx reductases,
and that aerobic respiration is still the preferred pathway for growth.
Apparently aerobic denitrification can be an auxiliary pathway next
to aerobic respiration.

As is the case for conventional denitrification, aerobic denitrifica-
tion appears to be taxonomically widespread, at least it was found
in Alpha-, Beta- and Gamma-proteobacteria, and this is not surprising
as the enzymatic machinery for aerobic and anaerobic denitrification
is (probably) the same. Future genome sequencing will resolve this
matter.

5. A possible scenario for the shared evolutionary origin of aerobic
respiration and denitrification

Geochemical studies have shown that oxygenic phototrophy must
have evolved in or before the late Archaean, approximately 3 billion
years ago [87]. The evolution of aerobic respiration depends on a
source of oxygen. If oxygenic phototrophy was the first and only
source of oxygen, aerobic respiration must have evolved after the
evolution of oxygenic phototrophy. However, other, perhaps relative-
ly small but still significant, chemosynthetic sources may have been
available earlier. For example, if a primordial source of chlorate
existed, microbial chlorite dismutation could have led to the produc-
tion of oxygen [88]. Oxygen could also have been generated by
catalase-like enzymes acting on peroxides resulting from radioactivi-
ty. Finally, it is likely that volcanic eruptions in the primordial atmo-
sphere constituted a significant source of nitric oxide [89]. Via nitric
oxide dismutation oxygen could also have been produced. On the
other hand, nitric oxide is not a very stable molecule, particularly in
the presence of iron. Because in those days the oceans were most like-
ly ferruginous [90–92], nitric oxide or nitrite may be chemically re-
duced to nitrous oxide and it is unclear to what extent nitric oxide
would have been available to biology. It has been argued that copper
was not bioavailable in the Archaean because of its precipitation with
sulfide [93], but this constraint has been relaxed by the discovery that
the oceans were ferruginous and not sulfidic.

In conclusion, geochemical knowledge hardly constrains evolution-
ary scenarios and is of little help in reconstructing the co-evolution of
denitrification and aerobic respiration.

Inferences from biochemistry are slightly more promising: be-
cause of the interdependencies of the different complexes/respiratory
modules we may make inferences as to what came first and what
next. At least we can apply Occam's Razor and infer that those com-
plexes that have the fewest dependencies came first. In this way a
simple primordial respiratory chain could have evolved into present,
more complicated versions with more (inter)dependencies.

We hypothesize that the simplest respiratory chains do not make
use of cytochrome c because of its relatively complex maturation sys-
tem. Respiratory chains depending on the quinol pool only are sim-
pler and still have relatively high bioenergetic efficiency (see
Section 2 above). The maturation of cytochrome c proteins depends
on a dedicated cytochrome c maturation system [20–25], on the
Please cite this article as: J. Chen, M. Strous, Denitrification and aero
Biochim. Biophys. Acta (2012), http://dx.doi.org/10.1016/j.bbabio.2012.
translocation of proteins across the cytoplasmic membrane and on
the presence of complex III or an analogous complex that can relay
electrons from the quinol pool to a soluble periplasmic electron carri-
er like cytochrome c. Therefore, the most parsimonious scenario is a
respiratory chain consisting of a form of complex I that reduces a pri-
mordial quinone followed by reoxidation of the quinone by a terminal
electron acceptor. Several forms of complex IV (such as NorZ) could
be terminal electron acceptors, do not depend on cytochrome c and
do not require additional maturation systems. Nitric oxide and oxy-
gen would both be suitable substrates for such a complex because
also current enzymes are not completely specific (see above). Initial-
ly, there may not have been a need for energy conservation: the pri-
mordial respiratory chain may have simply served as a sink for
NADH for fermenting microorganisms and for the removal of oxygen
to prevent radical chemistry. This strategy is also followed by current
fermenters that reduce nitrate to ammonium or sulfur to sulfide.

Once this simple form of complex IV evolved, a driving force was
established for the evolution of its proton translocation channels,
leading to improved bioenergetics. If nitric oxide was the primordial
substrate, nitric oxide dismutation could have produced the same
final result: proton translocation.

Nitrous oxide would be a chemically stable end-product and
would have accumulated in the biosphere, a driving force for the evo-
lution of nitrous oxide reductase so resulted. Again, it is likely that the
quinol-dependent integral membrane form was the first protein that
evolved [94].

It is likely that nitrate and nitrite consuming enzymes evolved
much later, only after the evolution of cytochrome c and nitrification.
Production of nitrite and nitrate in nitrification depends on cyto-
chrome c.

In conclusion, from a biochemical perspective it is most likely that
the integration of both denitrification and aerobic respiration into a
respiratory chain started with the evolution of a primordial form of
complex IV that reduced both oxygen and nitric oxide or even inter-
converted these two molecules.
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